首页 / 专利库 / 微电子学 / 外延生长 / 异质外延 / 具有2D材料中介层的外延基板及制备方法和制作组件

具有2D材料中介层的外延基板及制备方法和制作组件

阅读:565发布:2020-05-08

专利汇可以提供具有2D材料中介层的外延基板及制备方法和制作组件专利检索,专利查询,专利分析的服务。并且本 发明 公开了具有2D材料中介层的 外延 基板 ,在多晶基板表面,借助范德华 外延生长 2D材料超薄中介层,2D材料超薄中介层的表层晶格常数及基底 热膨胀 系数与AlGaN或GaN高度匹配,2D材料超薄中介层为 单层 结构或者复合层结构,2D材料超薄中介层上借助范德华外延生长AlGaN或单晶GaN外延层。还公开了上述外延基板的制备方法和制作组件。本发明提供可行技术满足在多晶基底上进行单晶层外延,可以制作大尺寸(6吋及6吋以上)基底且制作成本远低于相关单晶芯片,同时解决现有UVC LED和GaN系镭射 二极管 外延基板问题并能显着降低工序成本,有效提升AlGaN宽 能隙 光电及 电子 组件以及GaN系镭射二极管的组件效能。,下面是具有2D材料中介层的外延基板及制备方法和制作组件专利的具体信息内容。

1.具有2D材料中介层的外延基板,其特征在于:在多晶基板表面,借助范德华外延生长
2D材料超薄中介层,2D材料超薄中介层的表层晶格常数及基底热膨胀系数与AlGaN或GaN高度匹配,2D材料超薄中介层为单层结构或者复合层结构,2D材料超薄中介层上借助范德华外延生长AlGaN或单晶GaN外延层。
2.如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:所述2D材料超薄中介层的厚度范围在0.5nm到1000nm。
3.如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:所述2D材料超薄中介层为适用于AlGaN或GaN外延的2D层。
4.如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:所述2D材料超薄中介层为由顶层和底层形成的复合层结构,顶层为适用于AlGaN或GaN外延的2D层,底层为适合作为单晶基层的2D材料。
5.如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:所述2D材料超薄中介层的单层结构或者复合层结构的顶层晶格常数a与AlN或GaN不匹配度不大于5%且适用于AlGaN或GaN外延。
6.如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:所述基板的条件范围为:在平行外延接口方向上热膨胀系数与AlN或GaN差异不大于1.5×10-6℃-1。
7.如权利要求1所述的具有2D材料中介层的外延基板,其特征在于:制备方法步骤如下:
步骤1,以符合外延成长等级的抛光多晶基板作为起始材料,经过前处理作为后续制造程序的准备;
步骤2,以既有制造工艺成长单晶2D材料层,利用范德华外延技术,将单层结构或者复合层结构的单晶2D材料超薄层异质接合覆盖在多晶基板材料表面作为中介层;或者,以既有工序将适用于AlGaN以及GaN外延的非单晶2D材料层移转到多晶基板材料表面作为中介层,形成表层晶格常数及基底热膨胀系数与AlGaN以及GaN高度匹配的基板;
步骤3,利用范德华外延技术,在中介层上成长AlGaN或GaN单晶外延层,得到具有2D材料中介层的外延基板。
8.如权利要求7所述的具有2D材料中介层的外延基板,其特征在于:所述步骤2,2D材料覆盖基板材料表面是采用成长、沉积、转移或涂覆工序,单层或多层总厚度范围在0.5nm到
1000nm。
9.如权利要求7所述的具有2D材料中介层的外延基板,其特征在于:所述步骤2,单晶2D材料超薄层制造工序:以金属箔为起始基板材料,步骤A.首先以既有工序将多晶金属箔缓缓通过温度接近但低于熔点之热区,形成单晶金属箔;择取结晶方向适用的单晶金属箔;
步骤B.将步骤A金属箔依选定晶格指向裁切,形成前端具有尖锐端并呈选定晶格指向的箔片;步骤C.将步骤B的箔片与未处理的多晶金属箔接合;步骤D.将步骤C成品依照步骤A工序处理,形成单晶金属箔;步骤E.成长单晶2D材料薄层;步骤F.以既有工序将单晶2D材料薄层从金属箔表层移转至多晶基板表面,辅以夹治具以控制晶格指向与基板平边或凹槽相对关系。
10.应用如权利要求1至6任一项所述的具有2D材料中介层的外延基板,进行后续外延制造工序,制成AlGaN宽能隙组件或GaN系镭射二极管组件。

