首页 / 专利库 / 换热器 / 热交换器 / 降膜式换热器 / 立式双降膜换热器及吸收式热泵

立式双降膜换热器及吸收式

阅读:60发布:2020-05-13

专利汇可以提供立式双降膜换热器及吸收式专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种立式双降膜换热器及吸收式 热 泵 ,其中立式双降膜换热器包括换 热管 、换热管上端板和换热管下端板;第一 流体 导入室,位于换热管上端板的上方,第一流体导入室内的第一流体自换热管的上端流入换热管内,并在换热管的内壁上形成内降膜;第一流体接受器,位于换热管下端板的下方,用于容纳换热管内流出的第一流体;第二流体导入室,位于换热管上端板的下方,第二流体在换热管的外壁上形成外降膜;第二流体接收室,位于换热管下端板的上方,所述第二流体接收室用于容纳沿换热管流下的第二流体。本发明的换热器换热效果好且结构紧凑体积小,结合了该换热器吸收式热泵具有动 力 消耗少、体积小、占地面积少和制造成本低的优势。,下面是立式双降膜换热器及吸收式专利的具体信息内容。

1.吸收式,包括蒸发器、吸收器、发生器和冷凝器,所述蒸发器和吸收器通过第一工质蒸气通道连通,所述冷凝器和发生器通过第二工质蒸气通道连通,所述发生器和吸收器之间通过第一溶液循环管道和第二溶液循环管道连通,所述第一溶液循环管道将吸收溶液由发生器输送至吸收器,所述第二溶液循环管道将吸收溶液由吸收器输送至发生器,所述第一溶液循环管道和第二溶液循环管道上设有溶液换热器,第一溶液循环管道和第二溶液循环管道内输送的吸收溶液通过溶液换热器进行热量交换,所述蒸发器和冷凝器通过工质管道连接,所述工质管道将所述冷凝器内的工质输送至蒸发器,所述蒸发器包括蒸发换热器,所述吸收器包括吸收换热器,所述发生器包括发生换热器,所述冷凝器包括冷凝换热器,其特征在于,
所述发生器包括吸收溶液闪蒸腔室、发生换热器和第二吸收溶液喷淋装置,发生换热器设于吸收溶液闪蒸腔室的外部,吸收溶液闪蒸腔室内的上部设有第二吸收溶液喷淋装置,第二吸收溶液喷淋装置与设于吸收溶液闪蒸腔室外部的第二吸收溶液喷淋管道连接,第二吸收溶液喷淋管道将吸收溶液闪蒸腔室内的吸收溶液输送至第二吸收溶液喷淋装置进行喷淋,第二吸收溶液喷淋管道上设有第二吸收溶液喷淋泵,第二吸收溶液喷淋管道与发生换热器的冷流体侧连接,发生热源的发生热媒管道与发生换热器302的热流体侧连接;
固液分离装置,当吸收溶液闪蒸腔室内的吸收溶液中的吸收剂结晶时,固液分离装置将吸收溶液分离成含有吸收剂结晶和不含吸收剂结晶的两部分,其中不含吸收剂结晶的吸收溶液经第二吸收溶液喷淋管道输送至第二吸收溶液喷淋装置,含有吸收剂结晶的吸收溶液由第一溶液循环管道输送至吸收器内;
蒸发换热器、吸收换热器和冷凝换热器中的至少一个采用立式双降膜换热器,所述立式双降膜换热器包括:
热管、换热管上端板和换热管下端板;
第一流体导入室,位于换热管上端板的上方,第一流体导入室内的第一流体自换热管的上端流入换热管内,并在换热管的内壁上形成内降膜;
第一流体接受器,位于换热管下端板的下方,用于容纳换热管内流出的第一流体;
第二流体导入室,位于换热管上端板的下方,第二流体在换热管的外壁上形成外降膜;
第二流体接收室,位于换热管下端板的上方,所述第二流体接收室用于容纳沿换热管流下的第二流体。
2.根据权利要求1所述的吸收式热泵,其特征在于,所述蒸发换热器为所述的立式双降膜换热器,所述蒸发换热器设于蒸发器的蒸发腔室内,其中
蒸发换热器中的第一流体为工质,第二流体为蒸发热媒;
换热管上端板上方的第一流体导入室与换热管下端板下方的第一流体接收器通过工质循环管道连接,第一流体导入室与冷凝器通过工质管道连接;
换热管上端板的下方设有布液孔板,换热管上端板与布液孔板之间的腔室形成第二流体导入室;
换热管下端板与布液孔板之间的腔室形成第二流体接收室;
工质循环管道上设有工质循环泵,工质循环泵将第一流体接收器内的工质输送到第一流体导入室,工质沿换热管的内壁面向下流动形成内降膜;第二流体导入室内的蒸发热媒沿换热管的外壁面向下流动形成外降膜,工质与蒸发热媒通过换热管进行热交换,部分工质受热蒸发为蒸气,工质蒸气经第一工质蒸气通道流入吸收器,液态工质流入第一流体接收器。
3.根据权利要求1所述的吸收式热泵,其特征在于,所述吸收换热器为所述的立式双降膜换热器,所述吸收换热器设于吸收器的吸收腔室内,其中
所述吸收换热器中的第一流体为吸收溶液,第二流体为吸收热媒;
换热管上端板上方的第一流体导入室通过第一吸收溶液循环管道连接发生器;
换热管下端板下方的第一流体导出室通过第二溶液循环管道连接发生器;
换热管上端板的下方设有布液孔板,所述换热管上端板与布液孔板之间的腔室形成第二流体导入室;
换热管下端板与布液孔板之间的腔室形成第二流体接收室;
第二流体接收室连接吸收热媒导入管和吸收热媒导出管,吸收热媒导入管道将吸收热媒输入第二流体接收室,第二流体接收室通过吸收热媒循环管道连接第二流体导入室,吸收热媒循环管道上设有吸收热媒循环泵,吸收热媒循环泵将第二流体接收室内的吸收热媒输送至第二流体导入室,吸收热媒通过换热管外壁面与布液孔板之间的间隙流出,并在换热管的外壁形成外降膜;
第一流体导入室内的吸收溶液沿换热管的内壁面向下流动形成内降膜的同时吸收蒸发器内产生的工质蒸汽并释放高温的吸收热,吸收溶液与吸收热媒通过换热管进行热交换,吸收了吸收热的吸收热媒经吸收热媒导出管道输出。
4.根据权利要求1所述的吸收式热泵,其特征在于,所述冷凝换热器为所述的立式双降膜换热器,所述冷凝换热器设于冷凝器的冷凝腔室内,其中
所述冷凝换热器中的第一流体为工质蒸汽,第二流体为冷凝热媒;
换热管下端板的下方为第一流体导入室,换热管下端板的下方还设有第一流体接收器,第一流体接收器通过工质循环管道连接蒸发器;
换热管上端板的下方设有布液孔板,所述换热管上端板与布液孔板之间的腔室形成第二流体导入室;
换热管下端板与布液孔板之间的腔室形成第二流体接收室;
冷凝热媒导入管道连接第二流体导入室,冷凝热媒导出管道连接第二流体接收室,冷凝热媒通过换热管外壁面与布液孔板之间的间隙流出,并在换热管的外壁形成外降膜;
自第一流体导入室流入换热管的第一流体与冷凝热媒通过换热管进行热交换,第一流体发生冷凝并沿换热管的内壁面向下流动形成内降膜。
5.根据权利要求1所述的吸收式热泵,其特征在于,所述蒸发器和所述吸收器共用一个立式容器,所述蒸发器位于所述容器的上方,所述吸收器位于所述容器的下方。
6.根据权利要求1所述的吸收式热泵,其特征在于,所述发生器和所述冷凝器共用一个立式容器,所述冷凝器位于所述容器的上方,所述发生器位于所述容器的下方。
7.根据权利要求1所述的吸收式热泵,其特征在于,所述换热管穿过第二流体导入室与第一流体导入室连通,第二流体导入室的顶板为换热管上端板,底板为布液孔板,布液孔板上具有用于换热管穿过的布液孔,布液孔的孔径大于换热管的外径,换热管的外壁面与布液孔板之间形成间隙,第二流体导入室内的第二流体通过该间隙流出,并在换热管的外壁面上形成外降膜。
8.根据权利要求1所述的吸收式热泵,其特征在于,布液孔板上每一布液孔的周线上含有至少两处沿布液孔径向延伸的凸部,所述凸部用于定位换热管。
9.根据权利要求8所述的吸收式热泵,其特征在于,所述凸部在布液孔的周线上均匀分布。

