首页 / 专利库 / 酸,碱,盐,酸酐和碱 / 乙二胺四乙酸 / 一种纳米结构钛酸盐及其制备方法和应用

一种纳米结构酸盐及其制备方法和应用

阅读:1028发布:2020-10-20

专利汇可以提供一种纳米结构酸盐及其制备方法和应用专利检索,专利查询,专利分析的服务。并且本 发明 提供了一种纳米结构 钛 酸盐及其制备方法和应用。所述方法包括如下步骤:S1、制备含有钛过 氧 络合物的分散液;S2、往所述含有钛过氧络合物的分散液中缓慢加入 金属化 合物形成溶液;S3、常温常压条件下,往所述溶液中添加醇促使溶液中产生纳米结构钛酸盐前驱物沉淀,分离获得钛酸盐前驱物;S4、将所述前驱物干燥后,经 热处理 获得纳米结构钛酸盐产物。本发明提供一种制备工艺简单,工艺参数易控制,易于大规模工业化生产的制备钛酸盐的方法。,下面是一种纳米结构酸盐及其制备方法和应用专利的具体信息内容。

1.一种纳米结构酸盐的制备方法,其中,所述方法包括如下步骤:
S1、制备含有钛过络合物的分散液;
S2、往所述含有钛过氧络合物的分散液中缓慢加入金属化合物形成溶液;
S3、常温常压条件下,往所述溶液中添加醇促使溶液中产生纳米结构钛酸盐前驱物沉淀,分离获得钛酸盐前驱物;
S4、将所述前驱物干燥后,经热处理获得纳米结构钛酸盐产物。
2.根据权利要求1所述的制备方法,其中,所述钛酸盐选自钛酸锂、钛酸钠、钛酸、钛酸、钛酸钡、钛酸锶、和钛酸钙中的一种或者几种的组合。
3.根据权利要求1所述的制备方法,其中,步骤S1所述含有钛过氧络合物的分散液中钛过氧络合物浓度为0.01摩尔每升至1摩尔每升(优选浓度为0.05摩尔每升至0.5摩尔每升)。
4.根据权利要求1所述的制备方法,其中,步骤S1所述制备含有钛过氧络合物的分散液的方法包括将钛源分散于过氧化物溶液中形成分散液(优选钛源和过氧化物水溶液中的过氧化物的摩尔比为1:3-1:6);所述钛源选自钛酸、金属钛、乙醇钛、异丙醇钛、丙醇钛、钛酸四丁酯、乙二醇钛、丙三醇钛、硫酸钛、硫酸氧钛、四氯化钛、四氟化钛、氟钛酸铵、氮化钛和二氧化钛中的一种或者几种的组合;所述过氧化物选自过氧化氢、过氧化尿素、和过氧乙酸中的一种或几种的组合。
5.根据权利要求4所述的制备方法,其中,所述钛酸选自水合钛酸、偏钛酸、正钛酸中的一种;所述水合钛酸由含钛化合物(优选所述含钛化合物选自乙醇钛、异丙醇钛、丙醇钛、钛酸四丁酯、乙二醇钛、丙三醇钛、硫酸钛、硫酸氧钛、四氯化钛、四氟化钛、和氟钛酸铵中的一种或者多种的组合)经过水解反应获得。
6.根据权利要求5所述的制备方法,其中,所述水解反应为将所述含钛化合物分散在纯水中直接水解生成水合钛酸;或者,
所述水解反应为将所述含钛化合物分散在含有性物质的水溶液中水解生成水合钛酸(优选所述碱性物质选自水、氢氧化锂、氢氧化钠、氢氧化钾、四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵、乙二胺、二乙胺、三乙胺、乙胺、乙醇胺、和二乙醇胺中的一种或多种的组合)。
7.根据权利要求1所述的制备方法,其中,步骤S1制备含有钛过氧络合物的分散液的同时还往分散液中添加聚合物;所述聚合物选自壳聚糖、瓜尔胶、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、聚乙烯醇、聚丙烯酰胺、聚氧化乙烯、和聚乙烯吡咯烷中的一种或者几种;所述溶液中添加聚合物的含量为万分之一至百分之十(优选溶液中添加聚合物的含量为千分之一至百分之一)。
8.根据权利要求1或2所述的制备方法,其中,步骤S2所述金属化合物为水溶性金属化合物(优选所述金属化合物选自一类金属化合物、或一类金属化合物和二类金属化合物的组合物)(优选所述一类金属化合物选自金属氢氧化物、金属氧化物、金属过氧化物、金属超氧化物中的一种或几种的组合)(优选所述二类金属化合物选自金属氯化物、金属氟化物、金属溴化物、金属硝酸盐、金属硫酸盐、金属磷酸盐、金属醋酸盐中的一种或几种的组合)。
9.根据权利要求1所述的制备方法,其中,步骤S2所述加入金属化合物形成的溶液中金属离子的浓度为0.5摩尔每升至4.0摩尔每升。
10.根据权利要求1所述的制备方法,其中,步骤S3所述醇选自甲醇、乙醇、丙醇、丁醇、戊醇、乙二醇、丙二醇、丙三醇、和聚乙二醇中的一种或者几种的组合。
11.根据权利要求1所述的制备方法,其中,步骤S3所述醇添加量占溶液的体积比为百分之五至百分之五十(优选体积比为百分之十至百分之二十五)。
12.根据权利要求1所述的制备方法,其中,步骤S3所述分离采用固液分离的方式(优选离心分离、过滤分离、抽滤分离、膜分离中的一种)。
13.根据权利要求1所述的制备方法,其中,步骤S4所述热处理的温度为150摄氏度至
1000摄氏度(优选热处理的温度为300摄氏度至700摄氏度)所述热处理的时间为1小时至24小时。
14.根据权利要求1所述的制备方法,对所述方法还包括对步骤S4制得的钛酸盐产物进行表面修饰的步骤;所述表面修饰包括负载选自如下材料中的一种或几种的组合:、碳纳米管石墨烯、黑磷、和金属。
15.权利要求1~14任意一项所述的制备方法制备得到的钛酸盐。
16.权利要求15所述的钛酸盐在制备压电领域材料和制备离子电池电极材料中的应用。
17.根据权利要求16所述的应用,其中,所述离子电池选自锂离子电池、钠离子电池、钾离子电池、或镁离子电池。

