首页 / 专利库 / 酸,碱,盐,酸酐和碱 / 邻苯二甲酸酐 / 一种无机盐类相变储能微胶囊及其制备方法与应用

一种无机盐类相变储能微胶囊及其制备方法与应用

阅读:198发布:2020-05-11

专利汇可以提供一种无机盐类相变储能微胶囊及其制备方法与应用专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种无机盐类 相变 储能微胶囊及其制备方法与应用。本发明通过高分子 聚合物 包覆,可以解决无机盐类 相变材料 熔融流动的问题。在聚合物壳层形成过程中 吸附 金属或金属 氧 化物颗粒或掺杂 石墨 烯、 碳 纳米管 等,提高导热性能。本发明提供的无机盐类相变储能微胶囊具有中高温相变 温度 、高 焓 值、导热性能良好且易于与高分子材料基体共混。,下面是一种无机盐类相变储能微胶囊及其制备方法与应用专利的具体信息内容。

1.一种相变储能微胶囊,其特征在于:所述相变储能微胶囊由核和壳层;
所述核由吸附有界面增强剂的无机盐构成;
所述壳层由高分子聚合物或掺杂高分子聚合物构成;
所述掺杂高分子聚合物中,掺杂物质选自纳米级别的金属、纳米级别的金属化物颗粒和导热无机材料中至少一种。
2.根据权利要求1所述的相变储能微胶囊,其特征在于:所述相变储能微胶囊的粒径为
1~100μm;
所述壳层的厚度为100nm-1μm;
所述相变储能微胶囊的值保有率为60%~95%。
3.根据权利要求1或2所述的相变储能微胶囊,其特征在于:所述无机盐选自NaOH、LiOH、Ca(OH)2、Mg(OH)2、Al(OH)3、NaCl、LiCl、CaCl2、MgCl2、AlCl3、Na2CO3、Li2CO3、CaCO3、MgCO3、Al2(CO3)3、复合盐LiCl(37)-LiOH(63)和复合盐NaOH(85.8)-NaCl(7.8)-Na2CO3(6.4)中至少一种;所述复合盐LiCl(37)-LiOH(63)和复合盐NaOH(85.8)-NaCl(7.8)-Na2CO3(6.4)中的比例均为摩尔比;
所述无机盐的粒径为1~50μm;
所述界面增强剂选自酸酐、胺类、巯基化合物和乙基纤维素中至少一种;
具体的,所述酸酐选自乙酸酐、丙酸酐、丁二酸酐、顺丁烯二酸酐、苯甲酸酐和邻苯二甲酸酐中至少一种;
所述胺类选自苯胺、乙二胺、二异丙胺和三乙醇胺中至少一种;
所述巯基化合物选自吡咯烷、硫醇和硫酚中至少一种;
所述界面增强剂的质量为所述无机盐质量的0.1%~5%。
4.根据权利要求1-3任一所述的相变储能微胶囊,其特征在于:所述高分子聚合物或掺杂高分子聚合物中,所述高分子聚合物对应的单体选自二乙烯基苯、二甲基苯烯酸乙二醇酯、苯乙烯、丙烯酸酯和N-异丙基丙烯酰胺中至少一种;
所述纳米级别的金属选自Au、Ag、Pt、Pd、Ni、Co、Cu和Fe中至少一种;
所述纳米级别的金属氧化物颗粒选自Fe2O3、TiO2、ZrO2和ZnO中至少一种;
所述纳米级别的金属和纳米级别的金属氧化物颗粒的粒径为15~40nm;
所述导热无机材料选自SiC、石墨烯、纳米纤维和碳纳米管中至少一种;
所述导热无机材料的尺寸为10~100nm;
所述掺杂物质的掺杂量为所述壳层总质量的1%~20%。
5.根据权利要求1-4中任一所述的相变储能微胶囊,其特征在于:所述壳层与核的质量比为1:0.1~100;具体为1:2~20。
6.一种制备权利要求1-5中任一所述相变储能微胶囊的方法,包括:
将所述无机盐于不良有机溶剂中与所述界面增强剂按照配比进行吸附,得到吸附有界面增强剂的无机盐,将其与所述单体和引发剂混合进行聚合反应,得到壳层由高分子聚合物构成的所述相变储能微胶囊;
将所述无机盐于不良有机溶剂中与所述界面增强剂按照配比进行吸附,得到吸附有界面增强剂的无机盐,将其与所述单体、引发剂和掺杂物质混合进行聚合反应,得到壳层由掺杂高分子聚合物构成的所述相变储能微胶囊。
7.根据权利要求6所述的方法,其特征在于:所述吸附步骤中,所述不良有机溶剂选自苯、甲苯、二甲苯、戊烷、己烷、庚烷、辛烷、环己烷、环己、甲苯环己酮、二氯甲烷和丙酮中至少一种;
吸附时间为0.5~24h。
8.根据权利要求6或7所述的方法,其特征在于:所述引发剂选自偶氮二异丁腈、偶氮二异庚腈和过氧化苯甲酰中至少一种;
所述引发剂的加入量为所述单体质量的0.1%~20%;
所述单体的加入量为所述无机盐质量的5%~50%;
所述聚合反应步骤中,温度为20~100℃;时间为0.5~72h;
所述聚合反应所用溶剂为所述不良有机溶剂。
9.权利要求1-5任一所述相变储能微胶囊在控温、储能、散热、防热、导热和缓释吸湿中至少一种中的应用。
10.含有权利要求1-5任一所述相变储能微胶囊的控温材料、储能材料、散热材料、防热材料、导热材料或缓释吸湿剂。

