首页 / 专利库 / 燃料种类 / 可再生能源 / 生物质 / 一种双层结构γ-AlOOH涂覆的油水分离网膜材料及其制备方法

一种双层结构γ-AlOOH涂覆的油分离网膜材料及其制备方法

阅读:780发布:2024-01-26

专利汇可以提供一种双层结构γ-AlOOH涂覆的油分离网膜材料及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种双层结构γ‑AlOOH涂覆的油 水 分离网膜材料,该材料以不锈 钢 网为基体,在其上有γ‑AlOOH涂覆层,所述γ‑AlOOH涂覆层为双层结构,其底层由纳米片堆砌而成,纳米片长度为250~400nm,宽度为200~300nm,纳米片之间的间距为30~50nm,顶层为分布在纳米片表层的纳米花随机分布构成,单个纳米花长度为0.6~1.0μm,宽度为200~400nm,纳米花结构为一维纳米片自组装形成的三维结构。采用本发明方法制备的超疏水亲油油水分离网膜,疏水性能好、油水分离效率高,而且工艺简单、成本低。,下面是一种双层结构γ-AlOOH涂覆的油分离网膜材料及其制备方法专利的具体信息内容。

1.一种双层结构γ-AlOOH涂覆的油分离网膜材料,其特征在于,所述油水分离网膜材料是以不锈网为基体,在其上有γ-AlOOH涂覆层,所述γ-AlOOH涂覆层为双层结构,其底层由纳米片堆砌而成,纳米片长度为250~400nm,宽度为200~300nm,纳米片之间的间距为30~50nm,顶层为分布在纳米片表层的纳米花随机分布构成,单个纳米花长度为0.6~
1.0μm,宽度为200~400nm,纳米花结构为一维纳米片自组装形成的三维结构。
2.一种如权利要求1所述双层结构γ-AlOOH涂覆的油水分离网膜材料的制备方法,其特征在于,包括以下步骤:
(1)将300~500目不锈钢网置于丙和无水乙醇混合液中,经声波清洗后干燥,将干燥后的不锈钢网置于浓硫酸或浓硝酸和双水的混合溶液中浸泡,最后洗净干燥待用;
(2)将溶有盐、沉淀剂及生物质添加剂的水溶液搅拌至透明后,转移至水热反应釜中,并将步骤(1)中待用的不锈钢网垂直悬挂于溶液中,进行水热反应;所述沉淀剂的浓度为0.1~0.2M,铝盐、沉淀剂及生物质添加剂的摩尔比为0.2~0.6:1:0.01~0.02;所述沉淀剂为尿素,铝盐选自硝酸铝、氯化铝中的一种,生物质添加剂选自果糖、D-半乳糖中的至少一种;
(3)将反应后的不锈钢网置于低表面能的溶液中浸泡后,洗净、干燥,即得双层结构γ-AlOOH涂覆的油水分离网膜。
3.根据权利要求2所述的一种双层结构γ-AlOOH涂覆的油水分离网膜材料的制备方法,其特征在于,所述步骤(1)丙酮与无水乙醇的体积比为0.3~0.6:1。
4.根据权利要求2所述的一种双层结构γ-AlOOH涂覆的油水分离网膜材料的制备方法,其特征在于,所述步骤(1)浓硫酸的质量分数为93~98%,浓硝酸的质量分数为60~
65%,双氧水的质量分数为20~25%,浓硫酸或浓硝酸与双氧水的体积比为0.2~0.4:1。
5.根据权利要求2所述的一种双层结构γ-AlOOH涂覆的油水分离网膜材料的制备方法,其特征在于,所述步骤(1)超声波清洗时间为25~30min,浸泡时间为0.5~1h。
6.根据权利要求2所述的一种双层结构γ-AlOOH涂覆的油水分离网膜材料的制备方法,其特征在于,所述步骤(2)水热反应温度为160~170℃,反应时间为5~7h。
7.根据权利要求2所述的一种双层结构γ-AlOOH涂覆的油水分离网膜材料的制备方法,其特征在于,所述步骤(3)低表面能溶液的浓度为0.02~0.03M,其溶质选自硬脂酸、正十二硫醇、正十六硫醇中的至少一种,溶剂选自无水乙醇、丙酮中的一种。
8.根据权利要求2所述的一种双层结构γ-AlOOH涂覆的油水分离网膜材料的制备方法,其特征在于,所述步骤(3)浸泡时间为2~2.5h。