说明书全文

具有2D材料中介层的外延基板及制备方法和制作组件

技术领域

[0001] 本发明涉及具有2D材料中介层的外延基板,以及其制备方法和制作组件,适用于AlGaN宽能隙组件以及GaN系镭射二极管

背景技术

[0002] 在发光二极管或镭射二极管(LD,laser diode)的组件制造过程中,磊晶对产品的质量有重要的影响。其中对质量的影响甚至包含发光效率、耐久度等。原因在于发光二极管尤其要求构成晶体激发时电子与电洞彼此配合才可以顺利产生光子。相对地,如果在材料结构或组织上产生缺陷,电子与电洞的相互结合过程中被缺陷阻碍的可能性就会增加,导致发光效果的劣化。发光二极管主要的发光材料选用氮化镓(GaN),通常是以外延的方法生长在基板上,而所生产出的氮化镓结晶结构和组织则很大部分受所采用的基板影响。为了增进上述发光二极管的发光效率、耐久度以及其他关于发光二极管质量相关的特性,此技术领域通常在选择合适基板材料时考虑几种条件。通常,基板的材料希望能尽量减少缺陷密度的单晶材料,在晶体结构、晶格常数(lattice constant)、热膨胀系数(CTE,coefficient of thermal expansion)与外延材料匹配,才能尽可能避免在外延过程中影响发光二极管的晶体质量。
[0003] 依照目前技术,最常采用的基板材料是单晶的蓝宝石(Sapphire),主要是考虑其化学稳定性好、制造技术成熟等优点;并且由于近年产能增加,蓝宝石基板相对其他替代品,如:氮化(AlN)、甚至氮化镓(GaN)基板等,更符合经济要求。但由于蓝宝石在晶体结构、晶格常数(lattice  constant)、热膨胀系数(CTE,coefficient of thermal expansion)与外延材料匹配上不尽理想,导致GaN或AlGaN外延层缺陷密度偏高影响了镭射二极管(LD,laser diode)方面的应用以及紫外光发光二极管(UV LED)的性能提升;其中属于深紫外光范围的UVC LED发光波长最具有消毒杀菌的效能,除将有效取代现行低效耗能并有害环境的汞灯之外,更将于民生及日常消毒杀菌应用中有极大发展潜能,但目前最适于UV LED的氮化铝基板量产技术存在瓶颈,UVC LED开发主要仍着于匹配度不佳的蓝宝石基板,导致性能提升存在极大障碍。
[0004] 氮化铝和氮化镓的熔点均在摄氏两千五百度以上且存在蒸气压高问题,换言之,若想要直接以熔融长晶的方法制作前述两种材料的单晶基板,则不只制造成本更高,也相对会产生更多废热,对环境造成不可避免的污染。气相法长晶部分,目前氮化镓长晶采用的是氢化物气相外延法(Hydride Vapor Phase Epitaxy,HVPE)来生产单晶氮化镓基板,由于生产成本及产率条件等限制,目前量产技术达到4英寸基板同时成本极高。事实上,上述气相法缺陷密度仍然偏高于其他液相长晶工序,但受限于其余工序长晶速率过于缓慢,量产成本更为高昂,在市场需求、组件性能以及基板成本与供应量折衷考虑之下,商转主流仍限于HVPE法。文献指出气相法GaN长晶速率仍有提高数倍的可能并维持良好结晶性,但受限于缺陷密度劣化,目前并未能作为降低GaN基板成本的取向。至于氮化铝长晶技术,采用的是气相法之一的物理气相传输法(Physical Vapor Transport,PVT)来生产单晶氮化铝基板,由于生产技术及良率限制,全球仅两家厂家有量产能力,目前量产技术仅达到2英寸基板同时成本极高,而产能全由少数厂商占有无法广泛供应市场。由于氮化铝本身化学特性以及物理气相传输法硬件零组件限制,单晶成品中一定程度的(C)与(O)杂质存在为不可避免,也一定程度影响组件特性。
[0005] 表1
[0006]
[0007]
