首页 / 专利库 / 软管,管道及配件 / 输油管道 / 一种HDPE输油管及其制备方法

一种HDPE输油管及其制备方法

阅读:154发布:2020-05-14

专利汇可以提供一种HDPE输油管及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种HDPE输油管及其制备方法,属于 输油管道 材料技术领域。本发明HDPE输油管的制备原料包含如下 质量 百分比的组分:HDPE 60%~90%、纳米MgO母粒4%~34%、 炭黑 母粒5%、加工助剂1%。本发明通过对HDPE的阻燃、耐候、阻隔、防静电改性后,可以直接挤出成管,特别适用于加油站的输油管;本发明的HDPE输油管比现有无缝 钢 管耐 腐蚀 、成本低,比多层HDPE输油管连接安全、成本低,是一种经济、安全、安装便捷的HDPE输油管。,下面是一种HDPE输油管及其制备方法专利的具体信息内容。

1.一种HDPE输油管,其特征在于,所述HDPE输油管的制备原料包含如下质量百分比的组分:HDPE 60%~90%、纳米MgO母粒4%~34%、炭黑母粒5%、加工助剂1%。
2.如权利要求1所述的HDPE输油管,其特征在于,所述HDPE输油管的制备原料包含如下质量百分比的组分:HDPE 74%~84%、纳米MgO母粒10%~20%、炭黑母粒5%、加工助剂
1%。
3.如权利要求2所述的HDPE输油管,其特征在于,所述HDPE输油管的制备原料包含如下质量百分比的组分:HDPE 79%、纳米MgO母粒15%、炭黑母粒5%、加工助剂1%。
4.如权利要求1~3任一项所述的HDPE输油管,其特征在于,所述纳米MgO母粒包含如下重量份的组分:纳米MgO 80~120份、HDPE 80~120份、相容剂8~12份、加工助剂0.5~1.5份。
5.如权利要求4所述的HDPE输油管,其特征在于,所述相容剂为PE-g-MAH、PE-g-ST中的至少一种,所述加工助剂为乙撑双硬脂酰胺、含氟加工助剂PPA、母粒中的至少一种。
6.如权利要求4所述的HDPE输油管,其特征在于,所述纳米MgO母粒的制备方法包括如下步骤:
(1)表面处理纳米MgO:将硅烷偶联剂乙醇溶液与纳米MgO按质量比(0.5~1.5):(4~8)的比例在高速搅拌机中混合,温度为80~100℃,转速为600~1000rpm,混合时间大于
30min,混合均匀后冷却至室待用,所述硅烷偶联剂乙醇溶液为体积比为(20~40):(60~
80)的乙烯基三乙基硅烷与无乙醇的混合溶液;
(2)制备纳米MgO母粒:将步骤(1)处理后的纳米MgO、HDPE、相容剂、加工助剂按配比加入高速搅拌机中,在600~1000rpm转速条件下常温密闭搅拌,得混合物;将混合物加入平行同向双螺杆造粒机造粒,得纳米MgO母粒。
7.如权利要求6所述的HDPE输油管,其特征在于,所步骤(2)中,平行同向双螺杆造粒机的一区温度为130~140℃,二区温度为140~150℃,三区温度为150~160℃,四区温度为
160~170℃,五区温度为170~180℃。
8.如权利要求1所述的HDPE输油管,其特征在于,所述加工助剂为乙撑双硬脂酰胺、含氟加工助剂PPA、硅酮母粒中的至少一种。
9.如权利要求1~8任一项所述的HDPE输油管的制备方法,其特征在于,包括以下步骤:
将HDPE、纳米MgO母粒、炭黑母粒、加工助剂按配比投入挤出设备,并经过模具成型,制得HDPE输油管。
10.如权利要求9所述的HDPE输油管的制备方法,其特征在于,所述挤出设备的一区温度为140~160℃,二区温度为160~180℃,三区温度为180~200℃,四区温度为200~220℃,五区温度为200~220℃;模具的设定温度为210~240℃。