说明书全文

一种双层结构γ-AlOOH涂覆的油分离网膜材料及其制备

方法

技术领域

背景技术

[0002] 含油污水的来源广泛,除了石油开采及加工排出大量含油废水外,还有固体燃料热加工、纺织工业中的洗毛废水、轻工业中的制革废水、食品加工以及机械工业中车削工艺中的乳化液等。随着人们环保意识的加强,油水分离技术也越来越受到人们的重视。现有的油水分离网膜存在加工过程复杂的缺点,如需要加工烘烤成膜,并且涂层较厚,容易使油液流动阻增大,从而降低油水分离的效率。而且还存在原料成本高导致油水分离膜造价贵的问题,同时大量有机原料的使用也带来严重的污染。因此,如何降低成本、提高分离效率以及绿色环保成为油水分离网膜技术发展的关键。
[0003] 勃姆石是一种重要的无机化工产品,具有独特的化学物理性质,而且无毒环保、合成成本低,已成为制备化物涂层油水分离膜的热点材料。如Wang等(Zhijie Wang,Yu Tian,Haosen Fan etc.Facile seed-assisted hydrothermal fabrication of γ-AlOOH nanoflake films with superhydrophobicity[J].NewJ.Chem,2014,38,1321-1327.)通过种子辅助水热法在玻璃基底上制备出γ-AlOOH纳米片超疏水膜,水的接触为160°±3°;他们(Zhijie Wang,Jinghua Gong,Jinghong Ma and Jian Xu.In situ growth ofhierarchical boehmite on 2024 aluminum alloy surface as superhydrophobic materials[J].RSC Adv 2014,4,14708-14714.)也通过原位生长的方法在2024合金表面制备出花状结构的γ-AlOOH,水的接触角为155°。然而,现有方法制备的γ-AlOOH超疏水膜的疏水性能相对不高,超疏水膜的形态不丰富,同时在油水分离方面的应用及油水分离效率的报道还很少。