[0008] 氧化锌(ZnO)单晶材料以结晶构造、热性质和晶格常数而言,都是前项中较为合适的基板材料选择,因此吸引了技术开发者投入研究。不过氧化锌今日在技术领域中并不被广泛采用,其中主要的原因包括氧化锌的化学活性高,容易在随后的外延过程中受到含氢物质的侵蚀导致外延层质量低劣,如图1所示,在外延工序时会发生氢蚀刻氧化锌基板同时锌快速扩散进入外延层导致外延品质不佳,调整制程改善外延质量却仍然发生锌与氧扩散、掺杂入发光二极管的晶粒中,造成发光特性不符合预期,使得该种结构无法符合实际市场需求。
[0009] 同样的情形,也可能存在于目前使用中的其他光电组件基板-外延组合中,例如碳化(SiC)或砷化镓(GaAs)等;其中单晶碳化硅基板是目前高性能功率半导体以及高端发光二极管的基板材料,单晶长晶工序为气相法中的物理气相传输法(Physical Vapor Transport,PVT),高质量大尺寸碳化硅单晶成长技术难度高,高端量产技术掌握在少数厂商手中,影响所及应用成本仍有很大进步空间。
[0010] 二维材料(two-dimensional(2D)materials)是一个快速发展的新兴领域,2D材料家族中最早吸引大量研发投入也最知名的材料为石墨烯(graphene),其二维层状结构具备特殊或优异的物理/化学/机械/光电特性,层与层间则没有强力的键结存在,仅以范德华力结合,这也表示层状结构表面没有空悬键(dangling bond)存在,目前石墨烯已被确认具有广泛而优异的应用潜能;石墨烯研发工作于全球普遍开展,同时也带动更多2D材料的研发,包括六方氮化hBN(hexagonal Boron Nitride)、过渡金属二硫族化物TMDs(transition metal dichalcogenides)以及黑磷black phosphorus等也是2D材料家族中累积较多研发成果者,如图2和图3所示,上述材料均各自具备特异的材料特性与应用潜能,相关材料的制造技术开发也持续积极推展中。除了优异的光电特性之外,石墨烯、hBN以及TMDs材料之一的MoS2都被视为具有优异的扩散阻障特性,也有程度不一的高温稳定性,尤其hBN更具有绝佳的化学钝性(inertness)以及高温耐氧化性。
[0011] 由于具备上述层状结构本质以及层间范德华力结合特性,将2D材料家族中两种或多种材料制作成层状堆栈异质结构(hetero-structures)技术可行性大开,异质结构除了结合不同特性更创造出新的应用特性或制作出新的组件成为可能,目前光电及半导体领域的研发相当积极。如图4a、4b所示是机械性组成迭层的示意图,图5a、5b所示是物理或化学气相沉积的示意图。
[0012] 2D材料的范德华力结合特性也获得应用于传统3D材料的外延基板用途的关注,其着眼点在于外延技术中外延材料在晶体结构、晶格常数(lattice constant)、热膨胀系数(CTE,coefficient of thermal expansion)必须与基板材料匹配非常良好,但现实上常遭遇如本发明主题欠缺适合基板材料,或者是理想的基板材料成本偏高或不容易取得等情形,此时2D材料对于异质外延基板提供了另一种解决方案,也就是所谓的范德华外延(van der Waals Epitaxy)。范德华外延可能有利于异质外延的机制来自于传统外延接口直接的化学键改由范德华力结合所取代,将使得来自于外延工序中晶格以及热膨胀不匹配的应力或应变能因此获得一定程度的舒缓,从而使得外延层质量获得改善,或者说藉由2D材料以及范德华外延导入可以使某些原先无法实用化的异质外延技术成为可能。相关研究也指出,当上述2D材料相互迭层异质结构时,相互间作用力以范德华力为主;而在2D材料上进行3D材料的外延时,由于接口上3D材料的空悬键(dangling bond)存在同时对接口的结合力有贡献,这种外延实质上并非纯粹范德华外延(van der Waals Epitaxy)或者更精确地可视为准范德华外延(Quasi van der Waals Epitaxy);不论何种情形,晶格与热膨胀的匹配程度,无疑地仍对最终的外延质量起了一定的作用,2D材料中介层与基板材料都对整体的匹配度有所贡献。上述2D层状材料具有六形或蜂巢状(hexagon or honeycomb)结构,与纤锌矿(Wurtzite)和闪锌矿(Zinc-Blende)结构材料在外延时被视为结构兼容,本发明相关领域主要外延材料均属此类结构。