说明书全文

一种HDPE输油管及其制备方法

技术领域

[0001] 本发明涉及一种HDPE输油管及其制备方法,属于输油管道材料技术领域。

背景技术

[0002] 加油站大多采用无缝管作为成品油输送管道。由于无缝钢管之间通过焊接连接,容易出现泄露点,并且无缝钢管铺设在盐土壤中易被腐蚀,缩短油管使用寿命。因此近年来,多层HDPE输油管开始逐渐取代了无缝钢管作为加油站的专用输油管道。
[0003] 虽然HDPE具有极好的耐腐蚀、安装便利、连接安全等特点,但是针对输送成品油的特殊用途,输油管还需要具备防静电、油气阻隔性、耐候性、阻燃性等多种性能。为符合输油管的特性,市场上出现的HDPE输油管多设计成多层结构,一般外层是耐候HDPE层,中间是EVOH阻隔层,内层是HDPE防静电层,EVOH和内外层HDPE通过热熔胶进行粘结。这种设计是合理的,但是也存在一些问题:1、中间层是EVOH(乙烯-乙烯醇共聚物)阻隔层,使得HDPE输油管之间无法通过热熔相连,管道连接处的安全性下降;2、多层HDPE管材生产技术较为复杂,EVOH和热熔胶比较贵,造成多层HDPE输油管总成本缺乏竞争;3、EVOH(乙烯-乙烯醇共聚物)在低湿度的环境下具有极好的阻隔性,但随着环境湿度的增加其阻隔性能会迅速降低。
[0004] 因此,很有必要研发制备一种成本低、性能优、连接安全的HDPE输油管及其制备方法。

