首页 / 专利库 / 电子零件及设备 / 分频器 / Frequency synthesizer accomplished by using multiphase reference signal source

Frequency synthesizer accomplished by using multiphase reference signal source

阅读:779发布:2024-01-08

专利汇可以提供Frequency synthesizer accomplished by using multiphase reference signal source专利检索,专利查询,专利分析的服务。并且A frequency synthesizer using a multiphase reference signal source consists of three portions: a basic phase locked loop including a variable frequency oscillator, a loop filter, a phase detector, and a frequency divider; a generating circuit including a multiphase reference signal source for providing a reference signal to the basic phase locked loop; and a frequency discriminator and phase modulator. The frequency discriminator facilitates detection of whether the main loop of the frequency synthesizer is approaching a phase locking state for a proper change of the loop bandwidth. The phase modulator is employed to change the output phase of the reference signal source in order to speed up phase locking and make it applicable to creating signals with a rapid frequency switching speed, frequency tuning capability, and fine channel resolution.,下面是Frequency synthesizer accomplished by using multiphase reference signal source专利的具体信息内容。

What is claimed is:1. A frequency synthesizer accomplished by using a multiphase reference signal source, comprising:a basic phase locked loop including a variable frequency oscillator, a loop filter, a phase detector, and a frequency divider;a multiphase reference signal source producing equally distributed multiphase output signals of designated frequency coupled to a selector for selecting a single phase output in the multiphase reference signal source as a reference signal for the basic phase locked loop, and by using a frequency discriminator to judge if a main loop of the frequency synthesizer approaches a phase locking state in order to properly adjust phase locked loop bandwidth and an output phase of the reference signal source for speeding up phase locking and thereby making it a signal applicable for producing rapid frequency switching speed and a fine channel resolution output signal.2. A frequency synthesizer accomplished by using a multiphase reference signal source, comprising:a basic phase locked loop including a variable frequency oscillator, a loop filter, a phase detector, and a frequency divider;a multiphase reference signal source producing equally distributed multiphase output signals of designated frequency coupled to a selector; anda phase modulator consisting of a &Sgr;-&Dgr; modulator and an up/down counter which accumulates a frequency modulating control signal &Dgr;&thgr; and selects via a selector a signal phase output of the multiphase reference signal source to be a reference signal for the basic phase locked loop, and by such a manner, the modulator is capable of equivalently modulating the frequency of the reference signal from Fref to Fref+&Dgr;&thgr;/Ts to achieve the purpose of changing frequency of the output signals.3. A frequency discriminator for discriminating a frequency of a signal whose frequency is to be detected, accomplished by using a multiphase reference signal source, comprising:a generating circuit of the multiphase reference signal source; anda latch circuit having an input terminal coupled to sample a reference signal output by the generating circuit of the multiphase reference signal source, said latch circuit being periodically triggered by said signal whose frequency is to be discriminated, wherein the latch circuit outputs a transition address corresponding to a phase of a sampled reference signal relative to a most adjacent rising edge of the signal whose frequency is to be discriminated, and wherein the frequency difference between the signal whose frequency is to be discriminated and the reference signal corresponds to a variation of the transition address latched by the signal whose frequency is to be discriminated.4. A multiphase frequency synthesizer accomplished by using a multiphase reference signal source, comprising:a basic phase locked loop including a variable frequency oscillator, a loop filter, a phase detector, and a frequency divider;a generating circuit of the multiphase reference signal source producing multiphase signals and a phase selector to select one of the multiphase signals as the reference signal to the phase locked loop; and a frequency discriminator and phase modulator, wherein the phase modulator further comprises a &Sgr;-&Dgr; modulator and an up/down counter employed for equivalently setting a frequency of the reference signal by changing an output phase of the reference signal; and the frequency discriminator is arranged to detect the frequency difference between the reference signal and a divided signal output by the frequency divider in the phase locked loop by using the divided signal to sample periodically the multiphase reference signal in order to fine a corresponding transition address and to compute its offset in a sampling period, said transition address being compared with an external preset phase offset for judgement of the frequency difference between the divided signal and the reference signal, thereby creating signals having a discriminated frequency difference to vary frequency of the output signal or to generate a signal for changing a phase locked loop bandwidth for accelerating phase locking speed.

说明书全文

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a circuit of a frequency synthesizer accomplished by using a multiphase reference signal source, and more particularly, to a frequency synthesizer capable of generating a signal capable of provinding fine channel resolution, low phase noise, and rapid channel switching speed in system circuits.

