首页 / 专利库 / 电路 / 单晶碳化硅 / 形成二维材料层的方法、场效晶体管及其制造方法

形成二维材料层的方法、场效晶体管及其制造方法

阅读:151发布:2020-05-12

专利汇可以提供形成二维材料层的方法、场效晶体管及其制造方法专利检索,专利查询,专利分析的服务。并且一种形成二维材料层的方法、场效晶体管及其制造方法。在形成二维材料层的方法中,形成成核图案于 基板 之上,且形成过渡金属二硫属化物层,使得过渡金属二硫属化物层从成核图案横向地生长。在一或多个前述及以下 实施例 中,过渡金属二硫属化物层为单晶。,下面是形成二维材料层的方法、场效晶体管及其制造方法专利的具体信息内容。

1.一种形成二维材料层的方法,其特征在于,该方法包含:
形成一成核图案于一基板之上;以及
形成一过渡金属二硫属化物层,使得该过渡金属二硫属化物层从该成核图案横向地生长。
2.根据权利要求1所述的方法,其特征在于,该过渡金属二硫属化物层为单晶。
3.根据权利要求1所述的方法,其特征在于:
该基板为单晶,以及
该成核图案所形成于其上的该基板的一上表面非对称于该过渡金属二硫属化物层。
4.根据权利要求3所述的方法,其特征在于,该基板为其上表面具有一C2对称成核图案的、γ-三化二、三氧化二镓及氧化镁之一,或为包含一六方氮化层或一石墨烯基板层沉积于一C3对称基板上的一复合基板,其中该C3对称基板包含化硅(0001)、锗(111)、硅(111)、(111)或铂(111)。
5.根据权利要求1所述的方法,其特征在于,该成核图案为一沟槽。
6.根据权利要求1所述的方法,其特征在于,该过渡金属二硫属化物层包含MX2,其中M为钼、钨、钯、铂及铪之一,X为硫、硒及碲之一。
7.一种制造场效晶体管的方法,其特征在于,该方法包含:
形成一成核图案于一基板之上;
形成一过渡金属二硫属化物层,使得该过渡金属二硫属化物层从该成核图案横向生长;
在形成该过渡金属二硫属化物层之后,去除该成核图案;
形成源极与漏极电极于该过渡金属二硫属化物层上;
形成一栅极介电层;以及
形成一栅电极于该栅极介电层之上。
8.根据权利要求7所述的方法,其特征在于,该过渡金属二硫属化物层为一二硫化钼单晶层。
9.一种场效晶体管,其特征在于,该场效晶体管包含:
作为一通道的一二维过渡金属二硫属化物层;
源极/漏极电极;
一栅极介电层;以及
一栅电极,
其中该二维过渡金属二硫属化物层为不具晶界的单晶。
10.根据权利要求9所述的场效晶体管,其特征在于,该过渡金属二硫属化物层包含二硫化钼。

说明书全文

形成二维材料层的方法、场效晶体管及其制造方法

技术领域

[0001] 本揭露的实施例关于场效晶体管,特别关于形成二维材料层的方法、制造场效晶体管的方法、及场效晶体管。

背景技术

[0002] 作为二维(two-dimensional,2-D)的石墨烯已显现为次10纳米技术节点的晶体管应用的可能材料。然而,由于石墨烯的零能隙性质,石墨烯晶体管的低开关比(ON/OFF 
ratio)已限制其实际应用。其他具有能隙的二维材料,例如过渡金属二硫属化物
(transition metal dichalcogenide,TMD),已吸引晶体管应用的目光。
发明内容
[0003] 依据本揭露的一方面,一种形成二维材料层的方法包含形成成核图案于基板之上,且形成过渡金属二硫属化物层,使得过渡金属二硫属化物层从成核图案横向地生长。
[0004] 依据本揭露的一方面,一种制造场效晶体管的方法包含形成成核图案于基板之上;形成过渡金属二硫属化物层,使得过渡金属二硫属化物层从成核图案横向生长;在形成过渡金属二硫属化物层之后,去除成核图案;形成源极与漏极电极于过渡金属二硫属化物
层上;形成栅极介电层;以及形成栅电极于栅极介电层之上。
[0005] 依据本揭露的一方面,一种场效晶体管包含二维过渡金属二硫属化物层、源极/漏极电极、栅极介电层以及栅电极。二维过渡金属二硫属化物层作为通道。二维过渡金属二硫属化物层为不具晶界的单晶。
附图说明
[0006] 本揭露的实施例由以下参照所附附图的详细说明可得最佳理解。需强调的是,依据业界的标准实务,多个特征未按比例绘制并仅用于说明目的。事实上,可任意增加或减少多个特征的尺寸以使讨论清楚。
[0007] 图1A与图1B显示依据本揭露一实施例的制造单晶过渡金属二硫属化物层的循序制程的多个阶段之一;
[0008] 图2A与图2B显示依据本揭露的实施例的制造单晶过渡金属二硫属化物层的循序制程的多个阶段之一;图2C显示制造过渡金属二硫属化物层的循序制程的多个阶段之一;