发明内容

[0004] 本发明主要是针对现有方法制备的γ-AlOOH超疏水膜的疏水性能不高的问题,提供一种双层结构γ-AlOOH涂覆的油水分离网膜材料及其制备方法,通过本发明方法制备的超疏水亲油油水分离网膜,其γ-AlOOH涂层呈双层结构,疏水性能好、油水分离效率高,而且工艺简单、成本低。
[0005] 本发明的具体技术方案为:一种双层结构γ-AlOOH涂覆的油水分离网膜材料,以不锈网为基体,在其上有γ-AlOOH涂覆层,所述γ-AlOOH涂覆层为双层结构,其底层由纳米片堆砌而成,纳米片长度为250~400nm,宽度为200~300nm,纳米片之间的间距为30~50nm,顶层为分布在纳米片表层的纳米花随机分布构成,单个纳米花长度为0.6~1.0μm,宽度为200~400nm,纳米花结构为一维纳米片自组装形成的三维结构。
[0006] 如上述双层结构γ-AlOOH涂覆的油水分离网膜材料的制备方法,包括以下步骤:
[0007] (1)将300~500目不锈钢网置于丙和无水乙醇混合液中,经声波清洗后干燥,将干燥后的不锈钢网置于浓硫酸或浓硝酸和双氧水的混合溶液中浸泡,最后洗净干燥待用;
[0008] (2)将溶有铝盐、沉淀剂及生物质添加剂的水溶液搅拌至透明后,转移至水热反应釜中,并将步骤(1)中待用的不锈钢网垂直悬挂于溶液中,进行水热反应;
[0009] (3)将反应后的不锈钢网置于低表面能的溶液中浸泡后,洗净、干燥,即得双层结构γ-AlOOH涂覆的油水分离网膜。
[0010] 本发明旨在金属网表面构造粗糙的γ-AlOOH微观结构,结合低表面能物质修饰的方法,制备得到超疏水亲油网膜材料。本发明中双层结构γ-AlOOH分离膜,其底层是纳米片堆砌而成,顶层为分布在纳米片表层的三维纳米花随机分布构成。这种随机堆叠的双层结构,增加了膜表面的有用空隙,空气在膜表面的储存量较单层结构多。当液滴与膜表面接触时,出现气-固-液三相接触界面,由于膜表面空隙中大量的空气存在,使得气-液两相的接触面积增大,相应液-固两相的接触面积较少,从而实现了超疏水性能。
[0011] 作为优选,所述步骤(1)丙酮与无水乙醇的体积比为0.3~0.6:1。
[0012] 作为优选,所述步骤(1)浓硫酸的质量分数为93~98%,浓硝酸的质量分数为60~65%,双氧水的质量分数为20~25%,浓硫酸或浓硝酸与双氧水的体积比为0.2~0.4:1。
[0013] 作为优选,所述步骤(1)超声波清洗时间为25~30min,浸泡时间为0.5~1h。
[0014] 作为优选,所述步骤(2)水溶液中沉淀剂的浓度为0.1~0.2M,铝盐、沉淀剂及生物质添加剂的摩尔比为0.2~0.6:1:0.01~0.02。
[0015] 作为优选,所述沉淀剂为尿素,铝盐选自硝酸铝、氯化铝中的一种,生物质添加剂选自果糖、D-半乳糖中的至少一种。
[0016] 作为优选,所述步骤(2)水热反应温度为160~170℃,反应时间为5~7h。
[0017] 作为优选,所述步骤(3)低表面能溶液的浓度为0.02~0.03M,其溶质选自硬脂酸、正十二硫醇、正十六硫醇中的至少一种,溶剂选自无水乙醇、丙酮中的一种。
[0018] 作为优选,所述步骤(3)浸泡时间为2~2.5h。
[0019] 本发明制备的油水分离网膜可适用于柴油、汽油、食用油、润滑油油、苯、氯仿等一种或多种组分混合的油水混合物的分离,油水混合物的油水体积比可为0.5~1:1,分离效率在98%以上。使用时,量取一定体积的油水混合物,搅匀后,倒入油水分离装置中,即可实现油水分离。
[0020] 本发明的有益效果是:本发明提供的双层结构γ-AlOOH涂覆的油水分离网膜的制备方法,较以往方法原料易得,成本低廉,操作简单,处理方便,而且制备的油水分离网膜疏水性能好、油水分离效率高。附图说明
[0021] 图1为实施例1制备的不锈钢网膜涂层的X-ray衍射图;
[0022] 图2为实施例2制备的不锈钢网膜表面10μL水滴接触角状态图;
[0023] 图3为实施例3制备的不锈钢网膜涂层的FE-SEM图;
[0024] 图4为本发明制备的不锈钢网膜分别对汽油、柴油、食用油、润滑油4种油水混合物的最低分离效率图。