发明内容

[0005] 本发明的目的在于克服上述现有技术的不足之处而提供一种HDPE输油管及其制备方法,该HDPE输油管具有耐腐蚀、成本低、连接安全的优点。
[0006] 针对现有的HDPE输油管存在的问题,本发明开发出一种新型的输油管。本发明的输油管只有一层结构,通过纳米MgO对HDPE改性,改性后的HDPE具有极好的油气阻隔性(PE类材料的阻隔性对湿度变化极其不敏感),也具备了V0级(UL94标准)的阻燃性能。同时通过加入炭黑,使得开发的输油管具备防静电和耐候性能。通过对纳米MgO和炭黑添加量的研究,改性后的HDPE输油管在强度上也比普通HDPE管有所提高。并且因为是单层结构,管道之间可以直接采用热熔承插或者热熔对接焊接来相互连接。因此,与多层HDPE输油管相比,本发明开发的HDPE输油管具有成本低、性能优、连接安全的优势。
[0007] 为实现上述目的,本发明采取的技术方案为:一种HDPE输油管,所述HDPE输油管的制备原料包含如下质量百分比的组分:HDPE 60%~90%、纳米MgO母粒4%~34%、炭黑母粒5%、加工助剂1%。
[0008] HDPE材质的耐腐蚀特性已经决定了HDPE可以用于生产输油管。但是HDPE材料耐候性、阻隔性、防静电、阻燃性等都比较差,需要针对性的改进。本发明通过在HDPE中加入炭黑,以提高耐老化性能,延长使用寿命。在对HDPE阻燃改性的研究中,发明人发现,在HDPE中加入一定量的纳米级MgO粒子后,不但阻燃性能达到V0级,而且检测到改性材料的油气阻隔性也大幅提高。这在学术中称为“纳米阻隔墙效应”,原因是高分子聚合物结构中都会存在一定的自由体积,导致小分子容易渗透。在高分子聚合物中加入纳米级无机粒子后,纳米粒子会填充入高分子聚合物的空隙中,当小分子进入或者渗透聚合物材料时,无法通过无机材料的阻隔,只能改变路径来进一步渗透,从而使小分子的渗透路径增加,时间延长,从而使总渗透量减少。发明人基于此,针对纳米MgO如何与HDPE良好的相容进行了大量的研究,以得出本发明的配比,使得制备得到的HDPE输油管具有优异的性能。
[0009] 作为本发明所述HDPE输油管的优选实施方式,所述HDPE输油管的制备原料包含如下质量百分比的组分:HDPE 74%~84%、纳米MgO母粒10%~20%、炭黑母粒5%、加工助剂1%。
[0010] 作为本发明所述HDPE输油管的优选实施方式,所述HDPE输油管的制备原料包含如下质量百分比的组分:HDPE 79%、纳米MgO母粒15%、炭黑母粒5%、加工助剂1%。
[0011] 作为本发明所述HDPE输油管的优选实施方式,所述纳米MgO母粒包含如下重量份的组分:纳米MgO 80~120份、HDPE 80~120份、相容剂8~12份、加工助剂0.5~1.5份。
[0012] 作为本发明所述HDPE输油管的优选实施方式,所述相容剂为PE-g-MAH、PE-g-ST中的至少一种,所述加工助剂为乙撑双硬脂酰胺、含氟加工助剂PPA、母粒中的至少一种。
[0013] 作为本发明所述HDPE输油管的优选实施方式,所述纳米MgO母粒的制备方法包括如下步骤:
[0014] (1)表面处理纳米MgO:将硅烷偶联剂乙醇溶液与纳米MgO按质量比(0.5~1.5):(4~8)的比例在高速搅拌机中混合,温度为80~100℃,转速为600~1000rpm,混合时间大于30min,混合均匀后冷却至室待用,所述硅烷偶联剂乙醇溶液为体积比为(20~40):(60~
80)的乙烯基三乙基硅烷与无乙醇的混合溶液;
[0015] (2)制备纳米MgO母粒:将步骤(1)处理后的纳米MgO、HDPE、相容剂、加工助剂按配比加入高速搅拌机中,在600~1000rpm转速条件下常温密闭搅拌,得混合物;将混合物加入平行同向双螺杆造粒机造粒,得纳米MgO母粒。
[0016] 作为本发明所述HDPE输油管的优选实施方式,所步骤(2)中,平行同向双螺杆造粒机的一区温度为130~140℃,二区温度为140~150℃,三区温度为150~160℃,四区温度为160~170℃,五区温度为170~180℃。模具设定温度为160~180℃。
[0017] 作为本发明所述HDPE输油管的优选实施方式,所述加工助剂为乙撑双硬脂酰胺、含氟加工助剂PPA、硅酮母粒中的至少一种。
[0018] 第二方面,本发明提供了上述HDPE输油管的制备方法,包括以下步骤:将HDPE、纳米MgO母粒、炭黑母粒、加工助剂按配比投入挤出设备,并经过模具成型,制得HDPE输油管。
[0019] 作为本发明所述HDPE输油管的制备方法的优选实施方式,所述挤出设备的一区温度为140~160℃,二区温度为160~180℃,三区温度为180~200℃,四区温度为200~220℃,五区温度为200~220℃;模具的设定温度为210~240℃。
[0020] 作为本发明所述HDPE输油管的制备方法的优选实施方式,所述挤出设备为单螺杆挤出机
[0021] 与现有技术相比,本发明的有益效果为:本发明通过对HDPE的阻燃、耐候、阻隔、防静电改性后,可以直接挤出成管,特别适用于加油站的输油管;本发明的HDPE输油管比现有无缝钢管耐腐蚀、成本低,比多层HDPE输油管连接安全、成本低,是一种经济、安全、安装便捷的HDPE输油管。