[0009] 图3A与图3B显示依据本揭露的实施例的制造单晶过渡金属二硫属化物层的循序制程的多个阶段之一;
[0010] 图4A与图4B显示依据本揭露的实施例的制造单晶过渡金属二硫属化物层的循序制程的多个阶段之一;
[0011] 图5显示依据本揭露的实施例的形成过渡金属二硫属化物层的制程与装置的示意图;
[0012] 图6显示依据本揭露的实施例的过渡金属二硫属化物层的成核;
[0013] 图7A与图7B显示依据本揭露的实施例的制造单晶过渡金属二硫属化物层的循序制程的多个阶段之一;
[0014] 图8A、图8B与图8C显示依据本揭露的实施例的使用单晶过渡金属二硫属化物层制造场效晶体管的循序制程的多个阶段之一;
[0015] 图9A与图9B显示依据本揭露的实施例的使用单晶过渡金属二硫属化物层制造场效晶体管的循序制程的多个阶段之一;
[0016] 图10A与图10B显示依据本揭露的实施例的使用单晶过渡金属二硫属化物层制造场效晶体管的循序制程的多个阶段之一;
[0017] 图11A与图11B显示依据本揭露的实施例的使用单晶过渡金属二硫属化物层制造场效晶体管的循序制程的多个阶段之一;
[0018] 图12A、图12B、图12C、图12D、与图12E显示依据本揭露的实施例的制造单晶过渡金属二硫属化物层的循序制程的多个阶段;
[0019] 图13A、图13B与图13C显示依据本揭露的实施例的使用单晶过渡金属二硫属化物层制造场效晶体管的循序制程的多个阶段;
[0020] 图14A、图14B与图14C显示依据本揭露的实施例的使用单晶过渡金属二硫属化物层制造场效晶体管的循序制程的多个阶段;
[0021] 图15显示在(110)基板上的二硫化钼单层的二定向(0°与180°)。
[0022] 【符号说明】
[0023] 10:基板
[0024] 11、13:基板
[0025] 12:介电材料层/介电层
[0026] 15:成核图案/线图案/图案
[0027] 16:线缺陷
[0028] 20:单晶层/单晶膜/过渡金属二硫属化物层
[0029] 20T:三形层/三角形片
[0030] 25、26、27:源极/漏极电极
[0031] 30、31、32:栅极介电层
[0032] 35、36、37:栅电极
[0033] 40:加盖层
[0034] 45:第二基板

具体实施方式

[0035] 将了解的是,以下揭露提供许多不同的实施例或例子,以实施本揭露的实施例的不同特征。部件及配置的特定实施例或例子描述如下以简明本揭露的实施例。当然,这些仅是例子而非作为限制。举例来说,元件的尺寸不限于所揭露的范围或数值,而是可取决于制程条件及/或所需的元件性质。另外,在叙述中,第一特征形成于第二特征上或之上可包含第一特征与第二特征以直接接触形成的实施例,亦可包含额外特征形成于第一及第二特征
之间的实施例,使得第一特征与第二特征可非直接接触。可以不同比例任意绘示多个特征
以达简明目的。
[0036] 此外,可在此使用空间关系的用语,例如“在…之下(beneath)”、“在…下面(below)”、“较低(lower)”、“在…上面(above)”、“较高(upper)”、或的类的用语,来简明描述以描述如附图所绘示的一元件或特征与另一(另一些)元件或特征的关系。空间关系的用
语,除了附图所描绘的定向之外,意欲包含元件在使用或操作中的不同的定向。元件/装置可另外定向(旋转90度或其他定向),并且在此使用的空间关系叙述可同样地照此解释。此
外,用语“由…制成(made of)”可指“包含”或“由…组成”。在本揭露的实施例中,除非另有叙述,否则“A、B及C的其中一者”的用语意指“A、B及/或C”(A;B;C;A与B;A与C;B与C;或A、B与C),且非指来自A的一元件、来自B的一元件以及来自C的一元件。
[0037] 以MX2表示的单层过渡金属二硫属化物已知为可用来作为主动晶体管通道的二维半导体层,其中M为钼、钨、钯、铂及或铪,X为硫、硒及/或碲。于此,在一些实施例中,二维层一般指具有范围约0.1-5纳米的厚度的原子阵列或网络的一或一些层。
[0038] 可利用化学气相沉积(chemical vapor deposition,CVD)或气相成长来形成单层过渡金属二硫属化物于基板之上。然而,如此生长的过渡金属二硫属化物层会产生多晶
(polycrystalline)膜,其中每一区域的定向为随机配置,并且晶界形成于相邻错向区域的边界。这样的晶界缺陷可能造成能隙内捕抓(in-gap trapping)状态,这不利于高性能晶体管的应用。在本揭露的实施例中,揭露得到较大面积的单晶过渡金属二硫属化物单层的制