具体实施方式

[0025] 下面通过具体实施例,对本发明的技术方案做进一步说明。
[0026] 本发明所采用硝酸铝为Al(NO3)3·9H2O,氯化铝为AlCl3·6H2O(均为分析纯),其他原料和设备若非特指,均可从市场购得或是本领域常用的,实施例中的方法,如无特别说明,均为本领域的常规方法。
[0027] 实施例1
[0028] 一种双层结构γ-AlOOH涂覆的油水分离网膜材料的制备方法,包括以下步骤:
[0029] (1)将300目不锈钢网剪成60×50mm的网片,置于体积比为0.5:1的丙酮和无水乙醇的混合液中,经超声波清洗25min后,用去离子水洗净,在恒温干燥箱中70℃干燥20min,将干燥后的不锈钢网置于体积比为0.2:1的浓硫酸和双氧水的混合溶液中浸泡1h,然后用去离子水洗净,在恒温干燥箱中70℃干燥20min后待用,其中浓硫酸质量分数为98%,双氧水质量分数为25%;
[0030] (2)将5g硝酸铝(0.013mol)、1.5g尿素(0.025mol)和0.1g果糖(0.0005mol)溶于250mL去离子水中,搅拌至溶液透明后,将溶液转移至500mL的水热反应釜中,并将步骤(1)中待用的不锈钢网垂直悬挂于透明溶液中,在170℃下水热反应6h。
[0031] (3)将反应后的不锈钢网用去离子水清洗3次,在70℃干燥20min后,置于硬脂酸与无水乙醇混合溶液中浸泡2h,其中硬脂酸与无水乙醇混合溶液中,硬脂酸0.75g(0.0026mol),无水乙醇90mL,然后将不锈钢网取出,用酒精清洗3次,在70℃干燥3min,即得双层结构γ-AlOOH涂覆的油水分离网膜。
[0032] 测试不锈钢网膜油水分离效率:
[0033] 将制备的不锈钢网膜固定于分离装置中,量取90mL油水体积比为0.8:1的油水混合物,快速搅拌后,倒入分离装置中,可以看到油快速通过网膜,而水则在网膜上面慢慢蓄积,从而实现油水分离。实验中,选用柴油、润滑油、煤油、汽油为油相,通过测量分离前后油水混合物的质量,计算得到油水分离效率分别为99.5%、98.5%、98.4%、98.5%。
[0034] 实施例2
[0035] 一种双层结构γ-AlOOH涂覆的油水分离网膜的制备方法,包括以下步骤:
[0036] (1)将325目不锈钢网剪成60×50mm的网片,置于体积比为0.3:1的丙酮和无水乙醇的混合液中,经超声波清洗30min后,用去离子水洗净,在恒温干燥箱中70℃干燥20min,将干燥后的不锈钢网置于体积比为0.3:1的浓硫酸和双氧水的混合溶液中浸泡0.5h,然后用去离子水洗净,在恒温干燥箱中70℃干燥20min后待用,其中浓硫酸质量分数为93%,双氧水质量分数为20%;
[0037] (2)将4.5g硝酸铝(0.012mol)、2.0g尿素(0.03mol)和0.1g D-半乳糖(0.0005mol)溶于250mL去离子水中,搅拌至溶液透明后,将溶液转移至500mL的水热反应釜中,并将步骤(1)中待用的不锈钢网垂直悬挂于透明溶液中,在160℃下水热反应5h。
[0038] (3)将反应后的不锈钢网用去离子水清洗3次,在70℃干燥20min后,置于正十二硫醇与丙酮混合溶液中浸泡2.5h,其中正十二硫醇与丙酮混合溶液中,正十二硫醇1mL,丙酮140mL,然后将不锈钢网取出,用酒精清洗3次,在70℃干燥30min,即得双层结构γ-AlOOH涂覆的油水分离网膜。
[0039] 测试不锈钢网膜油水分离效率:
[0040] 将制备的不锈钢网膜固定于分离装置中,量取90mL油水体积比为0.5:1的油水混合物,快速搅拌后,倒入分离装置中,可以看到油快速通过网膜,而水则在网膜上面慢慢蓄积,从而实现油水分离。实验中,选用汽油、柴油、润滑油、食用油为油相,通过测量分离前后油水混合物的质量,计算得到油水分离效率分别98.5%、99.5%、98.6%、98.4%。
[0041] 实施例3
[0042] 一种双层结构γ-AlOOH涂覆的油水分离网膜的制备方法,包括以下步骤:
[0043] (1)将400目不锈钢网剪成60×50mm的网片,置于体积比为0.6:1的丙酮和无水乙醇的混合液中,经超声波清洗25min后,用去离子水洗净,在恒温干燥箱中70℃干燥20min,将干燥后的不锈钢网置于体积比为0.4:1的浓硫酸和双氧水的混合溶液中浸泡0.7h,然后用去离子水洗净,在恒温干燥箱中70℃干燥20min后待用,其中浓硫酸质量分数为95%,双氧水质量分数为25%;