说明书全文

立式双降膜换热器及吸收式

技术领域

[0001] 本发明涉及热能工程的热泵技术领域,特别涉及一种立式双降膜换热器及吸收式热泵。

背景技术

[0002] 吸收式热泵,包括吸收式制冷系统、第一类吸收式热泵系统、第二类吸收式热泵系统以及其他形式的吸收式热泵,是一种利用热作为驱动,实现将热量从低温热源向高温热源泵送的循环系统,是回收利用低品位热能的有效装置,具有节约能源、保护环境的双重作用。如图1所示,吸收式热泵系统通常包括蒸发器100、吸收器200、发生器300、冷凝器400、换热器、管道及屏蔽泵等部件。其中,蒸发器100与吸收器200之间通过第一工质蒸气通道700连通,发生器300与冷凝器400之间通过第二工质蒸气通道800连通,蒸发器100的蒸发换热器102设于蒸发器100的容器体内部,吸收器200的吸收换热器202设于吸收器200的容器体的内部,发生器300的发生换热器302设于发生器300的容器体的内部,冷凝器400的冷凝换热器402设于冷凝器400的容器体的内部。根据换热器入口与出口的温差,采用的热源分为变温热源和恒温热源,一般换热温差小于3℃可视为恒温热源。在吸收式热泵中主要是采用变温热源。现有的吸收式热泵的蒸发换热器102、吸收换热器202、发生换热器302和冷凝换热器402由于采用平安装的换热管,只能在换热管的外管壁形成工质或者吸收溶液的降膜,而无法在换热管的内管壁形成蒸发热媒、吸收热媒、发生热媒和冷凝热媒的降膜,因而换热效果差且热媒循环所需的动力消耗大。同时,采用水平换热管的现有吸收式热泵由于换热强度小因而体积大,又由于只能采用卧式箱体设计,因而占地面积大。

发明内容

[0003] 有鉴于此,本发明实施例提供一种立式双降膜换热器,主要目的是提高换热效果,减少动力消耗,减小体积同时减少占地面积。
[0004] 为达到上述目的,本发明主要提供如下技术方案:
[0005] 一方面,本发明实施例提供了一种立式双降膜换热器,包括:
[0006] 换热管、换热管上端板和换热管下端板;
[0007] 第一流体导入室,位于换热管上端板的上方,第一流体导入室内的第一流体自换热管的上端流入换热管内,并在换热管的内壁上形成内降膜;
[0008] 第一流体接收器,位于换热管下端板的下方,用于容纳换热管内流出的第一流体;
[0009] 第二流体导入室,位于换热管上端板的下方;
[0010] 第二流体接收室,位于换热管下端板的上方,所述第二流体接收室用于容纳沿换热管流下的第二流体。
[0011] 作为优选,所述换热管穿过第二流体导入室与第一流体导入室连通,第二流体导入室的顶板为换热管上端板,底板为布液孔板,布液孔板上具有用于换热管穿过的布液孔,布液孔的孔径大于换热管的外径,换热管的外壁面与布液孔板之间形成间隙,第二流体导入室内的第二流体通过该间隙流出,并在换热管的外壁面上形成外降膜;
[0012] 作为优选,所述布液孔板上每一布液孔的周线上含有至少两处沿布液孔径向延伸的凸部,用于定位换热管。
[0013] 作为优选,所述凸部在布液孔的周线上均匀分布。
[0014] 另一方面,本发明实施例提供了一种吸收式热泵,包括蒸发器、吸收器、发生器和冷凝器,所述蒸发器和吸收器通过第一工质蒸气通道连通,所述冷凝器和发生器通过第二工质蒸气通道连通,所述发生器和吸收器之间通过第一溶液循环管道和第二溶液循环管道连通,所述第一溶液循环管道将吸收溶液由发生器输送至吸收器,所述第二溶液循环管道将吸收溶液由吸收器输送至发生器,所述第一溶液循环管道和第二溶液循环管道上设有溶液换热器,第一溶液循环管道和第二 溶液循环管道内输送的吸收溶液通过溶液换热器进行热量交换,所述蒸发器和冷凝器通过工质管道连接,所述工质管道将所述冷凝器内的工质输送至蒸发器,所述蒸发器包括蒸发换热器,所述吸收器包括吸收换热器,所述发生器包括发生换热器,所述冷凝器包括冷凝换热器,其中,蒸发换热器、吸收换热器、发生换热器和冷凝换热器中的至少一个采用上述实施例所述的立式双降膜换热器。
[0015] 作为优选,所述蒸发换热器为所述的立式双降膜换热器,所述蒸发换热器设于蒸发器的蒸发腔室内,其中
[0016] 蒸发换热器中的第一流体为工质,第二流体为蒸发热媒;
[0017] 换热管上端板上方的第一流体导入室与换热管下端板下方的第一流体接收器通过工质循环管道连接,第一流体导入室与冷凝器通过工质管道连接;
[0018] 工质循环管道上设有工质循环泵,工质循环泵将第一流体接收器内的工质输送到第一流体导入室,较佳的,第一流体导入室内设有第一流体喷淋装置。流出第一流体导入室的工质沿换热管的内壁面向下流动形成内降膜;第二流体导入室内的蒸发热媒沿换热管的外壁面向下流动形成外降膜,工质与蒸发热媒通过换热管进行热交换,部分工质受热蒸发为蒸气,工质蒸气经第一工质蒸气通道流入吸收器,液态工质流入第一流体接收器。
[0019] 对于蒸发热媒为蒸汽的情况,较佳的,蒸发器可以将换热管的外壁面与布液孔板之间的间隙扩大,也可以不设置布液板,蒸发热媒在换热管外管壁冷凝后形成液态蒸发热媒的外降膜。
[0020] 作为优选,所述吸收换热器为所述的立式双降膜换热器,所述吸收换热器设于吸收器的吸收腔室内,其中
[0021] 所述吸收换热器中的第一流体为吸收溶液,第二流体为吸收热媒;
[0022] 换热管上端板上方的第一流体导入室通过第一吸收溶液循环管道连接发生器;
[0023] 换热管下端板下方的第一流体导出室通过第二溶液循环管道连接发生器;
[0024] 换热管上端板的下方设有布液孔板,所述换热管上端板与布液孔板之间的吸收腔室形成第二流体导入室;
[0025] 换热管下端板与布液孔板之间的腔室形成第二流体接收室;
[0026] 第二流体接收室连接吸收热媒导入管道和吸收热媒导出管道,吸收热媒导入管道将吸收热媒输入第二流体接收室,第二流体接收室通过吸收热媒循环管道连接第二流体导入室,吸收热媒循环管道上设有吸收热媒循环泵,吸收热媒循环泵将第二流体接收室内的吸收热媒输送至第二流体导入室,吸收热媒通过换热管外壁面与布液孔板之间的间隙流出,并在换热管的外壁形成外降膜;
[0027] 第一流体导入室内的吸收溶液沿换热管的内壁面向下流动形成内降膜的同时吸收蒸发器内产生的工质蒸汽并释放出高温的吸收热,吸收溶液与吸收热媒通过换热管进行热交换,吸收了所述高温吸收热的吸收热媒经吸收热媒导出管道输出。较佳的,第一流体导入室内设有第一流体喷淋装置。
[0028] 较佳的,对于换热中部分吸收热媒蒸发为吸收热媒蒸汽的情况,将吸收热媒导入管道安装在第二流体导出室的下方而吸收热媒导出管道安装在第二流体导出室的上方;而对于不产生吸收热媒蒸汽的情况,将吸收热媒导入管道安装在第二流体导入室而吸收热媒导出管道安装在第二流体导出室的下方,此时吸收器可以不设吸收热媒循环管道和吸收热媒循环泵。
[0029] 作为优选,所述蒸发器和所述吸收器共用一个立式容器,所述蒸发器位于所述容器的上方,所述吸收器位于所述容器的下方。较佳的,所述蒸发器和所述吸收器共用的立式容器为立式圆筒容器。
[0030] 作为优选,所述发生换热器为所述的立式双降膜换热器,所述发生换热器设于发生器的发生腔室内,其中
[0031] 所述发生换热器中的第一流体为吸收溶液,第二流体为发生热媒;
[0032] 换热管上端板上方的第一流体导入室通过第一吸收溶液循环管道连接吸收器;