造方法。
[0039] 在本揭露一些实施例中,使用控制生长的过渡金属二硫属化物单层的结晶度的成核图案[成核点(nucleation site)]。举例来说,在生长基板上制造金属或金属化物薄层的线状图案、或是线状缺陷[例如刮痕(scratch)、沟槽(groove)或凹陷(recess)]。这些图案的边缘可作为成核点,成核点启始过渡金属二硫属化物单层的生长。
[0040] 此外,在本揭露一些实施例中,选择过渡金属二硫属化物单层形成于其上的基板的表面的合适定向,以控制在基板与过渡金属二硫属化物单层的晶格结构之间的对称性。
选择对的基板可达到实质完美对准的晶粒的生长,这产生没有晶界的单晶层。
[0041] 图1A到图4B显示依据本揭露的实施例的制造单晶过渡金属二硫属化物层的循序制程。需了解的是,在图1A至图4B所显示的制程之前、期间及之后可提供额外的操作,并且对于本方法的附加实施例,可取代或省略以下所述的一些操作。操作/制程的顺序是可交换的。在图1A至图4B中,图号有“B”的图为剖面图,而图号有“A”的图为平面图(上视图)。
[0042] 如图1A及图1B所示,形成成核图案15于基板10之上。在一些实施例中,形成金属层或金属氧化层于基板10上,并且利用一或多个微影及蚀刻操作而形成线图案15。在一些实施例中,金属为钼且金属氧化物为三氧化钼。在其他实施例中,使用钨、钯、铂或铪、或其氧化物作为线图案15的金属层或金属氧化层。在某些实施例中,使用金属M或金属M的氧化物
来生长MX2。可使用其他材料。
[0043] 可通过化学气相沉积、物理气相沉积(physical vapor deposition,PVD)、或任何其他合适的膜形成方法来形成金属层或金属氧化层。在一些实施例中,金属层或金属氧化层的厚度的范围从约20nm到约200nm,且在其他实施例中其范围从约50nm到约100nm。在一
些实施例中,成核图案15的宽度的范围从约50nm到约500nm,且在其他实施例中其范围从约
100nm到约200nm。在其他实施例中,成核图案15为长方形或正方形。成核图案的长度取决于过渡金属二硫属化物层的所需尺寸。在一些实施例中,成核图案15的长度的范围从约1微米到约100毫米,且在其他实施例中其范围从约100微米到约10毫米。
[0044] 然后,提供来源材料,例如来源气体,于具有成核图案15的基板10之上。在一些实施例中,于形成二硫化钼层的化学气相沉积的例子中,使用六羰基钼(Mo(CO)6)气体、五氯化钼(MoCl5)气体及/或四氯氧化钼(MoOCl4)气体作为钼来源,并使用硫化氢(H2S)气体及/或二甲基硫(dimethyl sulfide)气体作为硫来源。在其他实施例中,如图5所示,可使用从固态三氧化钼升华的三氧化钼气体、或五氯化钼来源、及/或从固态硫来源升华的硫气体。
如图5所示,将钼与硫的固态来源置放于反应腔内,且含有例如氩气、氮气及/或氦气的惰性气体的载气流入反应腔内。加热固态来源以通过升华来产生气态来源,且所产生的气态来
源反应而形成二硫化钼分子。然后沉积二硫化钼分子于基板上。在一些实施例中,将基板适当加热。在其他实施例中,通过感应加热来加热整个反应腔。通过使用合适的来源气体的化学气相沉积亦可形成其他的过渡金属二硫属化物。举例来说,金属氧化物,例如三氧化钨、二氧化钯及二氧化铂,可分别作为钨、钯及铂的升华来源,且金属化合物,例如六羰基钼、六氟化钨、四氯氧化钨(WOCl4)、二氯化铂及二氯化钯亦可作为金属来源。
[0045] 如图2A及图2B所示,由于在成核图案15的边缘的较低成核能量,过渡金属二硫属化物(MX2)晶体的三角形层20T在成核图案15的边缘开始成核。特别地,当基板10(例如硅)
的主表面(上表面)具有(110)定向时,过渡金属二硫属化物的三角形层20T对准基板10的定
向。相对的,当基板10例如为氧化硅(silicon oxide)时,过渡金属二硫属化物的三角形层
20T为随机定向而形成多晶硅层,如图2C所示。
[0046] 在一些实施例中,过渡金属二硫属化物单晶层20的厚度的范围从约0.6nm到约2nm。通过继续过渡金属二硫属化物层的形成,可得到如图3A及图3B所示的大面积的单晶层
20。在一些实施例中,如图4A及图4B所示,在得到所需尺寸的过渡金属二硫属化物单晶层20之后,利用合适的蚀刻操作,例如湿蚀刻,去除成核图案15。在一些实施例中,过渡金属二硫属化物单晶层20的厚度的范围从约0.5nm到约2nm。