说明书全文

一种无机盐类相变储能微胶囊及其制备方法与应用

技术领域

[0001] 本发明属于材料领域,涉及一种相变储能微胶囊及其制备方法,尤其涉及一种无 机盐类相变储能微胶囊及其制备方法与应用。

背景技术

[0002] 能源是是国民经济的重要物质基础。随着工业的迅速发展,能源的需求量与日俱 增,所以对于新能源的开发和提高新能源的利用率为解决能源问题提供了一种新思路。
[0003] 所以为了更好的能够将能源有效利用,相变储能材料得到了广泛的应用。而采用 胶囊化技术制备微胶囊相变材料,能有效解决相变材料的泄漏、相分离以及腐蚀性等 问题,有助于改善相变材料的应用性能,有利于拓展相变蓄热技术的应用领域。目前 相变储能微胶囊的制备方法也有所报道,比如专利CN201310072571.1、 CN201510636504.7都提出了一种以石蜡为芯材,将其包封在高分子聚合物中从而形成 具有核壳结构的相变储能微胶囊。另外,也有部分国外文献报道了使用其他有机物为 芯材,如以正十八烷为芯材、聚脲为壳的微胶囊(Colloid Polym.Sci.2002,280,260), 以正癸烷、正十九烷和正二十烷为芯材,脲-蜜胺-甲聚合物为壳材的微胶囊(J. Colloid InterfaceSci.,2005,281,299)等。然而,大部分的相变储能微胶囊的芯材所采用 的都是有机相变芯材,产生了如相变温度低,易挥发造成环境污染,耐久性和耐火性 差等一系列问题。