[0033] 换热管下端板下方的第一流体导出室通过第二溶液循环管道连接 吸收器;
[0034] 换热管上端板的下方设有布液孔板,所述换热管上端板与布液孔板之间的腔室形成第二流体导入室;
[0035] 换热管下端板与布液孔板之间的腔室形成第二流体接收室;
[0036] 发生热媒导入管道连接第二流体导入室,发生热媒导出管道连接第二流体接收室,发生热媒通过换热管外壁面与布液孔板之间的间隙流出,并在换热管的外壁形成外降膜。对于发生热媒为蒸汽的情况,较佳的,发生器可以将换热管的外壁面与布液孔板之间的间隙扩大,也可以不设置布液板,蒸发热媒在换热管外管壁冷凝后形成液态蒸发热媒的外降膜;
[0037] 第一流体导入室内的吸收溶液沿换热管的内壁面向下流动形成内降膜的同时,吸收溶液与发生热媒通过换热管进行热交换,吸收溶液中的部分工质受热蒸发为工质蒸气,蒸气工质通过第二蒸气工质通道流入冷凝器。
[0038] 作为优选,所述冷凝换热器为所述的立式双降膜换热器,所述冷凝换热器设于冷凝器的冷凝腔室内,其中
[0039] 所述冷凝换热器中的第一流体为工质蒸汽,第二流体为冷凝热媒;
[0040] 换热管下端板的下方为第一流体导入室,换热管下端板的下方还设有第一流体接收器,第一流体接收器通过工质循环管道连接蒸发器;
[0041] 换热管上端板的下方设有布液孔板,所述换热管上端板与布液孔板之间的腔室形成第二流体导入室;
[0042] 换热管下端板与布液孔板之间的腔室形成第二流体接收室;
[0043] 冷凝热媒导入管道连接第二流体导入室,冷凝热媒导出管道连接第二流体接收室,冷凝热媒通过换热管外壁面与布液孔板之间的间隙流出,并在换热管的外壁形成外降膜;
[0044] 自第一流体导入室流入换热管的第一流体与冷凝热媒通过换热管进行热交换,第一流体发生冷凝并沿换热管的内壁面向下流动形成内降膜。
[0045] 作为优选,所述发生器和所述冷凝器共用一个立式容器,所述冷 凝器位于所述容器的上方,所述发生器位于所述容器的下方。较佳的,所述发生器和所述冷凝器共用的立式容器为立式圆筒容器。
[0046] 作为优选,蒸发换热器、吸收换热器、发生换热器和冷凝换热器中最多三个采用上述实施例所述的立式双降膜换热器,其余的采用换热器外置。
[0047] 作为优选,所述发生换热器外置具体如下所述发生器包括吸收溶液闪蒸腔室、第二吸收溶液喷淋装置、第二吸收溶液喷淋管道、第二吸收溶液喷淋泵以及发生换热器,发生换热器设于吸收溶液闪蒸腔室的外部,吸收溶液闪蒸腔室内的上部设有第二吸收溶液喷淋装置,第二吸收溶液喷淋装置与设于吸收溶液闪蒸腔室外部的第二吸收溶液喷淋管道连接,第二吸收溶液喷淋管道将吸收溶液闪蒸腔室内的吸收溶液输送至第二吸收溶液喷淋装置进行喷淋,第二吸收溶液喷淋管道上设有第二吸收溶液喷淋泵,第二吸收溶液喷淋管道与发生换热器的冷流体侧连接,发生热源的发生热媒管道与发生换热器的热流体侧连接。
[0048] 作为优选,所述发生器还包括固液分离装置,所述发生器的吸收溶液闪蒸腔室内的吸收溶液中的吸收剂结晶时,所述固液分离装置将所述吸收溶液分离成含有吸收剂结晶和不含吸收剂结晶的两部分,其中不含吸收剂结晶的吸收溶液经第二吸收溶液喷淋管道输送至第二吸收溶液喷淋装置,含有吸收剂结晶的吸收溶液由第一溶液循环管道输送至吸收器内。
[0049] 作为优选,所述固液分离装置包括:
[0050] 挡液板,与发生器的形成吸收溶液闪蒸腔室的容器体的内壁面连接,挡液板与发生器的吸收溶液闪蒸腔室内壁面之间形成夹层,吸收溶液闪蒸腔室内的吸收溶液由挡液板的下端的夹层入口进入夹层内;
[0051] 溢流槽,形成于发生器的容器体的外壁面上,用于容纳由夹层内溢出的吸收溶液;
[0052] 溢流口,开设于发生器的容器体的侧壁上,溢流口连通夹层和溢流槽;
[0053] 第二吸收溶液喷淋管道与溢流槽连通,第一溶液循环管道与吸收 溶液闪蒸腔室的底部连通;其中
[0054] 当吸收溶液的吸收剂结晶时,吸收剂结晶沿挡液板以及发生器的容器体内壁面落到发生器的底部,落到底部的吸收剂结晶随吸收溶液通过第一溶液循环管道输送至吸收器,吸收溶液由挡液板下端进入夹层内,夹层内上部分不含有吸收剂结晶的吸收溶液从溢流口进入溢流槽,并通过第二吸收溶液喷淋管道输送至第二吸收溶液喷淋装置。
[0055] 作为优选,所述发生器的吸收溶液闪蒸腔室的下部的横截面逐渐缩小,呈漏斗形,所述挡液板倾斜设置。
[0056] 作为优选,所述吸收式热泵为第二类吸收式热泵,所述第二溶液循环管道上设有节流,所述节流阀设于吸收器与所述溶液换热器之间。由此可避免由于吸收溶液降温而引起节流阀结晶堵塞。
[0057] 所述吸收式热泵为第二类吸收式热泵,所述第二溶液循环管道上设有节流阀,所述节流阀设于吸收器与所述溶液换热器之间。由此可避免由于吸收溶液降温而引起节流阀结晶堵塞。
[0058] 作为优选,所述蒸发换热器外置具体如下,蒸发器包括蒸发腔室、蒸发换热器、工质喷淋管道、工质喷淋泵和工质喷淋装置,所述蒸发换热器设于蒸发腔室外部,所述蒸发换热器和工质喷淋泵设于所述工质喷淋管道上,设于工质喷淋管道上的工质喷淋泵将蒸发腔室内的工质由工质喷淋管道经蒸发换热器换热后送至工质喷淋装置,所述工质喷淋装置将工质在蒸发腔室内喷淋,所述蒸发腔室为闪蒸腔,所述工质在所述蒸发腔室内闪蒸为蒸气。
[0059] 作为优选,所述吸收换热器外置具体如下,所述吸收器包括吸收腔室、吸收换热器和第一吸收溶液喷淋装置,所述吸收换热器设于吸收腔室外部,所述吸收换热器为逆流换热器,所述吸收腔室外部设有第一吸收溶液喷淋管道,所述吸收换热器设于第一吸收溶液喷淋管道上,所述第一吸收溶液喷淋管道连接吸收腔室和第一吸收溶液喷淋装置,所述第一吸收溶液喷淋管道上设有第一吸收溶液喷淋泵,第一吸收溶液喷淋泵将吸收腔室内的吸收溶液由第一吸收溶液喷淋管道经吸收换热器换热后送至第一吸收溶液喷淋装置,所述第一吸收溶液喷淋 装置将吸收溶液在吸收腔室内喷淋,所述吸收溶液吸收蒸发腔室内的工质蒸气。
[0060] 作为优选,所述冷凝换热器外置具体如下,所述冷凝器包括冷凝腔室、冷凝换热器、冷凝工质喷淋装置、冷凝工质喷淋管道和冷凝工质喷淋泵,所述冷凝工质喷淋装置设于冷凝腔室内,所述冷凝工质喷淋管道设于冷凝腔室外部,所述冷凝换热器和冷凝工质喷淋泵设于位于冷凝腔室外部的冷凝工质喷淋管道上,所述冷凝工质喷淋泵将冷凝腔室内的冷凝工质由冷凝工质喷淋管道经冷凝换热器后输送至冷凝工质喷淋装置,冷凝工质喷淋管道与所述冷凝换热器的热流体侧相连接,冷凝换热器的冷流体侧与冷凝热媒管道相连接。
[0061] 作为优选,所述发生热媒的热源为工业余热、地热或者太阳能热等。
[0062] 作为优选,所述的工质为水;所述的吸收剂为LiBr,LiNO3,LiCl和CaCl2中的任一种或两种以上的混合物;所述的发生热媒和蒸发热媒为饱和蒸汽、湿蒸汽、过热蒸汽或者含不凝气体的蒸汽,所述吸收热媒为饱和状态或者接近饱和状态的水。
[0063] 与现有技术相比,本发明的有益效果在于:
[0064] 本发明实施例的换热器为新型的立式双降膜换热器,其具有换热效果好且体积小结构紧凑的优点。本发明通过将所述换热器有机的结合到吸收式热泵之中,使本发明实施例的吸收式热泵与现有的吸收式热泵相比具有动力消耗少、体积小、占地面积少和制造成本低的优势。附图说明