[0044] (2)将3.14g氯化铝(0.013mol)、2.5g尿素(0.0417mol)、10mL生物质糖(0.000417mol)的混合液(0.4g果糖和0.35g D-半乳糖溶于100mL去离子水中搅拌30min)溶于240mL去离子水中,搅拌至溶液透明后,将溶液转移至500mL的水热反应釜中,并将步骤(1)中待用的不锈钢网垂直悬挂于透明溶液中,在170℃下水热反应7h。
[0045] (3)将反应后的不锈钢网用去离子水清洗3次,在70℃干燥20min后,置于硬脂酸与丙酮混合溶液中浸泡2.5h,其中硬脂酸与丙酮混合溶液中,硬脂酸1.15g(0.004mol,丙酮150mL,然后将不锈钢网取出,用酒精清洗3次,在70℃干燥40min,即得双层结构γ-AlOOH涂覆的油水分离网膜。
[0046] 测试不锈钢网膜油水分离效率:
[0047] 将制备的不锈钢网膜固定于分离装置中,量取90mL油水体积比为0.4:1的油水混合物,快速搅拌后,倒入分离装置中,可以看到油快速通过网膜,而水则在网膜上面慢慢蓄积,从而实现油水分离。实验中,选用汽油、柴油、食用油、煤油为油相,通过测量分离前后油水混合物的质量,计算得到油水分离效率分别为98.6%、99.6%、98.5%、98.7%。
[0048] 实施例4
[0049] 一种双层结构γ-AlOOH涂覆的油水分离网膜的制备方法,包括以下步骤:
[0050] (1)将500目不锈钢网剪成60×50mm的网片,置于体积比为0.4:1的丙酮和无水乙醇的混合液中,经超声波清洗30min后,用去离子水洗净,在恒温干燥箱中70℃干燥20min,将干燥后的不锈钢网置于体积比为0.35:1的浓硝酸和双氧水的混合溶液中浸泡0.5h,然后用去离子水洗净,在恒温干燥箱中70℃干燥20min后待用,其中浓硝酸质量分数为65%,双氧水质量分数为25%;
[0051] (2)将3.5g氯化铝(0.0145mol)3g尿素(0.05mol)和0.15g果糖(0.00083mol)溶于250mL去离子水中,搅拌至溶液透明后,将溶液转移至500mL的水热反应釜中,并将步骤(1)中待用的不锈钢网垂直悬挂于透明溶液中,在165℃下水热反应6.5h。
[0052] (3)将反应后的不锈钢网用去离子水清洗3次,在70℃干燥20min后,置于正十二硫醇、正十六硫醇与丙酮混合溶液中浸泡2h,其中正十二硫醇、正十六硫醇与丙酮混合溶液中,正十二硫醇1mL,正十六硫醇1mL,丙酮250mL,然后将不锈钢网取出,用酒精清洗3次,在70℃干燥1h,即得双层结构γ-AlOOH涂覆的油水分离网膜。
[0053] 测试不锈钢网膜油水分离效率:
[0054] 将制备的不锈钢网膜固定于分离装置中,量取90mL油水体积比为1:1的油水混合物,快速搅拌后,倒入分离装置中,可以看到油快速通过网膜,而水则在网膜上面慢慢蓄积,从而实现油水分离。实验中,选用煤油、食用油、柴油、润滑油为油相,通过测量分离前后油水混合物的质量,计算得到油水分离效率分别为98.6%、98.4%、99.5%、98.3%。
[0055] 图1为实施例1制备的不锈钢网膜涂层的X-ray衍射图,由图可知,所得产物XRD图谱的衍射峰对应的2θ值分别为14.88°,29.04°,38.96°,49.60°和65.36°,经过和标准卡片(JCPDS 21-1307)对比,分别对应于γ-AIOOH的(020),(120),(031),(200)和(002)晶面,证明得到的产物为γ-AIOOH(勃姆石)。
[0056] 图2为实施例2制备的不锈钢网膜表面10μL水滴接触角状态图,本发明制备的油水分离网膜水的接触角最高可达166°±3°,油的接触角为0°。
[0057] 图3为实施例3制备的不锈钢网膜涂层的FE-SEM图,由图可知,不锈钢网膜上的涂层由双层结构的γ-AlOOH构成,其底层是纳米片堆砌而成,单个纳米片长度约为250~400nm,宽度约为200~300nm,纳米片之间的间距约为30~50nm,其顶层为分布在纳米片表层的纳米花随机分布构成,单个纳米花长度约为0.6~1.0μm,宽带约为200~400nm,纳米花结构为一维纳米片自组装形成的三维结构。
[0058] 图4为本发明制备的不锈钢网膜分别对汽油、柴油、食用油、润滑油4种油水混合物的最低分离效率图,由图可知,不锈钢网膜对汽油、柴油、食用油、润滑油油水混合物的最低分离效率分别为98.5%、99.5%、98.4%、98.3%。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