具体实施方式

[0022] 为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
[0023] 本发明实施例中的原料均为市售产品,部分原料来源如下:河北鎂神公司产的纳米氧化镁(原生粒径30nm,比表面积40m2/g,纯度>99.9%)、道康宁生产的乙烯基三乙氧基硅烷(牌号172),相容剂(南京塑泰PE-g-MAH),管材级HDPE(茂石化4406C),加工助剂(上海高分子研究所的BF3)。
[0024] 实施例1
[0025] 一种HDPE输油管,所述HDPE输油管的制备原料包含如下质量百分比的组分:HDPE 60%、纳米MgO母粒34%、炭黑母粒5%、乙撑双硬脂酰胺1%。其中,纳米MgO母粒包含如下重量份的组分:纳米MgO 80份、HDPE 120份、PE-g-MAH 12份、乙撑双硬脂酰胺0.5份。
[0026] 本实施例HDPE输油管的制备方法包括以下步骤:
[0027] (1)表面处理纳米MgO:将硅烷偶联剂乙醇溶液与纳米MgO按质量比0.5:8的比例在高速搅拌机中混合,温度为80℃,转速为600rpm,混合时间大于30min,混合均匀后冷却至室待用,所述硅烷偶联剂乙醇溶液为体积比为20:80的乙烯基三乙氧基硅烷与无水乙醇的混合溶液;
[0028] (2)制备纳米MgO母粒:将步骤(1)处理后的纳米MgO、HDPE、相容剂、加工助剂按配比加入高速搅拌机中,在600rpm转速条件下常温密闭搅拌,得混合物;将混合物加入平行同向双螺杆造粒机造粒,得纳米MgO母粒,平行同向双螺杆造粒机的一区温度为130~140℃,二区温度为140~150℃,三区温度为150~160℃,四区温度为160~170℃,五区温度为170~180℃;
[0029] (3)将HDPE、纳米MgO母粒、炭黑母粒、加工助剂按配比投入挤出设备,并经过模具成型,制得HDPE输油管,所述挤出设备的一区温度为140~160℃,二区温度为160~180℃,三区温度为180~200℃,四区温度为200~220℃,五区温度为200~220℃;模具的设定温度为210~240℃。
[0030] 实施例2
[0031] 一种HDPE输油管,所述HDPE输油管的制备原料包含如下质量百分比的组分:HDPE 90%、纳米MgO母粒4%、炭黑母粒5%、含氟加工助剂PPA 1%。其中,纳米MgO母粒包含如下重量份的组分:纳米MgO 120份、HDPE 80份、PE-g-MAH 8份、含氟加工助剂PPA 1.5份。
[0032] 本实施例HDPE输油管的制备方法包括以下步骤:
[0033] (1)表面处理纳米MgO:将硅烷偶联剂乙醇溶液与纳米MgO按质量比1.5:4的比例在高速搅拌机中混合,温度为100℃,转速为1000rpm,混合时间大于30min,混合均匀后冷却至室待用,所述硅烷偶联剂乙醇溶液为体积比为40:60的乙烯基三乙氧基硅烷与无水乙醇的混合溶液;
[0034] (2)制备纳米MgO母粒:将步骤(1)处理后的纳米MgO、HDPE、相容剂、加工助剂按配比加入高速搅拌机中,在1000rpm转速条件下常温密闭搅拌,得混合物;将混合物加入平行同向双螺杆造粒机造粒,得纳米MgO母粒,平行同向双螺杆造粒机的一区温度为130~140℃,二区温度为140~150℃,三区温度为150~160℃,四区温度为160~170℃,五区温度为170~180℃;
[0035] (3)将HDPE、纳米MgO母粒、炭黑母粒、加工助剂按配比投入挤出设备,并经过模具成型,制得HDPE输油管,所述挤出设备的一区温度为140~160℃,二区温度为160~180℃,三区温度为180~200℃,四区温度为200~220℃,五区温度为200~220℃;模具的设定温度为210~240℃。
[0036] 实施例3
[0037] 一种HDPE输油管,所述HDPE输油管的制备原料包含如下质量百分比的组分:HDPE 80%、纳米MgO母粒14%、炭黑母粒5%、硅酮母粒1%。其中,纳米MgO母粒包含如下重量份的组分:纳米MgO 100份、HDPE 90份、PE-g-ST10份、硅酮母粒1.0份。