[0013] 基于外延基板用途,单晶(single crystal)为确保磊晶质量的要求之一,一般2D材料成长往往会在成核阶段与结晶性基板晶体指向呈现相关性,当基板采用一般金属箔片时由于属于多晶结构,2D材料在成核阶段已经形成方向不一致,晶核随成长聚合成连续薄膜后仍存在不同指向的区(domain)而非单晶;当基板采用单晶材料如蓝宝石,仍然因为两者结构对称相关性导致可能出现的特定成核指向并非唯一,而无法形成单晶连续薄膜。近期的研究发现藉由改进既存工艺,将箔经过热处理形成特定晶格指向的铜箔时,可以消弭2D材料石墨烯和六方氮化硼(hBN)成长过程形成的异向晶格区块(domain)特征,而长成单晶石墨烯和六方氮化硼连续薄膜。
[0014] 近年多项研究指出2D材料家族通常互为异质外延的理想基板材料,例如hBN被视为绝佳的过渡金属二硫族化物TMDs(transition metal dichalcogenides)材料的外延基板,研究指出在单晶hBN表面可以外延成长MoS2、WS2、MoSe2、WSe2等TMD材料并维持高达95%表面积为单晶连续薄膜。
[0015] 近年研究指出在单晶的c面(c-plane)蓝宝石表面可以CVD等方式成长结晶性良好的层状MoS2、WS2、MoSe2、WSe2等TMD材料,成长出来的TMD材料存在两种(0o及60o)晶体指向(crystal orientation)(参考文献:Nature 2019,v.567,169-170)。针对本发明所关注的AlGaN以及GaN材料而言,晶体结构在外延接面上具有六方对称性(如图6所示),上述的TMD层虽不构成单晶层,但理论上作为外延基板时无碍于AlGaN以及GaN外延层形成单晶;目前将TMD层自蓝宝石表面剥下并移转到其他基板表面的技术已达成实用化及大面积化,蓝宝石基板可以重复循环使用,已属于商业量产可行的制程(参考文献:ACS Nano 2015,9,6,6178-6187)。因此,除了前项方式制作TMD单晶连续薄膜之外,移转蓝宝石表面TMD层到热膨胀系数与AlGaN以及GaN高度匹配的基板亦是另一适用的量产可行方案。
[0016] 现有工艺,如图7所示,是在高质量单晶基板表面进行本质或异质外延。目前AlGaN宽能隙组件在蓝宝石或氮化铝(AlN)上外延,GaN系镭射二极管在高质量单晶GaN上外延。AlGaN宽能隙组件在蓝宝石上外延,由于匹配度不佳,导致缺陷密度偏高(外延层缺陷密度>
8 2
10/cm),严重影响组件效能,UVC LED组件更因为AlGaN与蓝宝石折射率差异幅度大,导致内部反射,因此降低了整体发光效率,目前市场上组件发光效率EQE(External Quantum Efficiency,外部量子效率)远低于10%;高质量AlN单晶基板是AlGaN外延的理想基板,由于晶格与热膨胀系数与外延层高度匹配,外延层缺陷密度<105/cm2,目前受限于PVT制造技术含有特定杂质恰好吸收UVC波段光谱导致目前市场上组件发光效率EQE(External Quantum Efficiency,外部量子效率)也低于10%,尽管如此,PVT AlN制造技术目前只能产制2英寸芯片同时产量偏低成本偏高,全球唯二的PVT AlN供货商产能也遭特定集团掌握,难以满足市场供应需求;GaN系镭射二极管外延用的高质量单晶GaN制造成本偏高,然而受限于制造技术HVPE GaN晶体缺陷密度为蓝宝石基板缺陷密度的100~1000倍,平达到
105/cm2且量产尺寸仅以4吋芯片为主;由于镭射二极管效能对外延层缺陷密度高度敏感,现有GaN单晶芯片实非理想选项,但市场上缺乏更佳方案。