[0065] 图1是现有第二类吸收式热泵系统的结构示意图。
[0066] 图2是本发明实施例1的吸收式热泵系统的结构示意图。
[0067] 图3是本发明实施例2的吸收式热泵系统的结构示意图。
[0068] 图4是本发明实施例3的吸收式热泵系统的结构示意图。
[0069] 图5是本发明实施例4的吸收式热泵系统的结构示意图。
[0070] 图6是本发明实施例5的吸收式热泵系统的结构示意图。
[0071] 图7是本发明实施例中布液孔板的结构示意图。

具体实施方式

[0072] 下面结合具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
[0073] 图2是本发明实施例1的吸收式热泵系统的结构示意图。图3是本发明实施例2的吸收式热泵系统的结构示意图。图4是本发明实施例3的吸收式热泵系统的结构示意图。图5是本发明实施例4的吸收式热泵系统的结构示意图。图6是本发明实施例5的吸收式热泵系统的结构示意图。图2至图6所示的各实施例中,均有换热器(包括发生换热器、冷凝换热器、蒸发换热器及吸收换热器)采用本发明实施例的立式双降膜换热器的情形,请参阅图2至图6中的立式双降膜换热器部分。立式双降膜换热器,包括:
[0074] 换热管910、换热管上端板960和换热管下端板970;
[0075] 第一流体导入室920,位于换热管上端板960的上方,第一流体导入室920内的第一流体自换热管910的上端流入换热管910内,并在换热管910的内壁上形成内降膜;
[0076] 第一流体接收器930,位于换热管下端板970的下方,用于容纳换热管910内流出的第一流体;
[0077] 第二流体导入室940,位于换热管上端板960的下方,第二流体导入室940内的第二流体在换热管910的外壁面向下流动,形成外降膜;
[0078] 第二流体接收室950,位于换热管下端板970的上方,第二流体接收室950用于容纳沿换热管外壁面流下的第二流体。
[0079] 本发明实施例提供的立式双降膜换热器实现了换热管内外双降膜,提高了换热效果。
[0080] 作为上述实施例的优选,参见图2至图7,图7为布液孔板的结构示意图。本实施例中,换热管910穿过第二流体导入室940与第一流 体导入室920连通,第二流体导入室940的顶板为换热管上端板960,底板为布液孔板941,布液孔板941上具有用于换热管910穿过的布液孔942,布液孔942的孔径大于换热管910的外径,换热管910的外壁面与布液孔板之间形成间隙,第二流体导入室940内的第二流体通过该间隙流出,并在换热管910的外壁面上形成外降膜。本实施例中通过设置布液孔板941使第二流体沿换热管910与布液孔板941之间形成的间隙流下时,在换热管910的外壁面更好地形成外降膜,保证了换热效果,提高了换热效率。
[0081] 作为上述实施例的优选,布液孔板941上每一布液孔942的周线上含有至少两处沿布液孔942径向延伸的凸部943,用于定位换热管910。凸部943的设置可以保证换热管910与布液孔942同轴,并且使换热器的组装更加简便。进一步,凸部943一般在布液孔942的周线上均匀分布。进一步,凸部943至少为三个,如设置三个凸部943时,三个凸部将布液孔的一周分为三等份。当然,凸部943除了上述实施例的具体形式外,也可采取其他任何适当的形式,只要能够与换热管的外壁面相接触,将换热管定位即可。
[0082] 另一方面,本发明实施例提提供了一种吸收式热泵,参见图2至图6,该吸收式热泵包括蒸发器100、吸收器200、发生器300和冷凝器400;蒸发器100和吸收器200通过第一工质蒸气通道700连通,冷凝器400和发生器300通过第二工质蒸气通道800连通,发生器300和吸收器200之间通过溶液循环管道实现吸收溶液的循环,其中第一溶液循环管道510将吸收溶液由发生器300输送至吸收器200,第二溶液循环管道520将吸收溶液由吸收器200输送至发生器300,第一溶液循环管道510和第二溶液循环管道520上设有溶液换热器530,第一溶液循环管道510和第二溶液循环管道520内输送的吸收溶液通过溶液换热器530进行热量交换,蒸发器100和冷凝器400通过工质管道610连接,工质管道610将冷凝器400内的工质输送至蒸发器100,蒸发器100包括蒸发换热器102,吸收器200包括吸收换热器202,发生器300包括发生换热器302,冷凝器400包括冷凝换热器402,其中,蒸发换 热器102、吸收换热器202、发生换热器302和冷凝换热器402中的至少一个为上述实施例的立式双降膜换热器。
[0083] 本发明实施例提供的蒸发换热器102、吸收换热器202、发生换热器302和冷凝换热器402中的至少一个采用上述实施例的立式双降膜换热器后,可以提高换热效果,提高整个系统的效能。
[0084] 上述实施例中未提及的,用于系统循环所必需的流量阀及液体泵等,本领域技术人员应该知晓,或从现有技术中获得。如在第二类吸收式热泵(参见图2至图5)中,工质管道610上设有工质泵620,以便于将工质通过工质管道610从冷凝器输送至蒸发器;第一溶液循环管道510上设有吸收溶液循环泵550,第二溶液循环管道520上设有节流阀540。而对于第一类吸收式热泵系统(参见图6)或者吸收式制冷系统,由于外部循环管道内的液体流向与第二类吸收式热泵相反,因此,工质管道610将工质从冷凝器输送至蒸发器时,不需要工质泵620,工质管道610上只需要设置工质节流阀630即可;而节流阀540与吸收溶液循环泵550则需要互换位置,即节流阀540设于第一溶液循环管道510上,吸收溶液循环泵550设于第二溶液循环管道520上。
[0085] 图2为仅蒸发器的蒸发换热器采用立式双降膜换热器的实施例。如图2所示,蒸发换热器为上述的立式双降膜换热器,蒸发换热器设于蒸发器的蒸发腔室内,其中[0086] 蒸发换热器100中的第一流体为工质,第二流体为蒸发热媒;
[0087] 换热管上端板960上方的第一流体导入室920与换热管下端板970下方的第一流体接收器930通过工质循环管道105连接,第一流体导入室920与冷凝器400通过工质管道610连接;
[0088] 工质循环管道105上设有工质循环泵104,工质循环泵104将第一流体接收器930内的工质输送到第一流体导入室920。
[0089] 作为上述实施例的优选,第一流体导入室920内设有第一流体喷淋装置103。第一流体导入室920内的工质沿换热管910的内壁面向下流动形成内降膜;第二流体导入室940内的蒸发热媒沿换热管910的外壁面向下流动形成外降膜,工质与蒸发热媒通过换热管910进行热 交换,部分工质受热蒸发为蒸气,工质蒸气经第一工质蒸气通道700流入吸收器200,液态工质流入第一流体接收器930。第二流体(本实施例中为蒸发热媒)由蒸发热媒导入管道11输入第二流体导入室940,然后由蒸发热媒导出管道12由第二流体接收室950输出。本实施例是第一流体在换热管910内壁面形成降模,第二流体在换热管910外壁面形成降模的形式,当然,根据具体情况,第一流体和第二流体可以调换,在换热管内外分别形成降模。
[0090] 对于蒸发热媒为蒸汽的情况,较佳的,蒸发器100可以将换热管100的外壁面与布液孔板之间的间隙扩大,也可以不设置布液板,蒸发热媒在换热管外管壁冷凝后形成液态蒸发热媒的外降膜。