2. Description of the Prior Art

With the increase on popularity of radio communication systems, the relevant key circuits are in great demand. In a mobile telephone system, a rapid synchronization between transmitting and receiving terminals is essential to channel building. However, due to the limitation of communication spectrum bandwidth, a break-through shall depend on a high performance frequency synthesizer, which can provide fine channel resolution and high quality output with low phase noise.

In order to achieve both the goals of fine channel resolution and rapid phase locking capability, the mechanism used for a conventional frequency synthesizer is a factional-N phase locked loop as shown in FIG.

1

. Wherever a phase locking state is achieved, the output signal F

0

and reference signal F

r

should satisfy eq. F

0

=N.f×F

r

, in which, the coefficient N.f of the fractional-N frequency divider is controlled by a &Sgr;-&Dgr; modulator. The digital frequency control signal X of the modulator is converted into an analog voltage signal and applied to a loop filter so as to control the voltage controlled oscillator (VCO) to output a predetermined frequency, and meanwhile, the quantization noise introduced by the digital/analog conversion is shifted to a higher frequency band by the &Sgr;-&Dgr; modulator and removed by the low-pass loop filter.

For eliminating cross talk between the reference signal and quantization noise smoothed out by the &Sgr;-&Dgr; modulator, system designers have to narrow the loop bandwidth of the phase locked loop to a value lower tan one tenth of reference signal frequency F

r

as well as the signal bandwidth of the &Sgr;-&Dgr; modulator. Such a consideration may reduce phase noise of the output signal and meanwhile increase phase locking time Therefore, to achieve the design goals of fine channel resolution, reduction of system noise, and rapid phase locking capability simultaneously has become an important issue in design consideration for a high performance frequency synthesizer.

SUMMARY OF THE INVENTION

In view of the room for improvement of the conventional frequency synthesizer circuits, the inventor of the present invention has engaged in relevant R&D constantly, and finally has the opportunity to disclose this invention of a frequency synthesizer circuit.

The invented frequency synthesizer circuit comprises

3

portions: (1) A basic phase locked loop including a variable frequency oscillator, a loop filter, a phase detector, and a frequency divider; (2) A Multiphase signal generator granged to produce a reference signal for the basic phase locked loop; and (3) A Frequency discriminator and phase modulator circuit.

The frequency synthesizer circuit of the present invention may, at the same time, address problems regarding fine channel resolution, reducing phase noise, etc, and furthermore reduce phase locking and frequency hopping time.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings disclose an illustrative embodiment of the present invention, which serves to exemplify the various advantages and objects hereof, as follows:

FIG. 1

A conventional fractional-N frequency synthesizer.

FIG. 2

Frequency synthesizer block diagram of the present invention.

FIG. 3

Circuit block diagram of a multiphase reference signal source.

FIG. 4

(A) Diagram of ring oscillators formed by combination of simple inverter in series.

FIG. 4

(B) Coupled array of dual-input inverters.

FIG. 4

(C) Coupled array of triple-input inverters.

FIG. 5

Frequency synthesizer accomplished by using multiphase reference signal source.

FIG. 6

A phase modulator circuits.

FIG. 7

A frequency synthesizer using multiphase reference signals.

FIG. 8

Conceptual diagram of frequency discriminator accomplished by using multiphase reference signal source.

FIG. 9

Block diagram of frequency discriminator.

FIG. 10

Block diagram of frequency discriminator and phase modulator.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Please refer to

FIG. 2

, which is a block diagram of a circuit mechanism of a the present invented frequency synthesizer. The circuit of the said frequency synthesizer comprises three portions: basic phase locked loop

10

, multiphase reference signal source generating circuit

20

, and frequency discriminating and phase modulating circuit

30

, as described.

The basic phase locked loop

10

includes a variable frequency oscillator VFO

14

, a loop filter F(s)

11

, a phase detector (PD)

12

, and a frequency divider

13

, in which, the phase detector

12

is arranged to compare the phase difference between the reference signal (F

ref

+&Dgr;&thgr;/T

s

) with an output signal F

div

or the frequency divider and base the output control signal &dgr;&thgr; on the comparison sues to charge/discharge the loop filter.

The output signal of phase detector

12

(&dgr;&thgr;) and of frequency discriminator

31

(&dgr;f) are filtered through loop filter

11

to create a control voltage.

The output frequency F

RF

of a designated signal from oscillator VFO

14

is based on the applied control voltage in loop filter

11

.