[0047] 在本揭露一些实施例中,如上所述,选择合适基板以控制过渡金属二硫属化物层的生长。使用具不同晶格对称性的基板可限制过渡金属二硫属化物材料的生长定向。举例
来说,C2对称群(C2 symmetry group)中的基板可以引导并限制C3对称群中的过渡金属二硫属化物层的定向。在一些实施例中,基板10为在其主表面具有C2对称的结晶基板。在某些实施例中,使用硅(110)、γ-三氧化二(110)、三氧化二镓(110)及氧化镁(110)之一作为基板10。为进一步说明此功效,图15显示在硅(110)基板上的二硫化钼单层的两种可能的定向(0°与180°)。基于密度泛函理论(density functional theory)的模拟结果显示当二硫化
钼层为独立式(free-standing)或在非晶基板上时,这两种定向不具有能量差。在二硫化钼单层生长于硅(110)基板上之后,对于0°与180°相分离的单位面积的能量障壁(energy 
barrier)为约 [具有局域密度近似(local-density approximation,LDA)交换泛
函(exchange functional)],这数值已够高而能导致生长期间的较佳单一定向(0°)。
[0048] 在其他实施例中,六方氮化层(hexagonal boron nitride,h-BN)或石墨烯层形成于基板10之上。MX2晶体具有六角晶格结构,对横向生长而言,六角晶格结构良好地晶格匹配于六方氮化硼或石墨烯。当使用六方氮化硼或石墨烯的中间层时,由于六方氮化硼或
石墨烯的原子薄层非常薄,使得MX2二维材料仍可受到下方的基板10影响。
[0049] 在一些实施例中,复合基板,例如沉积于C3对称基板上的六方氮化硼层或石墨烯基板层,C3对称基板例如为化硅(0001)或锗(111)、或硅(111)、(111)或铂(111)。由于六方氮化硼或石墨烯与下方的基板强烈地互相作用而形成莫列图案(Moiré pattern),其
中复合基板的整体对称性下降,复合基板例如为六方氮化硼/碳化硅(0001)或六方氮化硼/
硅(111)、石墨烯/碳化硅(0001)、石墨烯/锗(111)等等。在此例子中,复合基板可引导二维层的定向朝向单一定向。
[0050] 图6显示过渡金属二硫属化物(MX2)层的成核。如图6所示,基板(例如硅)的主表面(上表面)具有(110)定向。成核图案15沿对应硅基板10的(100)面的方向延伸。如图6所示,MX2单层的小三角形从成核图案15的边缘开始生长。硅(110)基板的表面晶格结构可控制MX2三角形片20T(小结晶单层片),以定向于给出最低系统能量的相同方向,如图3A及图3B所
示。这些良好对准的片最终融合成无晶界的大面积单晶膜20,如图3A及图3B所示。在一些实施例中,可得到大于1mm*1mm的面积(至多达例如10mm*10mm)。
[0051] 假如基板10上无成核图案,三角形层会在不同地方随机产生。同时,成核图案的边缘更有助于引导晶向。然而,在没有合适基板,例如二氧化硅基板,的情况中,虽然成核开始于成核图案的边缘,但三角形片的定向是随机的,因而无法得到单晶层,如图2C所示。
[0052] 图7A及图7B显示形成于基板10的表面上的线缺陷16。在一些实施例中,线缺陷16为沟槽。沟槽的形状可为V形或U形。可通过一或多个微影及蚀刻操作、利用钻石尖进行的机械刻画、或利用激光蚀刻形成线缺陷16。线缺陷的深度的范围从约20nm到约1000nm,在其他实施例中其范围从约100nm到约500nm。线缺陷16实质作为类似于图1A到图3B及图6所示的
图案15的成核图案。
[0053] 在图2A、图2B、图3A及图3B中,单晶过渡金属二硫属化物层20只形成于成核图案15的一侧。然而,在其他实施例中,单晶过渡金属二硫属化物层20形成于成核图案15的两侧,如图8A及图8B所示。在一些实施例中,过渡金属二硫属化物层亦形成于成核图案15之上。
[0054] 此外,在一些实施例中,如图8C所示,多个(二或更多)成核图案15形成于基板10之上,且形成多个区域的单晶过渡金属二硫属化物层20。
[0055] 图9A到图11B显示依据本揭露的实施例的利用单晶过渡金属二硫属化物层制造场效晶体管的循序制程。需了解的是,在图9A至图11B所显示的制程之前、期间及之后可提供额外的操作,并且对于本方法的其他实施例,可取代或省略以下所述的一些操作。操作/制程的顺序是可交换的。在图9A至图11B中,“B”附图为剖面图,而“A”附图为平面图(上视图)。
可将与前述实施例相同或相似的材料、配置、结构、操作及/或制程应用于本实施例,而可省略详细的解释。在以下的实施例中,场效晶体管形成于半导体基板之上,半导体基板例如为(110)硅基板。