[0091] 图3为仅吸收器200的吸收换热器采用立式双降膜换热器的实施例。如图3所示,吸收换热器为立式双降膜换热器,吸收换热器设于吸收器的吸收腔室内,其中[0092] 吸收换热器中的第一流体为吸收溶液,第二流体为吸收热媒;
[0093] 换热管上端板960上方的第一流体导入室920通过第一吸收溶液循环管道510连接发生器300;
[0094] 换热管下端板970下方的第一流体导出室930通过第二溶液循环管道520连接发生器;
[0095] 换热管上端板960的下方设有布液孔板941,换热管上端板960与布液孔板941之间的吸收腔室201形成第二流体导入室940;
[0096] 换热管下端板970与布液孔板941之间的吸收腔室201形成第二流体接收室950;
[0097] 第二流体接收室950连接吸收热媒导入管道21和吸收热媒导出管道22,吸收热媒导入管道21将吸收热媒输入第二流体接收室950,第二流体接收室950通过吸收热媒循环管道205连接第二流体导入室940,吸收热媒循环管道205上设有吸收热媒循环泵204,吸收热媒循环泵204将第二流体接收室950内的吸收热媒输送至第二流体导入室940,吸收热媒通过换热管910外壁面与布液孔板941之间的间隙流出,并在换热管910的外壁形成外降膜;
[0098] 第一流体导入室920内的吸收溶液沿换热管910的内壁面向下流动形成内降膜的同时吸收蒸发器内产生的工质蒸汽并释放出高温的吸收热,吸收溶液与吸收热媒通过换热管进行热交换,吸收了所述高温吸收热的吸收热媒经吸收热媒导出管道输出。较佳的,第一流体导入室内设有第一流体喷淋装置203。
[0099] 作为上述实施例的优选,对于换热中部分吸收热媒蒸发为吸收热媒蒸汽的情况,将吸收热媒导入管道安装在第二流体导出室的下方而吸收热媒导出管道安装在第二流体导出室的上方;而对于不产生吸收热媒蒸汽的情况,将吸收热媒导入管道安装在第二流体导入室而吸收热媒导出管道安装在第二流体导出室的下方,此时吸收器可以不设吸收热媒循环管道和吸收热媒循环泵。
[0100] 作为上述实施例的优选,蒸发器和吸收器共用一个立式容器,蒸发器位于该立式容器的上方,吸收器位于该立式容器的下方。较佳的,蒸发器和吸收器共用的立式容器为立式圆筒容器。
[0101] 图4为蒸发换热器和吸收换热器均采用本发明实施例的立式双降膜换热器的实施例。具体说明请参见图2及图3实施例的说明部分,在此不再赘述。
[0102] 图5是蒸发换热器、吸收换热器和冷凝换热器均采用本发明实施例的立式双降膜换热器的实施例。参见图5中冷凝换热器部分,冷凝换热器为立式双降膜换热器,冷凝换热器设于冷凝器的冷凝腔室内,其中
[0103] 冷凝换热器中的第一流体为工质蒸汽,第二流体为冷凝热媒;
[0104] 换热管下端板970的下方为第一流体导入室920,换热管下端板970的下方还设有第一流体接收器930,第一流体接收器930通过工质循环管道610连接蒸发器100;
[0105] 换热管上端板960的下方设有布液孔板941,换热管上端板960与布液孔板941之间的腔室形成第二流体导入室940;
[0106] 换热管下端板970与布液孔板941之间的腔室形成第二流体接收室950;
[0107] 冷凝热媒导入管道41连接第二流体导入室940,冷凝热媒导出管道42连接第二流体接收室950,冷凝热媒通过换热管910外壁面与布液孔板941之间的间隙流出,并在换热管910的外壁形成外降膜;
[0108] 自第一流体导入室920流入换热管的第一流体与冷凝热媒通过换热管进行热交换,第一流体发生冷凝并沿换热管的内壁面向下流动形成内降膜。
[0109] 图6是蒸发换热器、吸收换热器、发生换热器和冷凝换热器均采用本发明实施例的立式双降膜换热器的实施例。参见图6中发生换热器部分。发生换热器为立式双降膜换热器,发生换热器设于发生器的发生腔室内,其中
[0110] 发生换热器中的第一流体为吸收溶液,第二流体为发生热媒;
[0111] 换热管上端板960上方的第一流体导入室920通过第一吸收溶液循环管道510连接吸收器200;
[0112] 换热管下端板970下方的第一流体导出室930通过第二溶液循环管道520连接吸收器200;
[0113] 换热管上端板960的下方设有布液孔板941,换热管上端板960与布液孔板941之间的腔室形成第二流体导入室940;
[0114] 换热管下端板970与布液孔板941之间的腔室形成第二流体接收室950;
[0115] 发生热媒导入管道31连接第二流体导入室940,发生热媒导出管道32连接第二流体接收室950,发生热媒通过换热管910外壁面与布液孔板941之间的间隙流出,并在换热管910的外壁形成外降膜。对于发生热媒为蒸汽的情况,较佳的,发生器可以将换热管910的外壁面与布液孔板之间的间隙扩大,也可以不设置布液板941,蒸发热媒在换热管外管壁冷凝后形成液态蒸发热媒的外降膜;
[0116] 第一流体导入室内的吸收溶液沿换热管的内壁面向下流动形成内降膜的同时,吸收溶液与发生热媒通过换热管进行热交换,吸收溶液中的部分工质受热蒸发为工质蒸气,蒸气工质通过第二蒸气工质通道流入冷凝器。
[0117] 作为上述实施例的优选,发生器和冷凝器共用一个立式容器,冷凝器位于该容器的上方,发生器位于该容器的下方。较佳的,发生器和冷凝器共用的立式容器为立式圆筒容器。
[0118] 当然,蒸发换热器102、吸收换热器202、发生换热器302和冷凝换热器402中的部分采用上述实施例的立式双降膜换热器的同时,本发明实施例的吸收式热泵的其他部分可采用现有技术,也可进行其他的改进以便提升整个系统的效能。作为上述实施例的优选,蒸发换热器、吸收换热器、发生换热器和冷凝换热器中最多三个采用上述实施例所述的立式双降膜换热器,其余的采用换热器外置。本实施例中,未采用上述实施例的立式双降膜换热器的,可以采用换热器外置的形式。下面对蒸发换热器102、吸收换热器202、发生换热器302或冷凝换热器402外置的情况(未采用立式双降膜换热器)进行详细说明。
[0119] 参见图3,蒸发器100包括蒸发腔室101、蒸发换热器102、工质喷淋管道105、工质喷淋泵104和工质喷淋装置103,蒸发换热器102设于蒸发腔室101外部,蒸发换热器102为逆流换热器,工质喷淋管道105与蒸发换热器102的冷流体侧连接,设于工质喷淋管道105上的工质喷淋泵104将蒸发腔室101内的工质由工质喷淋管道105经蒸发换热器102换热后送至工质喷淋装置103,工质喷淋装置103将工质在蒸发腔室101内喷淋,蒸发腔室101为闪蒸腔,工质在蒸发腔室101内闪蒸为蒸汽。
[0120] 本发明实施例的蒸发器100将蒸发换热器102移至蒸发腔室101的外部,可以使热泵系统的结构简单化,且更有利于采用高粘性或含有吸收剂结晶的吸收溶液的情况,从而进一步提高热泵系统的性能和经济性。尤其是对于利用变温低温热源的吸收式热泵,结合喷淋闪蒸,使得工质快速蒸发,从而减小了工质外部循环流量,降低了动力损失。
[0121] 作为上述实施例的优选,形成蒸发腔室101的容器体为圆筒形。本实施例中,蒸发器100的容器体采用圆筒形,提高了蒸发器100的抗压性能,从而提高了蒸发器100的安全性能。而现有技术中,由于蒸发换热器102内置,为了提高喷淋的工质与蒸发换热器102的换热 效果,需要采用列管式换热器,蒸发器100的容器体只能采用长方体形,抗压性能差,安全性较低。