Frequency divider

13

is arranged to convert the output signal (F

RF

) of the variable frequency oscillator VFO

14

via a dividing process into a lower frequency signal F

div

which is taken as one input signal to phase detector

12

, where F

RF

is N times of F

div

.

FIG. 3

is a block diagram of a multiphase reference signal source circuit

20

, which is used to generate a reference signal for the present invented frequency synthesizer. As shown in

FIG. 3

, circuit

20

consists of a multiphase voltage controlled oscillator

21

and a phase selector

22

. The multiphase voltage controlled oscillator

21

may combine an extra phase detector, frequency divider, and loop filter to form a phase locked loop to stabilize the frequency of the output signal, and the multiphase voltage controlled oscillator

21

is employed to divide a period equally into K units of reference signal source of different phases. Phase selector

22

is used to select a single-phase output signal &thgr;

i

as a reference signal for this frequency synthesizer according to output control signal (Sel) of phase modulator.

The multiphase reference signal source may be one of (1) A ring circuit constructed by simple inverters connected in series as shown in

FIG. 4

(A); (2) A coupled array of dual-input inverters [

1

], as shown in

FIG. 4

(B); or (3) A coupled array of triple-input inverters [

2

], as shown in FIG.

4

(C).

As Shown in

FIG.1

, the phase locked loop includes a fractional-N frequency divider wherein the output signal F

0

and reference signal F

r

satisfy eq. F

0

=N.f×F

r

. Therefore, by changing either the divide ratio N.f or F

r

, we can duly vary the output frequency F

0

. In our design, we create an equivalent variable frequency reference signal F

ref

+&Dgr; f for the phase locked loop by modulating the reference signal output phase, and therefore, we can adjust the frequency of the output signal.

FIG. 5

is a conceptual circuit schematic which explains the relevant methods as follows:

Since only one of the multiphase reference signal source (F

ref

) will be chosen as an input signal to the phase detector in phase locked loop

10

, we select the output signal with increasing or decreasing phase offsets (n&Dgr;&thgr;n=0 . . . k), and thereby we may synthesize an equivalent variable frequency signal in accordance with the magnitude of the offset (&Dgr;&thgr;) and selection period (T

S

) of selector

22

. Since an output signal can only have a discrete phase offset during selected time periods, the output signal will include a quantization noise q (t), and, the equivalent frequency of the output signal may be expressed as F

ref

+&Dgr;&thgr;/T

s

+q (t). thus, Although a signal produced by the said method has the frequency tuning capability, a problem of quantization noise arises to solve such a problem, the &Sgr;-&Dgr; modulator is used to modulate the signal &Dgr;&thgr;for phase selection to get rid of phase noise incurred in the signal spectrum.

Please refer to

FIG. 6

, a phase modulator

32

mainly includes a &Sgr;-&Dgr; modulator

33

and an associated up/down counter to produce a control signal (Sel) for phase selection.

From the above description, we understand, that the frequency modulating quantity &Dgr; f of equivalent output frequency F

ref

+&Dgr; f is related to phase offset &Dgr;&thgr; and selection period T

s

. Hence, as soon as the phase offset &Dgr;&thgr; and the selection period are determined, the frequency offset quantity can thus be decided. Meanwhile, in order to avoid quantization noise in the output signal caused by discrete phase offset, we take a &Sgr;-&Dgr; modulator

33

to modulate the phase selection quantity.

The &Sgr;-&Dgr; modulator

33

is usually employed in high resolution A/D or D/A converters. The associated over sampling techniques and low-pass filter are so arranged for the purpose of reducing the quantization noise in the signal spectrum brought about by the converter. Such a concept is also applicable to the implementation of a frequency synthesizer [

3

].

In case we let the control signal of frequency modulation &Dgr;&thgr; go firstly through a &Sgr;-&Dgr; modulator

33

, the output bit streams b (t) are counted via an Up/Down counter

34

for accumulative computation of phase offsets (&Dgr;&thgr;). accumulated phase offsets correspond to assigned phase in the multiphase signal generator. By doing so, the quantization noise q (t) of the synthesized signal F

ref

+&Dgr; &thgr;/T

s

+q(t) can be shaped out to a higher frequency band.

It has been proven [

4

] that a high order &Sgr;-&Dgr; modulator possesses a better ability to shift frequencies for quantization noise. The quantization noise arises at 20dB per decade with the second-ordth &Sgr;-&Dgr; modulator, and 40 dB per decade with the third-order &Sgr;-&Dgr; modulator. A &Sgr;-&Dgr; modulator will not attenuate the control DC signal.