[0056] 在形成如图4A及图4B所示的大面积过渡金属二硫属化物单晶层20之后,利用一或多个微影及蚀刻操作来修整(trim)过渡金属二硫属化物单晶层20,如图9A及图9B所示。
[0057] 然后,如图10A及图10B所示,形成源极/漏极电极25于过渡金属二硫属化物层单晶层20的部分之上。源极/漏极电极25由一或多层金属材料制成。在一些实施例中,源极/漏极电极25由层与形成于钛层上的金层的堆叠金属层形成。在某些实施例中,金层的厚度的
范围从约30nm到约70nm,且钛层的厚度的范围从约3nm到约10nm。可使用其他金属,例如、铝或铜,来替代金。可通过物理气相沉积、化学气相沉积或原子层沉积(ALD),以及一或多个微影及蚀刻操作来形成源极/漏极电极25的一或多个金属层。在其他实施例中,可使用其他导电材料,例如钨、钛、钴、镍、钽、氮化钛(TiN)、钛铝(TiAl)、氮化铝钛(TiAlN)、硅化镍(NiSi)或硅化钴(CoSi)以及其他导电材料作为源极/漏极电极25。在一些实施例中,源极/
漏极电极25只形成于过渡金属二硫属化物层20之上而未接触基板10。
[0058] 此外,如图11A及图11B所示,形成栅极介电层30于过渡金属二硫属化物单晶层20之上,以及形成栅电极35于栅极介电层30上。栅极介电层30例如由氧化硅、氧化铝、二氧化铪、二氧化锆、氮氧化硅(SiON)或氮化硅制成,并可利用化学气相沉积、原子层沉积或物理气相沉积形成。栅极介电层30的厚度的范围在一些实施例中从约5nm到约200nm,在其他实
施例中其范围从约10nm到约50nm。栅电极35例如由多晶硅,或例如钛、钽、铜或铝的金属材料制成。利用化学气相沉积、原子层沉积或物理气相沉积,来沉积导电材料的毯覆层于栅极介电层30上,且进行图案化操作以得到所需的栅电极图案。随后,形成一或多个介电层于栅电极35与其余结构之上,且形成栅电极35与源极/漏极电极25的接触(contacts)(图未显
示)。栅电极35在源极-漏极方向的宽度的范围在一些实施例中从约5nm到约50nm,在其他实施例中其范围从约10nm到约30nm。
[0059] 当使用如图8C所示的多个区域的过渡金属二硫属化物层20时,在此多个区域中分别形成多个场效晶体管。
[0060] 图12A到图12E显示依据本揭露的实施例的制造单晶过渡金属二硫属化物层的循序制程。需了解的是,在图12A至图12E所显示的制程之前、期间及之后可提供额外的操作,且对于本方法的其他实施例,可取代或省略以下所述的一些操作。操作/制程的顺序是可交换的。可将与前述实施例相同或相似的材料、配置、结构、操作及/或制程应用于本实施例,而可省略详细的解释。
[0061] 在以下的实施例中,形成单晶过渡金属二硫属化物层于虚置(第一)基板之上,然后转移至元件基板以制造场效晶体管。依据关于图1A至图4B所解释的操作,形成单晶过渡
金属二硫属化物层20于第一基板10之上,如图12A所示。在一些实施例中,第一基板为γ-三氧化二铝(110)、三氧化二镓(110)及氧化镁(110)之一。在其他实施例中,使用(110)硅基
板。
[0062] 然后,如图12B所示,形成代替聚二甲基硅氧烷(polydimethylsiloxane,PDMS)的加盖层(stamp layer)于过渡金属二硫属化物层20与第一基板10之上。在一些实施例中,加盖层40由聚二甲基硅氧烷制成。聚二甲基硅氧烷层压设于过渡金属二硫属化物层20上,然
后如图12C所示剥离聚二甲基硅氧烷加盖层40。由于过渡金属二硫属化物层20与聚二甲基
硅氧烷加盖层40之间的强粘着,过渡金属二硫属化物层20亦与聚二甲基硅氧烷加盖层40
一起从第一基板10剥离。在一些实施例中,将图12B的结构浸没于去离子中,并将第一基板10分离。可对水施加超音波振动。
[0063] 在其他实施例中,将含有聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)的聚合物溶液旋转涂布于过渡金属二硫属化物层20与第一基板10之上,如图12B所示。然后,在一些实施例中,干燥并固化聚甲基丙烯酸甲酯加盖层40。固化制程包含热固化、紫外光固化、电子束固化或其组合。在一些实施例中,聚甲基丙烯酸甲酯加盖层40与过渡金属二硫属化物层20一起从第一基板10机械剥离。在其他实施例中,湿蚀刻基板10,借以释放聚甲基丙烯酸甲酯加盖层40与过渡金属二硫属化物层20。当基板10为厚时,进行研磨操作以从基板