发明内容

[0017] 本发明的目的在于提供一种具有2D材料中介层的外延基板。
[0018] 本发明还提供了上述外延基板的制备方法。
[0019] 本发明还提供了上述外延基板的制作组件,AlGaN宽能隙组件以及GaN系镭射二极管。
[0020] 为了达成上述目的,本发明的解决方案是:
[0021] 具有2D材料中介层的外延基板,在多晶基板表面,借助范德华外延生长2D材料超薄中介层,2D材料超薄中介层的表层晶格常数及基底热膨胀系数与AlGaN或GaN高度匹配,2D材料超薄中介层为单层结构或者复合层结构,2D材料超薄中介层上借助范德华外延生长AlGaN或单晶GaN外延层。
[0022] 所述2D材料超薄中介层的厚度范围在0.5nm到1000nm。
[0023] 所述2D材料超薄中介层为适用于AlGaN或GaN外延的2D层。
[0024] 所述2D材料超薄中介层为由顶层和底层形成的复合层结构,顶层为适用于AlGaN或GaN外延的2D层,底层为适合作为单晶基层的2D材料。
[0025] 所述2D材料超薄中介层的单层结构或者复合层结构的顶层晶格常数(a)与AlN或GaN不匹配度不大于5%且适用于AlGaN或GaN外延。
[0026] 所述基板的条件范围为:在平行外延接口方向上热膨胀系数与AlN或GaN差异不大于1.5×10-6℃-1,且能在AlGaN以及GaN外延工序中能维持材料质量稳定,并不致不良影响或损害。
[0027] 具有2D材料中介层的外延基板的制备方法,步骤如下:
[0028] 步骤1,以符合外延成长等级的抛光多晶基板作为起始材料,经过适当前处理作为后续制造程序的准备;
[0029] 步骤2,以既有制造工艺成长单晶2D材料层,利用范德华外延技术,将单层结构或者复合层结构的单晶2D材料超薄层异质接合覆盖在多晶基板材料表面作为中介层;或者,以既有工序将适用于AlGaN以及GaN外延的非单晶2D材料层自蓝宝石表面成长后剥下并移转到多晶基板材料表面作为中介层,形成表层晶格常数及基底热膨胀系数与AlGaN以及GaN高度匹配的基板;
[0030] 步骤3,利用范德华外延技术,在中介层上成长AlGaN或GaN单晶外延层,得到具有2D材料中介层的外延基板。
[0031] 所述步骤2,2D材料覆盖基板材料表面是采用成长、沉积、转移或涂覆等工序,单层或多层总厚度范围在0.5nm到1000nm。
[0032] 所述步骤2,单晶2D材料超薄层制造工序:以铜箔为起始基板材料,步骤A.首先以既有工序将多晶铜箔缓缓通过温度接近但低于铜熔点之热区,形成单晶铜箔;择取结晶方向适用的单晶铜箔;步骤B.将步骤A铜箔依选定晶格指向裁切,形成前端具有尖锐端并呈选定晶格指向的箔片;步骤C.将步骤B的箔片与未处理的多晶铜箔接合;步骤D.将步骤C成品依照步骤A工序处理,形成单晶铜箔;步骤E.成长单晶2D材料薄层;步骤F.以既有工序将单晶2D材料薄层从铜箔表层移转至多晶基板表面,辅以适当夹治具以控制晶格指向与基板平边或凹槽相对关系;步骤G.根据需要外延其他种类单晶2D材料薄层以满足后续外延工序晶格匹配需求。
[0033] 所述步骤3中,在具有2D材料中介层的外延基板上可继续进行后续外延等必要制造工序,即进行宽能隙光电及电子组件以及GaN系镭射二极管在内的组件制作,可形成AlGaN宽能隙组件或GaN系镭射二极管组件。
[0034] 采用上述方案后,本发明提供全新的基板,藉由2D材料(WS2与MoS2)晶格常数与c面AlGaN和GaN高度匹配,多晶烧结基底(例如烧结AlN)热膨胀性质与AlGaN和GaN高度匹配,提供可行技术满足在多晶基底上进行单晶层外延,加上烧结(AlN)技术可以制作大尺寸(6吋及6吋以上)基底且制作成本远低于相关单晶芯片(GaN,AlN及蓝宝石),本发明同时解决现有UVC LED和GaN系镭射二极管外延基板问题并能显着降低工序成本,可以有效提升AlGaN宽能隙光电及电子组件以及GaN系镭射二极管的组件效能并降低生产成本。附图说明
[0035] 图1是氧化锌基板在外延过程中受侵蚀示意图;
[0036] 图2是二维材料过渡金属二硫族化物TMDs的结构示意图;
[0037] 图3是二维材料六方氮化硼hBN的结构示意图;
[0038] 图4a、4b是机械性组成迭层的示意图;
[0039] 图5a、5b是物理和化学气相沉积的示意图;
[0040] 图6是晶体结构在外延接面上的六方对称性结构图;
[0041] 图7是现有高质量单晶基板表面进行本质或异质外延示意图;
[0042] 图8是本发明的实施例一结构示意图;
[0043] 图9是本发明的实施例二结构示意图;
[0044] 图10是本发明的制备方法流程图