[0122] 参见图2,图2给出了吸收换热器外置的吸收式热泵系统的实施例。其中,吸收器200包括吸收腔室201、吸收换热器202和第一吸收溶液喷淋装置203,吸收换热器202设于吸收腔室201外部,吸收换热器202为逆流换热器,吸收腔室201外部设有第一吸收溶液喷淋管道205,吸收换热器202设于第一吸收溶液喷淋管道205上,第一吸收溶液喷淋管道205连接吸收腔室201和第一吸收溶液喷淋装置203,第一吸收溶液喷淋管道205上设有第一吸收溶液喷淋泵204。第一吸收溶液喷淋泵204将吸收腔室201内的吸收溶液由第一吸收溶液喷淋管道205经吸收换热器202换热后送至第一吸收溶液喷淋装置203,第一吸收溶液喷淋装置
203将吸收溶液在吸收腔室201内喷淋,吸收溶液吸收蒸发腔室内的工质蒸气。本实施例在蒸发换热器102外置的基础上,将吸收换热器202也外置,强化了吸收器部分的传热传质过程,进一步提高整个热泵系统的性能。第二类吸收式热泵中,第一吸收溶液喷淋管道205与吸收换热器202的热流体侧连接,吸收换热器202的冷流体侧与吸收热媒管道相连接。
[0123] 作为上述实施例的优选,吸收腔室201底部的横截面逐渐缩小。当吸收器200的容器体采用圆筒形时,吸收腔室201的底部为倒圆锥形。可有效减少液体的保有量,从而使得系统的启动时间更短,造价更低,同时耐压强度和耐腐蚀性更高。
[0124] 作为上述实施例的优选,第一溶液循环管道510连接第一吸收溶液喷淋装置203。本实施例在上述实施例的基础上,将第一溶液循环管道510与第一吸收溶液喷淋装置203连接,从而使得第一溶液循环管道510输送的吸收溶液与第一吸收溶液喷淋管道205输送的吸收溶液混合送至第一吸收溶液喷淋装置203进行喷淋。可以进一步降低动力损失。
[0125] 作为上述实施例的优选,参见图2至图6,其中,蒸发器100与吸收器200共用同一容器体,该容器体为圆筒形,容器体内腔室的上部 形成蒸发器100的蒸发腔室101,下部形成吸收器200的吸收腔室201。本实施例中蒸发器100和吸收器200共用同一容器体,该容器体为圆筒形,具有抗压性能高的特点,且结构简单。
[0126] 作为上述实施例的优选,蒸发腔室101包括第一段和第二段,其中第一段的内径小于第二段的内径,工质接收器106设于第二段,工质喷淋装置103设于第一段,工质接收器106的直径大于等于蒸发腔室的第一段的内径。本实施例通过设置内径不同的两段,使喷淋的工质全部落入到工质接收器106内。另外,利用蒸发过程的传热传质速率大于吸收过程的传热传质速率的特性,使蒸发腔室的体积小于吸收腔室的体积,从而达到减小安装空间、降低材料使用量和成本的目的。
[0127] 作为上述实施例的优选,第一段的下端设有工质导流结构109,工质导流结构109将第一段内壁上的工质导入工质接收器106内。通过设置工质导流结构109,使喷淋在第一段内壁上的工质可以全部落入到工质接收器106内。工质导流结构109的具体构造不限,只要利用将喷淋的工质全部导入工质接收器106内即可。本实施例提供了一种结构简单,易于制造的工质导流结构,该工质导流结构为工质导流板,工质导流板由第一段的下端向下延伸而成,工质导流板伸入第一段下方的空间。这样,第一段内壁上的工质可沿工质导流板落入工质接收器106内。
[0128] 作为上述实施例的优选,工质管道610与工质喷淋装置103连接。工质管道610输送的工质与工质喷淋管道105输送的工质混合后由工质喷淋装置进行喷淋。进一步减小了工质喷淋管道105内的流量,较工质管道610直接将工质输入蒸发腔室101内更节约动力。
[0129] 作为上述实施例的优选,第一溶液循环管道510和第二溶液循环管道520上设有溶液换热器530,第一溶液循环管道510和第二溶液循环管道520内输送的吸收溶液通过溶液换热器530进行热量交换。本实施例中通过在吸收器200与发生器300之间用于吸收溶液循环的溶液循环管道上设置溶液换热器530,实现了吸收溶液在循环过程中进行热交换,进一步提高热泵的热效率。
[0130] 作为上述实施例的优选,吸收溶液循环管道上设有节流阀540,节流阀540设于吸收器200与溶液换热器530之间。第二类吸收式热泵系统中,节流阀540设于第二溶液循环管道520上。第一类吸收式热泵系统或者吸收式制冷系统中,节流阀540设于第一溶液循环管道510上。特别是第二类吸收式热泵中,本实施例可防止节流阀540因温度降低而结晶堵塞。第二溶液循环管道520上的溶液换热器530的出口531设置于贴近发生器300。即第二溶液循环管道520输送的吸收溶液从溶液换热器530输出后,应以尽量短的距离输入到发生器300内。
[0131] 作为上述实施例的优选,参见图2至图5,图中显示了发生换热器外置的情况。本实施例中,发生器300包括吸收溶液闪蒸腔室301、发生换热器302和第二吸收溶液喷淋装置303,发生换热器302设于吸收溶液闪蒸腔室301的外部,吸收溶液闪蒸腔室301内的上部设有第二吸收溶液喷淋装置303,第二吸收溶液喷淋装置303与设于吸收溶液闪蒸腔室301外部的第二吸收溶液喷淋管道305连接,第二吸收溶液喷淋管道305将吸收溶液闪蒸腔室301内的吸收溶液输送至第二吸收溶液喷淋装置303进行喷淋,第二吸收溶液喷淋管道305上设有第二吸收溶液喷淋泵304,第二吸收溶液喷淋管道305与发生换热器302的冷流体侧连接,发生热源的发生热媒管道与发生换热器302的热流体侧连接。
[0132] 本实施例提出的发生器300,将发生换热器302设于吸收溶液闪蒸腔室301的外部,第二吸收溶液喷淋管道305输送的吸收溶液经由发生换热器302换热升温后,输送至第二吸收溶液喷淋装置303在发生器300的吸收溶液闪蒸腔室301内进行喷淋。基于真空绝热闪蒸的原理,使吸收溶液的细小液滴在发生器300内的吸收溶液闪蒸腔室301中进行真空绝热闪蒸。较之现有技术的交叉流换热管,本实施例中的发生换热器302采用逆流板式换热器,可实现完全的逆流换热,从而提高换热强度和减小换热温差。采用了本发明实施例提供的发生器的第二类吸收式热泵可采用高浓度吸收溶液。即使吸收溶液得到蒸发浓缩和冷却,使吸收剂发生过饱和而晶析出结晶颗粒,由于产生的细小 的结晶颗粒可随吸收溶液流动,因此,部分结晶由第二吸收溶液喷淋管道305输送至发生换热器302后,经热交换,结晶会溶解。不存在现有技术中换热面因结晶而导致传热传质受阻等问题。另外,采用了上述实施例的发生器的第二类吸收式热泵适合于采用具有变温热源特性的低温热源。
[0133] 参见图3和图4,作为上述实施例的优选,为进一步解决采用高浓度吸收溶液可能造成的吸收剂结晶所带来的问题,本发明实施例中的发生器300还包括固液分离装置,当吸收溶液闪蒸腔室301内的吸收溶液中的吸收剂结晶时,固液分离装置将吸收溶液分离成含有吸收剂结晶和不含吸收剂结晶的两部分,其中不含吸收剂结晶的吸收溶液经第二吸收溶液喷淋管道305输送至第二吸收溶液喷淋装置303,含有吸收剂结晶的吸收溶液由第一溶液循环管道510输送至吸收器200内。本实施例中通过设置固液分离装置,对吸收溶液内的吸收剂结晶进行分离,进一步减小吸收剂结晶对发生器300工作的影响。另外,通过设置固液分离装置,使输出进行喷淋的吸收溶液中不含或少含结晶,可以使本发明实施例的吸收式热泵采用更低温度品位的发生热源。