10的后侧去除基板10的主要部分,然后再进行湿蚀刻操作以去除基板10的剩余层。在一些
实施例中,形成例如为铜层的金属层于过渡金属二硫属化物层20与加盖层40之间。在这样
的例子中,铜层的厚度的范围从约200nm到约400nm,且加盖层40的厚度的范围从约400nm到约600nm。
[0064] 然后,如图12D所示,将由加盖层40所支撑的分离的过渡金属二硫属化物层20转移到第二基板45。此外,如图12E所示,去除加盖层40。在一些实施例中,使用湿蚀刻以去除加盖层40。举例来说,当加盖层40由例如聚甲基丙烯酸甲酯及聚二甲基硅氧烷的有机材料制
成时,例如丙有机溶剂可溶解有机材料,借以去除加盖层40。当使用铜层时,利用硝酸(Fe(NO3)3)溶液去除铜层。
[0065] 接着,进行一或多个微影与蚀刻操作以将转移的过渡金属二硫属化物层20修整为所需尺寸及形状。
[0066] 在将过渡金属二硫属化物层20转移到第二基板45与进行选择性的修整制程之后,利用关于图9A至图11A所解释的操作形成场效晶体管。
[0067] 图13A至图13C显示依据本揭露的实施例的使用单晶过渡金属二硫属化物层来制造场效晶体管的循序制程。需了解的是,在图13A至图13C所显示的制程之前、期间及之后可提供额外的操作,且对于本方法的其他实施例,可取代或省略以下所述的一些操作。操作/制程的顺序是可交换的。可将与前述实施例相同或相似的材料、配置、结构、操作及/或制程应用于本实施例,且可省略详细的解释。
[0068] 如图13A所示,形成一或多个介电材料层12于基板11之上。在一些实施例中,基板11包含单晶半导体层至少位于其表面部分上。基板11可包含单晶半导体材料,例如但不限
于硅、锗、硅锗(SiGe)、砷化镓、锑化铟、磷化镓、锑化镓、砷化铟铝(InAlAs)、砷化铟镓(InGaAs)、磷化镓锑(GaSbP)、锑砷化镓(GaAsSb)及磷化铟。在一实施例中,基板11由结晶硅制成。基板11可在其表面区域包含一或多个缓冲层(图未显示)。缓冲层可用来将晶格常数
从基板的晶格常数逐渐改变到源极/漏极区域的晶格常数。缓冲层可由磊晶生长的单晶半
导体材料形成,例如但不限于硅、锗、锗(GeSn)、硅锗、砷化镓、锑化铟、磷化镓、锑化镓、砷化铟铝、砷化铟镓、磷化镓锑、锑砷化镓、氮化镓、磷化镓及磷化铟。在特别的实施例中,基板
11包含磊晶生长于硅基板11上的硅锗缓冲层。硅锗缓冲层的锗浓度可从最底部缓冲层的30
原子百分比(atomic%)锗增加到最高缓冲层的70atomic%锗。基板11可包含已合适地以杂
质(例如p型或n型导电性)掺杂的多个区域。
[0069] 介电层12包含氧化硅、氮化硅、氮氧化硅、氮碳氧化硅(SiOCN)、氮碳化硅(SiCN)、掺氟的硅酸盐玻璃(fluorine-doped silicate glass,FSG)、或低介电常数(k)介电材料的一或多者,且由低压化学气相沉积(low pressure chemical vapor deposition,LPCVD)、电浆化学气相沉积或流动式(flowable)化学气相沉积形成。在一些实施例中,进行平坦化操作,例如化学机械研磨(chemical mechanical polishing,CMP)方法及/或回蚀(etch-
back)方法。
[0070] 然后,形成源极/漏极电极26于介电层12之上。源极/漏极电极26包含一或多层导电材料,例如金、银、铝、铜、钨、钴、镍、钛、钽、氮化钛、钛铝(TiAl)、氮化铝钛(TiAlN)、氮化钽、硅化镍、硅化钴、或其他合适的导电材料。在一些实施例中,利用镶嵌(damascene)技术将源极/漏极电极26嵌入介电层12。形成沟槽于介电层12的表面中,并形成一或多个导电材料层于沟槽与介电层12的上表面中。然后,进行化学机械研磨制程以去除导电材料层的多
余部分,借以留下导电材料层于沟槽内。
[0071] 接着,如图13B所示,依据关于图12A至图12E所解释的转移操作,将过渡金属二硫属化物单晶层20转移至源极/漏极电极26与介电层12之上。在一些实施例中,在转移过渡金属二硫属化物层20之后,进行一或多个微影与蚀刻操作以将过渡金属二硫属化物层20图案
化成所需形状。
[0072] 然后,如图13C所示,形成栅极介电层31于过渡金属二硫属化物层20之上,且形成栅电极36于栅极介电层31之上。在一些实施例中,栅极介电层31包含氧化硅、氮化硅、氮氧化硅、或高K介电材料的一或多层。高K介电材料包含金属氧化物。用于高K介电材料的金属氧化物的例子包含锂、铍、镁、、锶、钪、钇、锆、铪、铝、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镏的氧化物、及/或其混合物。在一些实施例中,栅极介电层31的厚度的范围从约