发明内容

[0004] 本发明的目的是提供一种中高温相变温度、高值且不易潮解的无机盐类相变储 能微胶囊,拓展了相变储能微胶囊的类别。将中高温度熔点的无机盐类等,经过简单 的聚合物包覆,得到所提供的相变储能微胶囊,具有核壳结构。所述核为简单的无机 盐或者复合盐,所述的壳为二乙烯基苯聚合而成,通过加入其它单体可以改变聚合物 壳层的性质,在聚合物壳层形成过程中可以吸附金属或者金属化物颗粒或者掺杂石 墨烯、纳米管等,提高导热性能。其中,所述的微胶囊的大小为1~100μm,所述的 聚合物壳层的厚度为100nm~1μm,焓值保有率在60%~95%以内可调。
[0005] 本发明提供的相变储能微胶囊,其中,所述相变储能微胶囊由核和壳层;
[0006] 所述核由吸附有界面增强剂的无机盐构成;
[0007] 所述壳层由高分子聚合物或掺杂高分子聚合物构成;
[0008] 所述掺杂高分子聚合物中,掺杂物质选自纳米级别的金属、纳米级别的金属氧化 物颗粒和导热无机材料中至少一种。
[0009] 上述相变储能微胶囊的粒径为1~100μm;
[0010] 所述壳层的厚度为100nm-1μm;具体为200nm~300nm或500nm;
[0011] 所述相变储能微胶囊的焓值保有率为60%~95%;具体为90%、91%或93%。
[0012] 所述无机盐选自NaOH、LiOH、Ca(OH)2、Mg(OH)2、Al(OH)3、NaCl、LiCl、CaCl2、 MgCl2、AlCl3、Na2CO3、Li2CO3、CaCO3、MgCO3、Al2(CO3)3、复合盐LiCl(37)-LiOH (63)和复合盐NaOH(85.8)-NaCl(7.8)-Na2CO3(6.4)中至少一种;所述复合盐LiCl(37)- LiOH(63)和复合盐NaOH(85.8)-NaCl(7.8)-Na2CO3(6.4)中的比例均为摩尔比;上述复 合盐加热熔融共混可在惰性气体的氛围下进行,比如复合盐LiCl(x)-LiOH(y)的在氮 气氛围下,以5℃/min加热至650℃,再降至室温;更具体如复合盐LiCl(37)-LiOH(63) 可按照如下方法制得:将10g LiCl和9.615g LiOH研磨成粉装入坩埚中,两者的摩尔 比例为37:63。置于管式炉中,氮气氛围下,以5℃/min的升温速率升温至650℃,降 到室温后得到复合盐LiCl(37)-LiOH(63)。
[0013] 所述无机盐的粒径为1~50μm;
[0014] 所述界面增强剂选自酸酐、胺类、巯基化合物和乙基纤维素中至少一种;
[0015] 具体的,所述酸酐选自乙酸酐、丙酸酐、丁二酸酐、顺丁烯二酸酐、苯甲酸酐和 邻苯二甲酸酐中至少一种;
[0016] 所述胺类选自苯胺、乙二胺、二异丙胺和三乙醇胺中至少一种;
[0017] 所述巯基化合物选自吡咯烷、硫醇和硫酚中至少一种;
[0018] 所述界面增强剂的质量为所述无机盐质量的0.1%~5%。
[0019] 所述界面增强剂的作用是提高壳层和无机盐之间的界面相互作用,提高壳层致密 性。
[0020] 所述高分子聚合物或掺杂高分子聚合物中,所述高分子聚合物对应的单体选自二 乙烯基苯、二甲基苯烯酸乙二醇酯、苯乙烯、丙烯酸酯和N-异丙基丙烯酰胺中至少一 种;
[0021] 所述纳米级别的金属选自Au、Ag、Pt、Pd、Ni、Co、Cu和Fe中至少一种;
[0022] 所述纳米级别的金属氧化物颗粒选自Fe2O3、TiO2、ZrO2和ZnO中至少一种;
[0023] 所述纳米级别的金属和纳米级别的金属氧化物颗粒的粒径为15~40nm;具体为15- 20nm;
[0024] 所述导热无机材料选自SiC、石墨烯、碳纳米纤维碳纳米管中至少一种;
[0025] 所述导热无机材料的尺寸为10~100nm;
[0026] 所述掺杂物质的掺杂量为所述壳层总质量的1%~20%;具体为5-20%。
[0027] 所述壳层与核的质量比为1:0.1~100;具体为1:2~20;更具体为7:93或1:9或 9:91。
[0028] 上述本发明提供的相变储能微胶囊具体可为NaOH相变储能微胶囊、复合Fe2O3颗粒NaOH相变储能微胶囊或复合盐LiCl(37)-LiOH(63)相变储能微胶囊;