[0038] 本实施例HDPE输油管的制备方法包括以下步骤:
[0039] (1)表面处理纳米MgO:将硅烷偶联剂乙醇溶液与纳米MgO按质量比1:6的比例在高速搅拌机中混合,温度为90℃,转速为800rpm,混合时间大于30min,混合均匀后冷却至室待用,所述硅烷偶联剂乙醇溶液为体积比为30:70的乙烯基三乙氧基硅烷与无水乙醇的混合溶液;
[0040] (2)制备纳米MgO母粒:将步骤(1)处理后的纳米MgO、HDPE、相容剂、加工助剂按配比加入高速搅拌机中,在800rpm转速条件下常温密闭搅拌,得混合物;将混合物加入平行同向双螺杆造粒机造粒,得纳米MgO母粒,平行同向双螺杆造粒机的一区温度为130~140℃,二区温度为140~150℃,三区温度为150~160℃,四区温度为160~170℃,五区温度为170~180℃;
[0041] (3)将HDPE、纳米MgO母粒、炭黑母粒、加工助剂按配比投入挤出设备,并经过模具成型,制得HDPE输油管,所述挤出设备的一区温度为140~160℃,二区温度为160~180℃,三区温度为180~200℃,四区温度为200~220℃,五区温度为200~220℃;模具的设定温度为210~240℃。
[0042] 效果例1
[0043] 对实施例1~3制备得到的HDPE输油管的性能进行测试,结果如表1所示。测试使用的仪器为:透过率测试仪W3/060型(蓝光机电技术有限公司),电子拉力试验机MEGA1510型(蓝光机电技术有限公司)。
[0044] 表1
[0045]
[0046] 由表1可知,采用本发明的各原料组分及制备方法制备得到的HDPE输油管,具有良好的油气阻隔性、阻燃性能、拉伸强度、断裂延伸率及拉伸强度保持率。
[0047] 效果例2
[0048] 本发明HDPE输油管的制备原料中,HDPE及纳米MgO母粒的用量对HDPE输油管的性能具有影响。为了考察该影响,设置了试验组1~4、对照组1~2。试验组1~4中,仅HDPE及纳米MgO母粒的用量不同,其余组分及配比、制备方法均相同。试验组1~4中HDPE及纳米MgO母粒的用量如表2所示,对照组1为普通HDEP管,对照组2为市售的五层HDPE阻氧输油管。同时,对试验组1~4和对照组1~2的性能进行测试,测试结果如表2所示。
[0049] 表2
[0050]
[0051]
[0052] 在输油HDPE管材的性能要求点中,防静电和抗UV都是通过添加固定条件的炭黑来完成(有明确标准要求),对HDPE输油管起到决定性作用的是纳米氧化镁对HDPE的改性。不同的纳米氧化镁添加量会导致不同的油气阻隔性,同时也会对HDPE的强度造成影响。
[0053] 由表2可知,当纳米MgO在管材中质量含量在5%以上时,即HDPE的质量百分比为89%、纳米MgO的质量百分比为5%、炭黑母粒的质量百分比为5%、加工助剂的质量百分比为1%时,与普通HDPE管材相比油气阻隔性开始明显提高;随着MgO的质量含量增加到15%后,即HDPE的质量百分比为79%、纳米MgO的质量百分比为15%、炭黑母粒的质量百分比为
5%、加工助剂的质量百分比为1%时,油气阻隔性开始保持稳定;随着纳米MgO在管材中质量含量的提高,改性HDPE的拉伸强度持续增加但断裂延伸率持续衰减。
[0054] 综合分析,纳米MgO在管材中质量含量在10%~20%之间,即HDPE的质量百分比为74%~84%、纳米MgO母粒的质量百分比为10%~20%、炭黑母粒的质量百分比为5%、加工助剂的质量百分比为1%时,纳米MgO改性HDPE的综合性能更优;当HDPE的质量百分比为
79%、纳米MgO母粒的质量百分比为15%、炭黑母粒的质量百分比为5%、加工助剂的质量百分比为1%时,纳米MgO改性HDPE的综合性能最优。
[0055] 最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