1nm到约20nm,且在其他实施例中其范围从2nm到约10nm。在一些实施例中,栅极介电层31包含单层或多层结构。可用合适制程,例如化学气相沉积、物理气相沉积、原子层沉积或其组合,来形成栅极介电层31的材料。
[0073] 在一些实施例中,栅电极36包含具有均匀或不均匀的掺杂浓度的掺杂多晶硅。在其他实施例中,栅电极36包含金属,例如为铝、铜、钨、钛、钴、镍、钽、氮化钛、钛铝、氮化铝钛、氮化钽、硅化镍、硅化钴,及其他具有相容于基板材料的工作函数的导电材料,或其组合。可使用合适制程,例如化学气相沉积、物理气相沉积、原子层沉积、电、或其组合,来形成栅电极36的电极层,且使用一或多个微影及蚀刻操作来图案化栅电极36。
[0074] 图14A至图14C显示依据本揭露的实施例的使用单晶过渡金属二硫属化物层来制造场效晶体管的循序制程。需了解的是,在图14A至图14C所显示的制程之前、期间及之后可提供额外的操作,且对于本方法的其他实施例,可取代或省略以下所述的一些操作。操作/制程的顺序是可交换的。可将与前述实施例相同或相似的材料、配置、结构、操作及/或制程应用于本实施例,且可省略详细的解释。在以下的实施例中,制造背栅极式(back gate 
type)场效晶体管。
[0075] 如图14A所示,形成栅电极37于基板13之上,且更形成栅极介电层32于栅电极37与基板13之上。在一些实施例中,基板13由绝缘材料制成,例如玻璃板。在其他实施例中,基板
13为导电基板或半导体基板,其上形成有一或多层绝缘材料,且栅电极37形成于绝缘材料
层上。
[0076] 在一些实施例中,栅电极37包含具有均匀或不均匀的掺杂浓度的掺杂多晶硅。在其他实施例中,栅电极37包含金属,例如铝、铜、钨、钛、钴、镍、钽、氮化钛、钛铝、氮化铝钛、氮化钽、硅化镍、硅化钴,及其他具有相容于基板材料的工作函数的导电材料,或其组合。可使用合适制程,例如化学气相沉积、物理气相沉积、原子层沉积、电镀、或其组合,来形成栅电极37的电极层,且使用一或多个微影及蚀刻操作来图案化栅电极37。
[0077] 在一些实施例中,栅极介电层32包含氧化硅、氮化硅、氮氧化硅、或高K介电材料的一或多层。高K介电材料包含金属氧化物。用于高K介电材料的金属氧化物的例子包含锂、铍、镁、钙、锶、钪、钇、锆、铪、铝、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镏的氧化物、及/或其混合物。在一些实施例中,栅极介电层32的厚度的范围从约1nm到约20nm,且在其他实施例中其范围从2nm到约10nm。在一些实施例中,栅极介电层32包含单层或多层结构。可用合适制程,例如化学气相沉积、物理气相沉积、原子层沉积或其组合,来形成栅极介电层
32的材料。在一些实施例中,利用镶嵌技术将栅电极37嵌入绝缘基板13或下方的绝缘层。形成沟槽于绝缘基板13或下方绝缘层的表面内,且形成一或多个导电材料层于沟槽与绝缘基
板或下方绝缘层的上表面中。然后,进行化学机械研磨制程以去除导电材料层的多余部分,借以留下导电材料层于沟槽内。
[0078] 接着,如图14B所示,依据关于图12A至图12E所解释的转移操作,将过渡金属二硫属化物单晶层20转移至栅极介电层32之上。在一些实施例中,在转移过渡金属二硫属化物
层20之后,进行一或多个微影与蚀刻操作以将过渡金属二硫属化物层20图案化成所需形
状。
[0079] 然后,如图14C所示,形成源极/漏极电极27于过渡金属二硫属化物层20之上。源极/漏极电极27包含一或多层导电材料,例如为金、银、铝、铜、钨、钴、镍、钛、钽、氮化钛、钛铝、氮化铝钛、氮化钽、硅化镍、硅化钴、或其他合适的导电材料。
[0080] 在此所叙述的多个实施例或例子提供有别于既有技艺的一些优点。举例来说,在本揭露的实施例中,利用成核图案与C-2对称结晶基板,可得到大面积的过渡金属二硫属化物材料的单晶层。此外,由于成核图案控制成核的位置,因此可在所需位置选择性地生长过渡金属二硫属化物的单晶层。当基板为(110)硅时,可不使用膜转移操作而制造例如场效晶体管的电子元件,借以降低制造成本。
[0081] 需了解的是,在此无需讨论所有的优点,所有的实施例或例子不需要特定优点,并且其他实施例或例子可提供不同的优点。
[0082] 依据本揭露的一方面,在形成二维材料层的方法中,形成成核图案于基板之上,且形成过渡金属二硫属化物层,使得过渡金属二硫属化物层从成核图案横向地生长。在一或多个前述及以下实施例中,过渡金属二硫属化物层为单晶。在一或多个前述及以下实施例