[0029] 本发明提供的制备所述相变储能微胶囊的方法,包括:
[0030] 将所述无机盐于不良有机溶剂中与所述界面增强剂按照配比进行吸附,得到吸附 有界面增强剂的无机盐,将其与所述单体和引发剂混合进行聚合反应,得到壳层由高 分子聚合物构成的所述相变储能微胶囊;
[0031] 将所述无机盐于不良有机溶剂中与所述界面增强剂按照配比进行吸附,得到吸附 有界面增强剂的无机盐,将其与所述单体、引发剂和掺杂物质混合进行聚合反应,得 到壳层由掺杂高分子聚合物构成的所述相变储能微胶囊。
[0032] 上述方法中,可对无机盐类包覆前进行如下处理:
[0033] 简单的一种无机盐通过粉碎机粉碎可以得到不同尺寸的无机盐颗粒;
[0034] 两种或者多种的无机盐按照一定的比例掺杂后粉碎机粉碎,在高温炉中按照程序 进行加热熔融共混重结晶,再用粉碎机粉碎即可得到复合盐。
[0035] 所述吸附步骤中,所述不良有机溶剂选自苯、甲苯、二甲苯、戊烷、己烷、庚烷、 辛烷、环己烷、环己、甲苯环己酮、二氯甲烷和丙酮中至少一种;
[0036] 吸附时间为0.5~24h;具体为1h。吸附的有机物(也即界面增强剂)有利于聚合 物单体在无机盐表面聚合,同时也利于纳米级别的金属或者金属氧化物颗粒或者掺杂 导热无机材料等吸附在聚合物壳层。
[0037] 所述引发剂选自偶氮二异丁腈、偶氮二异庚腈和过氧化苯甲酰中至少一种;
[0038] 所述引发剂的加入量为所述单体质量的0.1%~20%;具体为1%~10%;
[0039] 所述单体的加入量为所述无机盐质量的5%~50%;具体为5~30%;
[0040] 所述聚合反应步骤中,温度为20~100℃;具体为70℃;时间为0.5~72h;时间为 24h;
[0041] 所述聚合反应所用溶剂为所述不良有机溶剂。
[0042] 另外,上述本发明提供的相变储能微胶囊在控温、储能、散热、防热、导热和缓 释吸湿中至少一种中的应用及含有所述相变储能微胶囊的控温材料、储能材料、散热 材料、防热材料、导热材料或缓释吸湿剂,也属于本发明的保护范围。
[0043] 针对现有技术中存在的问题,本发明提出了以无机盐为芯材,聚合物为壳的相变 储能微胶囊。从技术上克服了相变物质的应用局限性,其中高温的相变温度有效地拓 宽了相变材料的应用范围,在中高温应用领域具有广阔的应用前景;解决了无机盐类 相变材料相变熔融流动的问题;同时包覆的聚合物壳层可以使无机盐类微胶囊掺杂在 有机材料当中,解决了其与有机基体的共混问题;聚合物壳层复合金属或金属氧化物 颗粒或掺杂无机导热材料,有效的提高相变储能微胶囊的导热性能,消除过冷现象, 提高导热效率。
[0044] 本发明具有如下有益效果:
[0045] 1)通过对于无机盐类进行微胶囊包覆制备,拓展了中高温相变储能微胶囊的材料 来源,同时无机盐价格便宜,易于大批量制备,应用广泛。
[0046] 2)通过无机盐类进行聚合物壳层的包覆得到的相变储能微胶囊,解决无机盐受热 熔融的问题,并且能够与高分子材料进行共混,拓宽了无机盐类微胶囊的应用范围可 以作为工业填料的应用。
[0047] 3)解决了部分无机盐吸潮解的问题,延长了无机盐类相变储能微胶囊的保存时 间,解决了运送储存条件严格的问题。同时也可以作为缓释吸湿剂,不易泄漏污染。
[0048] 4)提出了一种广泛制备无机盐类相变储能微胶囊的方法,其制备的相变储能微胶 囊具有高焓值、中高温相变温度等特点。同时壳层复合纳米级别的金属或者金属氧化 物颗粒或者掺杂导热无机材料等,导热性能好。附图说明
[0049] 图1表示实施例1中制备的NaOH无机盐的相变储能微胶囊的扫描电镜照片。
[0050] 图2表示实施例1中制备的NaOH无机盐的相变储能微胶囊的聚合物壳层的扫描 电镜照片。
[0051] 图3表示实施例2中制备的复合Fe2O3颗粒NaOH相变储能微胶囊的透射电镜照 片。
[0052] 图4表示实施例3中制备的复合盐LiCl(37)-LiOH(63)相变储能微胶囊扫描电镜 照片。
[0053] 图5表示实施例3中制备的复合盐LiCl(37)-LiOH(63)相变储能微胶囊聚合物壳 层的扫描电镜照片。