[0134] 作为上述实施例的优选,参见图3,本实施例中,固液分离装置包括:
[0135] 挡液板371,与发生器300的形成吸收溶液闪蒸腔室301的容器体的内壁面连接,挡液板371与发生器300的吸收溶液闪蒸腔室301内壁面之间形成夹层374,吸收溶液闪蒸腔室301内的吸收溶液由挡液板371的下端的夹层入口375进入夹层内;
[0136] 溢流槽373,形成于发生器300的容器体的外壁面上,用于容纳由夹层374内溢出的吸收溶液;
[0137] 溢流口372,开设于发生器300的容器体的侧壁上,溢流口372连通夹层374和溢流槽373;
[0138] 第二吸收溶液喷淋管道305与溢流槽373连通,第一溶液循环管道510与吸收溶液闪蒸腔室301的底部连通;其中
[0139] 当吸收溶液的吸收剂结晶时,吸收剂结晶沿挡液板371向下落, 当吸收剂结晶落到挡液板371下端时,部分吸收剂结晶会随吸收溶液沿夹层向上流动,进入到夹层内的吸收剂结晶在重力作用再次下落,并沿发生器的容器体内壁面落到发生器300的底部,夹层内的吸收溶液实现固液分离,夹层上部的吸收溶液基本不含结晶,吸收剂结晶随吸收溶液通过第一溶液循环管道510输送至吸收器200,吸收溶液由挡液板371下端进入夹层内,夹层内上部分不含有吸收剂结晶的吸收溶液从溢流口372进入溢流槽373,并通过第二吸收溶液喷淋管道305输送至第二吸收溶液喷淋装置303。本实施例的固液分离装置结构简单,分离效果好。闪蒸后的吸收溶液在所述固液分离装置中进行固液分离,然后将含吸收剂结晶颗粒的吸收溶液送往吸收器;由于吸收剂结晶颗粒细小且具有流动性,因而不会引起吸收溶液循环泵550、第一吸收溶液喷淋装置203以及第一溶液循环管道510的堵塞;由于吸收剂在发生器300较低的温度、即在较低的溶解度下晶析,而在吸收器200较高的温度、即在较高的溶解度下溶解,使吸收器得以使用浓度高于发生器吸收溶液浓度的吸收溶液,甚至可以使用处于或接近吸收温度下的饱和浓度,从而可在较低的发生热源温度品位的条件下使得工业余热获得较大的温度品位提升,使之更便于循环利用,因而能够给用户带来显著的节能效果和经济效益。挡液板371应倾斜设置,以提高分离效果。
[0140] 作为上述实施例的优选,参见图2及图3,发生器300的吸收溶液闪蒸腔室301的下部的横截面逐渐缩小,呈漏斗形。发生器300的吸收溶液闪蒸腔室301的下部成漏斗形(当容器体为圆筒形时,吸收溶液闪蒸腔室301的下部呈倒圆锥形),即使不设置挡液板371也对吸收剂结晶沉淀起到一定的作用。另外,吸收溶液闪蒸腔室301的下部的横截面逐渐缩小可有效减少液体的保有量,从而使得系统的启动时间更短,造价更低,同时耐压强度和耐腐蚀性更高。同时,可使吸收剂结晶由第一溶液循环管道510输送至吸收器200内的第一吸收溶液喷淋装置203。
[0141] 作为上述实施例的优选,图2至图4显示了冷凝换热器外置的情 况,参见图2至图4,冷凝器400包括冷凝腔室401、冷凝换热器402、冷凝工质喷淋装置403、冷凝工质喷淋管道
405和冷凝工质喷淋泵404,冷凝工质喷淋装置403设于冷凝腔室401内,冷凝工质喷淋管道
405设于冷凝腔室401外部,冷凝换热器402和冷凝工质喷淋泵404设于冷凝工质喷淋管道
405上,冷凝工质喷淋泵404将冷凝腔室401内的冷凝工质由冷凝工质喷淋管道405经冷凝换热器402后输送至冷凝工质喷淋装置403,冷凝工质喷淋管道405与冷凝换热器402的热流体侧相连接,冷却换热器402的冷流体侧与冷凝热媒管道相连接。本实施例中将冷凝换热器
402外置,可实现工质在冷凝换热器402内进行逆流换热。冷凝换热器402可采用可拆式板式换热器,实现完全的逆流换热,提高了换热效果,且对于容易引起结垢或者堵塞的冷凝热媒,便于对换热器进行维护。
[0142] 作为上述实施例的优选,发生器300和冷凝器400共用同一容器体,该容器体内的腔室的上部为冷凝器400的冷凝腔室401,该容器体内腔室的下部为发生器300的吸收溶液闪蒸腔室301,冷凝腔室401内下部设有冷凝工质接收器406,冷凝工质接收器406的外壁与容器体的内壁之间形成第二工质蒸气通道800,冷凝工质接收器406与工质管道610连接。冷凝器的冷凝换热器与冷凝热媒管道相连接,冷凝热媒通过冷凝换热器进行热交换,吸收工质冷凝热。经第二吸收溶液喷淋装置303喷淋的吸收溶液在吸收溶液闪蒸腔室301内闪蒸,蒸发的工质在冷凝腔室401内冷凝,冷凝工质接收器406承接工质蒸气冷凝形成的液体工质,工质管道610将冷凝工质接收器406承接的液体工质输送至蒸发器100。冷凝器400和发生器300共用一个容器体,容器体内上部形成冷凝区,下部形成闪蒸区,进一步提高了性能和降低成本。
[0143] 在发生器300和冷凝器400共用同一圆筒形容器体的情况下,冷凝换热器可以内置也可外置。其中当冷凝换热器内置时,冷凝换热器402位于冷凝工质接收器406的上方的。发生器300的吸收溶液闪蒸腔室301内产生的工质蒸气经冷凝换热器402冷却,冷凝为液态,并落到冷凝工质接收器406内。
[0144] 当冷凝换热器402外置时,冷凝器400包括冷凝腔室401、冷凝换热器402、冷凝工质喷淋装置403、冷凝工质喷淋管道405、冷凝工质喷淋泵404和冷凝工质接收器406,冷凝工质喷淋装置403设于冷凝腔室401内,位于冷凝工质接收器406上方,冷凝工质喷淋管道405与冷凝工质接收器406连接。本实施例中将冷凝换热器402外置,可实现工质在冷却换热器402内进行逆流换热。
[0145] 作为上述实施例的优选,冷凝腔室401包括第一段和第二段,其中第一段的内径小于第二段的内径,冷凝工质接收器406设于第二段,冷凝工质喷淋装置403设于第一段,冷凝工质接收器406的直径大于等于蒸发腔室的第一段的内径。本实施例通过设置内径不同的两段,使冷凝工质全部落入到冷凝工质接收器406内。另外,在冷凝器与发生器共用一个容器的情况下,吸收溶液闪蒸腔室301的内径与冷凝腔室401第二段的内径一致。利用冷凝过程的传热传质速率大于发生过程的传热传质速率的特性,使冷凝腔室的体积小于闪蒸腔室的体积,从而达到减小安装空间、降低材料使用量和成本的目的。
[0146] 作为上述实施例的优选,冷凝腔室401的第一段的下端设有冷凝工质导流结构409,冷凝工质导流结构409将第一段内壁上的冷凝工质导入冷凝工质接收器406内。通过设置冷凝工质导流结构409,使喷淋在第一段内壁上的冷凝工质可以全部落入到冷凝工质接收器406内。冷凝工质导流结构409的具体构造不限,只要利用将喷淋的工质全部导入冷凝工质接收器406内即可。本实施例提供了一种结构简单,易于制造的冷凝工质导流结构,该冷凝工质导流结构为冷凝工质导流板,冷凝工质导流板由第一段的下端向下延伸而成,冷凝工质导流板伸入第一段下方的空间。这样,第一段内壁上的冷凝工质可沿冷凝工质导流板落入冷凝工质接收器406内。
[0147] 本发明实施例的吸收式热泵的循环方法包括蒸发器环节、吸收器环节、发生器环节和冷凝器环节,具体可同时参考上述不同热泵的实施例,其中