具体实施方式

[0045] 下面结合附图和具体实施例对本发明作进一步详细说明。
[0046] 请参阅图8和图9所示,本发明揭示的具有2D材料中介层的外延基板,在多晶基板1表面,借助范德华外延生长2D材料超薄中介层2,2D材料超薄中介层2的表层晶格常数及基底热膨胀系数与AlGaN或GaN高度匹配,2D材料超薄中介层2为单层结构(如图9)或者复合层结构(异质材料接合,如图8),2D材料超薄中介层2上借助范德华外延生长AlGaN或单晶GaN外延层3。
[0047] 其中,所述多晶基板1采用烧结AlN、其他陶瓷或金属基板。
[0048] 所述2D材料超薄中介层2的厚度范围在0.5nm到1000nm。
[0049] 所述2D材料超薄中介层2为适用于AlGaN或GaN外延的2D层,比如WS2或MoS2单层结构,见图9。
[0050] 所述2D材料超薄中介层2为由顶层21和底层22形成的复合层结构,顶层21为适用于AlGaN或GaN外延的2D层,如WS2或MoS2,底层22为适合作为单晶基层的2D材料,如六方氮化硼hBN。所述2D材料超薄中介层2的单层结构或者复合层结构的顶层21晶格常数(a)与AlN或GaN不匹配度(lattice constant misfit)不大于5%且适用于AlGaN或GaN外延,如WS2或MoS2或其他2D材料。
[0051] 所述基板的条件范围为:在平行外延接口方向上热膨胀系数(CTE,coefficient of thermal expansion)与AlN或GaN差异不大于1.5×10-6℃-1,且能在AlGaN以及GaN外延工序中能维持材料质量稳定,并不致不良影响或损害。
[0052] 表2
[0053] 材料 晶格常数a(nm)六方氮化硼hBN 0.25
石墨烯graphene 0.246
WS2 0.318
MoS2 0.3161
WSe2 0.3297
MoSe2 0.3283
[0054] 本发明单晶2D材料异质接合中介层是借助既有工艺制作单晶hBN层,并将单晶hBN层以既有工艺移转到多晶基板1表面,再完成顶层2D材料于表层,所采用的hBN为实施例,但不限定为hBN。
[0055] 本发明还提供了一种新方法,单晶2D材料中介层晶格方向与原基板平边(wafer flat)或凹槽(wafer notch)相依关系,以确保制成的单晶基板与传统基板维持晶格方向一致性或客户订制需求。
[0056] 本发明具有2D材料中介层的外延基板的制备方法,步骤如下:
[0057] 步骤1,以符合外延成长等级的抛光多晶基板1(芯片)作为起始材料,经过适当前处理(含芯片清洗)作为后续制造程序的准备;