Thus, the combination of a phase modulator and a multiphase signal generator may synthesize an equivalent variable frequency signal source, and the phase noise thereof may be shifted to a higher frequency band. Such a construction works together with an associated phase locked loop to become a frequency synthesizer which can, by availing itself of low-pass filtering character to the reference signal of the phase locked loop, remove quantization noise in the high frequency band. The mechanism is shown in FIG.

7

.

We are now to describe the operation principle of a frequency discriminator. As mentioned above, by modulating the output phase of a multi-phase reference signal source, an equivalent variable frequency signal source is generated. Similarly, applying a multiphase reference signal source to accomplish a frequency discriminating circuit is possible.

FIG.8

shows the manner in which the frequency discriminating circuit applies multiphase reference signal source, wherein a multiphase voltage controlled oscillator

21

is employed to generate reference signals with uniformly distributed k phases with a center frequency Fref as the base for detecting signal frequency.

During frequency detection, by means of latch

23

, a signal whose frecuency is used to be discriminated, such as the frequency divider output signal detection Fdiv is to sample the multiphase reference signal source periodically to find the corresponding phase of the multiphase reference signal source, which transits synchronously with the transition edge of the signal whose frequency is to be detected The address of the corresponding phase in the multiphase reference signal source in defined as the transition address. When the signal whose frequency is to be detected and the reference signal have the same frequency, the transition address fetched by signal pending detection should be the same, as shown in

FIG. 8

, i.e. the fetched transition address is the same in the case of F

ref

vs F

ref

, However, when the signal whose frequency is to be discriminated and the reference signal have different frequencies, the fetched transition address indicates a periodical serial figure, just as in the case of signal F

div

vs F

ref

. Consequently, according to the change of fetched transition address, we may thereby detect the frequency relationship between them.

For fetching the offset, we use the structure shown in

FIG. 9

, wherein a signal pending detection F

div

is to sample the multiphase reference signal source periodically, and deposits the sampled address in registers. The address deposited in register #1 (DFF1)

24

and register #2(DFF2)

25

is the transition address fetched in the present and preceding period respectively. When the obtained transition address go is subject to a subtraction operation then we have the offset of the address in a period. According to the difference between the obtained offset in the frequency discriminator and the preset offset (&Dgr;&thgr;) in the phase modulator, we can evaluate the frequency difference between the frequency divided signal F

div

and reference signal F

ref

+&Dgr;&thgr;/T

s

, as indicated by the dotted portion shown in

FIG. 10

the output (a) signal of frequency acquisition (FA) is used to determine if it is necessary to widen the loop bandwidth of phase-locked loop so as to accelerate speed of phase locking for a relatively large frequency difference; the (b) signal of fast/slow(FS) is used to tell the speed of the two frequencies and as an auxiliary signal for charge the pump circuit of the basic phase locked loop

10

to speed up phase locking; the (c) signal of magnitude(MG) is used to tell the magnitude of difference between two frequencies and as an auxiliary signal for the charge pump circuit of the basic phase locked loop to speed up phase locking. The output value of the loop filter is thereby changed to achieve rapid frequency locking capability.

Many changes and modifications in the above-described embodiment of the invention can, of course, be carried out without departing from the scope whereof. Accordingly, to promote the progress in science and the useful arts, the invention is disclosed and is intended to be limited only by the scope of the appended claims.

[References]

[1] J. G. Maneatis and M. A. Horowitz. “Precise delay generation using coupled oscillators”. IEEE Journal of Solid-State Circuits, pp.1273-1282, Dec. 1993.

[2] Jieh-Tsomg Wu, Horng-Der Chang, and Pi-Fen Chen, “A 2V 110 MHz CMOS vector modulator”, in 1997 IEEE ISSCC Dig. Tech Papers, pp80-81, Feb. 1997.

[3] Thomas A. D. Riley, “Frequency synthesizers having dividing ratio controlled by sigma-delta modulator”, U.S. Pat. No. 4,965,531.

[4] J. C. Candy, “Use of double integration in sigma-delta modulation”, IEEE Transactions on Communications, vol. COM-33, pp. 249-258, Mar. 1985.

[5] Thomas A. D. Riley, Miles A. Copeland, and Tad A. Kwasniewski,“Delta-sigma modulation in fractional-N frequency synthesis”, in IEEE Journal of Solid-State Circuits, pp. 553-559, vol. 28, No. 5, May 1993.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