[0148] 蒸发器环节,工质从蒸发换热器中的热媒吸收热量并蒸发为工质 蒸气,所述工质蒸气输送到吸收器中
[0149] 吸收器环节,吸收溶液吸收蒸发器生成的工质蒸气并释放出高温的吸收热,所述吸收热作为高温热源通过吸收换热器中的热媒向外部输出,吸收器中的吸收溶液输送到发生器中;
[0150] 发生器环节,吸收溶液经发生换热器加热发生器加热后,吸收溶液中的工质变为蒸汽,经蒸发浓缩的吸收溶液输送至吸收器;
[0151] 冷凝器环节,对发生器产生的工质蒸气进行冷凝并释放出冷凝热,所述冷凝热由冷凝换热器中的冷却水带走;在冷凝器中冷凝形成的液体工质经由工质管道输送到蒸发器;
[0152] 其中,蒸发换热器、吸收换热器、发生换热器和冷凝换热器中的至少一个为上述实施例所述的立式双降膜换热器。
[0153] 在上述实施例的基础上,当相应的换热器未采用上述实施例的立式双降膜换热器时,可以将相应的换热器外置。
[0154] 作为上述实施例的优选,结合上述发生换热器外置的实施例,其中的发生器环节,位于发生器的吸收溶液闪蒸腔室上部的第二吸收溶液喷淋装置对升温后的吸收溶液进行喷淋,使吸收溶液的细小液滴在发生器的吸收溶液闪蒸腔室中进行真空绝热闪蒸;闪蒸产生的工质蒸气输送至冷凝器;在闪蒸过程中吸收溶液得到蒸发浓缩和冷却;闪蒸后的吸收溶液落到吸收溶液闪蒸腔室的底部,一部分吸收溶液经第二吸收溶液喷淋泵进入设于发生器外部的发生换热器,通过发生换热器与发生热媒热交换吸收发生热源的热量,升温后的吸收溶液输送到第二吸收溶液喷淋装置;一部分吸收溶液经溶液循环泵输送至吸收器内的第一吸收溶液喷淋装置进行喷淋;
[0155] 本发明实施例提供的吸收式热泵循环方法将吸收溶液在发生器的容器体外部进行加热,可以避免发生换热器内置时,吸收剂在发生换热器的换热面上结晶而引起传热传质障碍,尤其有利于在高浓度吸收溶液条件下工作的第二类吸收式热泵。又由于本发明实施例的发生换热器可采用逆流换热器,因而能够更高效的利用变温发生热源,包括水、热空气、导热油过热蒸汽以及含不凝气体的蒸汽等。特别是第 二类吸收式热泵还可在吸收器吸收溶液浓度高于发生器吸收溶液浓度的条件下工作,因此可以实现利用较低品位的发生热源,来获得较大的工业余热(还包括地热和太阳能热等)温度品位提升,从而使之更于循环利用,因而能够给用户带来显著的节能效果和经济效益。通过使过饱和晶析的吸收剂结晶颗粒细小化且具有流动性,本发明可以有效地克服现有第二类吸收式热泵所面临的、由吸收剂结晶引起的发生换热器传热传质障碍以及管道等的堵塞问题。
[0156] 作为上述实施例的优选,结合吸收式热泵系统中吸收换热器外置的实施例,吸收器环节,吸收器的吸收腔室内的吸收溶液经由第一吸收溶液喷淋管道输出,第一吸收溶液喷淋管道输送的吸收溶液经吸收换热器换热后输送至位于吸收器的吸收腔室内的第一吸收溶液喷淋装置进行喷淋,喷淋出的吸收溶液在吸收腔室内吸收蒸发器生成的工质蒸气并释放出高温的吸收热,所述吸收热通过吸收换热器的冷流体侧的吸收热媒向外部输出。
[0157] 作为上述实施例的优选,由发生器输送的吸收溶液输送至第一吸收溶液喷淋装置进行喷淋。本实施例可进一步降低外部循环流量,降低动力损失。
[0158] 作为上述实施例的优选,结合吸收式热泵系统中蒸发换热器外置的实施例,其中的蒸发器环节,蒸发器的蒸发腔室内的工质经由工质喷淋管道输出,工质喷淋管道输送的工质经蒸发换热器换热加热后输送至位于蒸发器的蒸发腔室内的工质喷淋装置进行喷淋,喷淋出的工质的一部分在蒸发腔室内闪蒸为工质蒸气,工质蒸气输送到吸收器中。在蒸发环节蒸发腔室内的工质通过工质喷淋管道输出,并经外置的蒸发换热器进行逆流换热,然后输送至位于蒸发腔室内的工质喷淋装置进行喷淋,喷淋出的工质的一部分在蒸发腔室内闪蒸为蒸气,并在吸收器内吸收溶液的强吸收下经第一工质蒸气通道输送至吸收腔室内被吸收溶液吸收。本实施例中其他部分的循环可与现有技术相同。
[0159] 作为上述实施例的优选,结合吸收式热泵系统中冷凝换热器外置的实施例,其中的冷凝器环节,冷凝工质喷淋泵将冷凝腔室内的冷凝 工质由冷凝工质喷淋管道经冷凝换热器后输送至冷凝工质喷淋装置,冷凝工质经冷凝工质喷淋装置喷淋后对发生器产生的工质蒸气进行冷凝并释放出冷凝热,冷凝热由冷凝换热器中的冷凝热媒带走。本实施例进一步强化整个系统的传热传质过程。
[0160] 作为上述实施例的优选,工质从蒸发换热器中的蒸发热媒吸收的热量为工业余热或者地热或者太阳能热或者空调冷媒的热量。本发明实施例的系统及方法可采用较低品位的发生热源,来获得较大的工业余热(还包括地热和太阳能热等)温度品位提升,从而使之更便于循环利用,因而能够给用户带来显著的节能效果和经济效益。
[0161] 作为上述实施例的优选,吸收器中的吸收溶液经节流阀节流后,进入溶液换热器中与来自发生器的吸收溶液换热后输送到发生器中。
[0162] 作为上述实施例的优选,吸收溶液在吸收器和发生器之间循环过程中通过溶液换热器进行热交换。
[0163] 作为上实施例的优选,发生器内设有固液分离装置,当吸收溶液在闪蒸过程中蒸发浓缩和冷却,吸收剂发生过饱和而晶析出细小且具有流动性的结晶颗粒时,发生器内的吸收溶液通过固液分离装置进行固液分离,含有吸收剂结晶颗粒的吸收溶液由溶液循环泵输送到吸收器,不含有吸收剂结晶的吸收溶液由第二吸收溶液喷淋泵输送,经发生换热器后输送到第二吸收溶液喷淋装置。
[0164] 作为上述实施例的优选,所采用的工质为水,采用的吸收剂可以是选自下述LiBr,LiNO3,LiCl和CaCl2中的至少一种;发生热媒、冷凝热媒、蒸发热媒以及吸收热媒为液态流体或者气态流体,其中液态流体包括水、水溶液、不冻液、导热油等,气态流体包括空气、工艺气体、过热蒸汽及含不凝气体的蒸汽等。
[0165] 本发明实施例中的蒸发器100、吸收器200、发生器300及冷凝器400即可用于第二类吸收式热泵也可用于第一类吸收式热泵。
[0166] 本发明实施例提供的吸收式热泵及循环方法可以实现现有第二类吸收式热泵所无法实现的工作模式。通过吸收溶液的饱和蒸气压的温度曲线来加以说明,现有的第二类吸收式热泵的发生器是在一条吸收 剂非饱和溶液的饱和蒸气压的温度曲线的一个点上工作,而吸收器是在另一条浓度低于发生器一个放气范围的吸收剂非饱和溶液的饱和蒸气压的温度曲线上的一个点上工作,吸收器工作点的温度高于发生器工作点的温度。相比之下,本发明的吸收式热泵的发生器是在吸收剂饱和浓度下的、即吸收剂饱和溶液的饱和蒸气压的温度曲线的一个点上工作,而吸收器是在同一条饱和溶液的饱和蒸气压的温度曲线上(或者接近该条曲线)的另一个点上工作,吸收器工作点的温度高于发生器工作点的温度。由于温度越高吸收剂的饱和溶解度越大,所以本发明的热泵系统是在吸收器吸收溶液的浓度高于发生器吸收溶液的浓度的条件下运行的。因此,本发明可以利用较低品位的发生热源,来获得较大的工业余热(还包括地热和太阳能热等)温度品位提升,从而使之更便于循环利用,因而能够给用户带来显著的节能效果和经济效益。另外,本发明实施例中通过使过饱和晶析的吸收剂结晶颗粒细小化且具有流动性,可以有效地克服现有第二类吸收式热泵所面临的、由吸收剂结晶引起的发生换热器传热传质障碍以及管道等的堵塞问题。
[0167] 以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