中,通过形成膜于基板之上、以及将膜图案化成线图案,来形成成核图案。在一或多个前述及以下实施例中,膜由金属或金属氧化物制成。在一或多个前述及以下实施例中,膜由钼或三氧化钼制成。在一或多个前述及以下实施例中,基板为单晶,且成核图案所形成于其上的基板的上表面非对称于过渡金属二硫属化物层。在一或多个前述及以下实施例中,基板为
其上表面具有C2对称成核图案的硅、γ-三氧化二铝、三氧化二镓及氧化镁之一,或为包含一层六方氮化硼或石墨烯基板沉积于C3对称基板上的复合基板,其中C3对称基板包含碳化
硅(0001)、锗(111)、硅(111)、铜(111)或铂(111)。在一或多个前述及以下实施例中,基板为(110)硅。在一或多个前述及以下实施例中,成核图案沿对应(001)的方向延伸。在一或多个前述及以下实施例中,成核图案为沟槽。在一或多个前述及以下实施例中,过渡金属二硫属化物层包含MX2,其中M为钼、钨、钯、铂及铪之一,X为硫、硒及碲之一。在一或多个前述及以下实施例中,过渡金属二硫属化物层包含二硫化钼。在一或多个前述及以下实施例中,通过化学气相沉积方法形成二硫化钼。在一或多个前述及以下实施例中,形成中间层于基板之
上。在一或多个前述及以下实施例中,中间层为氮化硼层或石墨烯层。
[0083] 依据本案的另一方面,在制造场效晶体管的方法中,形成成核图案于基板之上。形成过渡金属二硫属化物层使得过渡金属二硫属化物层从成核图案横向生长。在形成过渡金属二硫属化物层之后,去除成核图案。形成源极与漏极电极于过渡金属二硫属化物层上。形成栅极介电层。形成栅电极于栅极介电层之上。在一或多个前述及以下实施例中,过渡金属二硫属化物层为二硫化钼单晶层。在一或多个前述及以下实施例中,基板为(110)硅,且成核图案沿对应(001)的方向延伸。
[0084] 依据本案的另一方面,在制造场效晶体管的方法中,形成多个成核图案于基板之上。分别从此些成核图案的边缘形成过渡金属二硫属化物层的多个区域。形成源极与漏极
电极于过渡金属二硫属化物层的每一区域之上。形成栅极介电层于过渡金属二硫属化物层
的此些区域之上。形成栅电极于在过渡金属二硫属化物层的每一区域之上的栅极介电层之
上。在一或多个前述及以下实施例中,基板为(110)硅,且成核图案沿对应(001)的方向延
伸。
[0085] 依据本案的另一方面,在制造场效晶体管的方法中,形成成核图案于第一基板上。形成过渡金属二硫属化物层使得过渡金属二硫属化物层从成核图案横向生长。将过渡金属
二硫属化物层从第一基板分离,且将所分离的过渡金属二硫属化物层附着于第二基板。在
一或多个前述及以下实施例中,过渡金属二硫属化物层为单晶。在一或多个前述及以下实
施例中,通过形成膜于第一基板之上、以及将膜图案化成线图案来形成成核图案。在一或多个前述及以下实施例中,基板为上表面为(110)或具有C2对称成核图案的γ-三氧化二铝、
三氧化二镓及氧化镁之一。在一或多个前述及以下实施例中,形成源极/漏极电极于第二基板之上。在一或多个前述及以下实施例中,使源极/漏极电极嵌入形成于第二基板之上的绝缘层内。在一或多个前述及以下实施例中,在使所分离的过渡金属二硫属化物层附着于第
二基板之后,形成栅极介电层于过渡金属二硫属化物层之上,且形成栅电极于栅极介电层
之上。在一或多个前述及以下实施例中,形成由栅极介电层覆盖的栅电极于第二基板之上。
在一或多个前述及以下实施例中,将栅电极嵌入绝缘材料内。在一或多个前述及以下实施
例中,在使分离的过渡金属二硫属化物层附着于第二基板之后,形成栅极介电层于栅电极
之上,且形成源极/漏极电极于栅极介电层之上。
[0086] 依据本揭露的一方面,场效晶体管包含作为通道的二维过渡金属二硫属化物层、源极/漏极电极、栅极介电层以及栅电极。二维过渡金属二硫属化物层为不具晶界的单晶。
在一些实施例中,过渡金属二硫属化物层包含二硫化钼。
[0087] 前面概述一些实施例或例子的特征,以使熟悉此技艺者可更好地理解本揭露的实施例的各方面。熟悉此技艺者应理解他们可轻易地使用本揭露的实施例作为基准来设计或
改良其他制程与结构,以实现在此所介绍的实施例或例子的相同目的及/或达到相同优点。
熟悉此技艺者亦应理解这种均等的构造并未偏离本揭露的实施例的精神及范围,且他们可
在不偏离本揭露的实施例的精神及范围而在此作出许多改变、替换及变化。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