[0058] 步骤2,以既有制造工艺成长单晶2D材料层,利用范德华外延(van der Waals Epitaxy)技术,将单层结构或者复合层结构的单晶2D材料超薄层异质接合覆盖在多晶基板材料表面作为中介层2;或者,以既有工序将适用于AlGaN以及GaN外延的非单晶2D材料层自蓝宝石表面成长后剥下并移转到多晶基板材料表面作为中介层2,形成表层晶格常数及基底热膨胀系数与AlGaN以及GaN高度匹配的基板;
[0059] 步骤3,利用范德华外延技术,在中介层2上成长AlGaN或GaN单晶外延层3,得到具有2D材料中介层的外延基板。
[0060] 其中,所述步骤2,2D材料覆盖基板材料表面是采用成长(growth)、沉积(deposition)、转移(transfer)或涂覆(coating)等工序,单层或多层总厚度范围在0.5nm到1000nm。
[0061] 配合图10所示,所述步骤2,单晶2D材料超薄层制造工序:以铜箔为起始基板材料,步骤A.首先以既有工序将多晶铜箔缓缓通过温度接近但低于铜熔点之热区,形成单晶铜箔;择取结晶方向适用的单晶铜箔(例如Cu(110)适用于单晶hBN成长);步骤B.定向表征与切割:将步骤A铜箔依选定(特定)晶格指向裁切,形成前端具有尖锐端并呈选定晶格指向的箔片;步骤C.将步骤B的箔片与未处理的多晶铜箔接合(键合);步骤D.将步骤C成品依照步骤A工序处理,转换成具有指定方向的单晶,形成单晶铜箔;步骤E.生长/沉积单晶2D材料薄层(例如Cu(110)适用于单晶hBN成长);步骤F.以既有工序将单晶2D材料薄层从铜箔表层移转至多晶基板表面,辅以适当夹治具以控制晶格指向与基板平边或凹槽相对关系;步骤G.根据需要外延其他种类单晶2D材料薄层以满足后续外延工序晶格匹配需求。
[0062] 本发明进一步,在具有2D材料中介层的外延基板上可继续进行后续外延等必要制造工序,比如进行AlGaN UVC LED等(但不限于UVC LED)宽能隙光电及电子组件以及GaN系镭射二极管在内的组件制作,可形成AlGaN宽能隙组件或GaN系镭射二极管组件(AlGaN用于UVC LED紫外线中的C波段LED;GaN用于blue laser diode蓝色激光二极管)。
[0063] 本发明解决了现有UVC LED和GaN系镭射二极管外延基板问题并能显着降低工序成本,可以有效提升AlGaN宽能隙光电及电子组件以及GaN系镭射二极管的组件效能并降低生产成本。
[0064] 以上所述仅为本发明的较佳实施例,并非对本发明的限制。应当指出,本领域的技术人员在阅读完本说明书后,依本案的设计思路所做的等同变化,均落入本案的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