具体实施方式

[0054] 下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所 述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获 得。
[0055] 实施例1、NaOH相变储能微胶囊
[0056] 在NaOH用粉碎机粉碎至粒径为100μm以下备用。
[0057] 将10g NaOH分散在50ml的甲苯中,0.5g顺丁烯二酸酐溶解在甲苯当中,机械搅 拌条件吸附1h,倒去甲苯,加入100ml正己烷,用注射器将4g DVB单体和0.4g AIBN 溶液注入上述体系。无水无氧条件下,反应温度为70℃,机械搅拌24h。反应完毕后, 正己烷(甲苯)洗涤两次。干燥后得到NaOH的相变储能微胶囊干粉。
[0058] 从扫描电镜照片中,NaOH的相变储能微胶囊大小尺寸在1~100μm(如图1所示), 将得到的NaOH的相变储能微胶囊干粉通过用水洗涤离心三次后,得到相变储能微胶 囊的聚合物壳层。从扫描电镜照片中可以看到,所述的聚合物壳层的厚度为500nm左 右(如图2所示)。通过示差扫描量热法(Differential Scanning Calorimetry,DSC)测 量相变储能微胶囊的焓值保有率,焓值保有率为93%(如图3所示)。该聚合物壳层与 核的质量比为7:93。
[0059] 氮气氛围下,相变储能微胶囊通过高温350℃处理,包覆的NaOH的相变储能微 胶囊还是粉末状,没有泄露熔融。
[0060] 实施例2:复合Fe2O3颗粒NaOH相变储能微胶囊
[0061] 在NaOH用粉碎机粉碎至粒径至100μm以下备用。将10g NaOH分散在50ml的 甲苯中,0.5g顺丁烯二酸酐溶解在甲苯当中,机械搅拌条件吸附1h,倒去甲苯,加入 100ml正己烷,用注射器将4g DVB单体和0.04g AIBN溶液注入上述体系,同时在体 系当中加入15nm~20nm的Fe2O3颗粒,无水无氧条件下,反应温度为70℃,机械搅 拌24h。反应完毕后,正己烷(甲苯)洗涤两次。干燥后得到NaOH的相变储能微胶 囊干粉。
[0062] NaOH的相变储能微胶囊大小尺寸在1~100μm,将得到的NaOH的相变储能微胶 囊干粉通过用水洗涤离心三次后,得到相变储能微胶囊的聚合物壳层,所述的聚合物 壳层的厚度为500nm左右。从投射电镜照片中可以看到,聚合物壳层上复合了Fe2O3颗粒(如图4所示)。通过热重分析仪分析四氧化三占四氧化三铁复合的相变储能微 胶囊聚合物壳层的质量比例为5%~20%。通过示差扫描量热法(Differential Scanning Calorimetry,DSC)测量相变储能微胶囊的焓值保有率,焓值保有率为90%。该聚合 物壳层与核的质量比为1:9。
[0063] 氮气氛围下,相变储能微胶囊通过高温350℃处理,包覆的NaOH的相变储能微 胶囊还是粉末状,没有泄露熔融。
[0064] 实施例3、复合盐LiCl(37)-LiOH(63)相变储能微胶囊
[0065] 将10g LiCl和9.615g LiOH研磨成粉装入坩埚中,两者的摩尔比例为37:63。置 于管式炉中,氮气氛围下,以5℃/min的升温速率升温至650℃,降到室温后得到复合 盐LiCl(37)-LiOH(63),在用粉碎机粉碎至100μm以下备用。
[0066] 10g上述复合盐分散在50ml的甲苯中,0.5g顺丁烯二酸酐溶解在甲苯当中,机 械搅拌条件吸附1h,倒去甲苯,加入100ml正己烷,用注射器将4g DVB单体和0.4g AIBN溶液注入上述体系。无水无氧条件下,反应温度为70℃,机械搅拌24h。反应 完毕后,正己烷洗涤两次。烘箱中70℃放置1h,真空干燥,原料呈黄色粉末。干燥后 得到复合盐LiCl(37)-LiOH(63)的相变储能微胶囊干粉。
[0067] 从扫描电镜照片中,复合盐LiCl(37)-LiOH(63)的相变储能微胶囊大小尺寸在 1~100μm(如图5所示),将得到的复合盐LiCl(37)-LiOH(63)的相变储能微胶囊干粉 通过用水洗涤离心三次后,得到相变储能微胶囊的聚合物壳层。从扫描电镜照片中可 以看到,所述的聚合物壳层的厚度为200nm~300nm。通过示差扫描量热法(Differential Scanning Calorimetry,DSC)测量相变储能微胶囊的焓值保有率,焓值保有率为91%。 该聚合物壳层与核的质量比为9:91。
[0068] 氮气氛围下,相变储能微胶囊通过高温320℃处理,包覆的复合盐LiCl(37)-LiOH (63)的相变储能微胶囊还是粉末状,没有泄露熔融。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