说明书全文

一种纳米结构酸盐及其制备方法和应用

技术领域

[0001] 本发明涉及材料领域,具体的说,本发明涉及一种纳米结构钛酸盐及其制备方法和应用。

背景技术

[0002] 钛酸盐已经被广泛应用在电池电极、压电等领域,是材料领域研究的热点。钛酸盐材料的应用性能与其粒径大小密切相关。例如,纳米结构可以减小材料的颗粒粒径,当应用于电池电极时,可以减少离子嵌入与嵌出的距离和路径,提升电池的快速充放电性能;纳米结构还可以增加材料的比表面积,可吸附更多的导电剂并增加与电解液的接触面积,减少电流密度,进一步提升材料的快速充放电性能。因此,制备合成具有纳米尺度的钛酸盐颗粒将大大提高钛酸盐材料的应用效果。
[0003] 现有生产钛酸盐的方法主要包括固态合成以及热反应制备。其中,固态合成方法通常采用二化钛和酸盐或氢氧化物经球磨混匀后,在大于800摄氏度的高温下退火处理得到。该方法制备得到的钛酸盐尺寸通常在微米尺度,形貌和均一性都不好且纯度不高,从而无法获得钛酸盐材料的最佳应用效果。
[0004] 纳米结构钛酸盐的水热制备方法通常以商业二氧化钛和氢氧化钠为起始原材料,通过水热法制备出钛酸钠,并将钛酸钠浸泡在酸溶液中,利用离子交换法得到了钛酸;随后将钛酸与金属盐溶液混合后获得钛酸盐前驱物,之后产物在不同温度下退火处理,得到钛酸盐产物。该制备方法的水热过程涉及到高温高压,危险性大;同时,该反应体系为10摩尔每升的氢氧化钠,在大于180℃的高水热温度和大于10个大气压的高水热压下,具有很强的腐蚀性。该反应体系对水热反应设备的要求非常苛刻,很难寻找到合适的反应设备,合成成本昂贵。此外,该制备方法使用到的腐蚀性浓度很高,造成后续的钛酸钠产品分离提纯困难,也给环境带来严重的污染。因此,纳米结构钛酸盐的水热制备方法不论在合成设备还是合成过程及后续处理等方面仍面临诸多难题,无法实现规模化生产。
[0005] 因此,开发工艺流程简单,无需高温或高压的合成条件,便于规模化生产纳米结构钛酸盐的制备方法,仍具有重大的挑战。

发明内容

[0006] 本发明的一个目的在于提供一种钛酸盐的制备方法。
[0007] 本发明的另一目的在于提供一种钛酸盐。
[0008] 本发明的再一目的在于提供所述钛酸盐的应用。
[0009] 为达上述目的,一方面,本发明提供了一种纳米结构钛酸盐的制备方法,其中,所述方法包括如下步骤:
[0010] S1、制备含有钛过氧络合物的分散液;
[0011] S2、往所述含有钛过氧络合物的分散液中缓慢加入金属化合物形成溶液;
[0012] S3、常温常压条件下,往所述溶液中添加醇促使溶液中产生纳米结构钛酸盐前驱物沉淀,分离获得钛酸盐前驱物;
[0013] S4、将所述前驱物干燥后,经热处理获得纳米结构钛酸盐产物。
[0014] 根据本发明一些具体实施方案,其中,所述钛酸盐选自钛酸锂、钛酸钠、钛酸、钛酸、钛酸钡、钛酸锶、和钛酸钙中的一种或者几种的组合。
[0015] 根据本发明一些具体实施方案,其中,步骤S1所述含有钛过氧络合物的分散液中钛过氧络合物浓度为0.01摩尔每升至1摩尔每升。
[0016] 根据本发明一些具体实施方案,其中,步骤S1所述含有钛过氧络合物的分散液中钛过氧络合物浓度为0.05摩尔每升至0.5摩尔每升。
[0017] 根据本发明一些具体实施方案,其中,步骤S1所述制备含有钛过氧络合物的分散液的方法包括将钛源分散于过氧化物水溶液中形成分散液;所述钛源选自钛酸、金属钛、乙醇钛、异丙醇钛、丙醇钛、钛酸四丁酯、乙二醇钛、丙三醇钛、硫酸钛、硫酸氧钛、四氯化钛、四氟化钛、氟钛酸铵、氮化钛和二氧化钛中的一种或者几种的组合;所述过氧化物选自过氧化氢、过氧化尿素、和过氧乙酸中的一种或几种的组合。
[0018] 根据本发明一些具体实施方案,其中,所述钛源选自水合钛酸、偏钛酸、正钛酸中的一种。
[0019] 根据本发明一些具体实施方案,其中,所述水合钛酸由含钛化合物经过水解反应获得。
[0020] 根据本发明一些具体实施方案,其中,所述含钛化合物选自乙醇钛、异丙醇钛、丙醇钛、钛酸四丁酯、乙二醇钛、丙三醇钛、硫酸钛、硫酸氧钛、四氯化钛、四氟化钛、和氟钛酸铵中的一种或者多种的组合。
[0021] 根据本发明一些具体实施方案,其中,所述水解反应为将所述含钛化合物分散在纯水中直接水解生成水合钛酸;或者,
[0022] 所述水解反应为将所述含钛化合物分散在含有碱性物质的水溶液中水解生成水合钛酸。
[0023] 根据本发明一些具体实施方案,其中,所述水解反应是在常温下进行反应。
[0024] 根据本发明一些具体实施方案,其中,所述碱性物质选自水、氢氧化锂、氢氧化钠、氢氧化钾、四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四丁基氢氧化铵、乙二胺、二乙胺、三乙胺、乙胺、乙醇胺、和二乙醇胺中的一种或多种的组合。
[0025] 根据本发明一些具体实施方案,其中,含有碱性物质的水溶液中碱性物质的浓度为0.001-1M。
[0026] 根据本发明一些具体实施方案,其中,所述水合钛酸由含钛化合物经过水解反应和提纯处理获得;所述提纯处理包括将含钛化合物经过水解反应后得到的产物进行提纯,得到纯度大于等于97%的水合钛酸。
[0027] 根据本发明一些具体实施方案,其中,所述提纯处理的方式选自水洗-离心分离、水洗-膜分离、水洗-过滤以及渗析中的一种或者多方式的组合。
[0028] 根据本发明一些具体实施方案,其中,所述含有钛的过氧络合物分散液的状态可以是溶液状态、悬浊液状态、或乳液状态。
[0029] 根据本发明一些具体实施方案,其中,钛源和过氧化物水溶液中的过氧化物的摩尔比为1:3-1:6。
[0030] 根据本发明一些具体实施方案,其中,步骤S1制备含有钛过氧络合物的分散液的同时还往分散液中添加聚合物;所述聚合物选自壳聚糖、瓜尔胶、甲基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、聚乙烯醇、聚丙烯酰胺、聚氧化乙烯、和聚乙烯吡咯烷中的一种或者几种;所述溶液中添加聚合物的含量为万分之一至百分之十。
[0031] 根据本发明一些具体实施方案,其中,步骤S1所述溶液中添加聚合物的含量为千分之一至百分之一。
[0032] 根据本发明一些具体实施方案,其中,所述添加的聚合物选自聚合物固体或聚合物水溶液。
[0033] 根据本发明一些具体实施方案,其中,步骤S2所述金属化合物为水溶性金属化合物。
[0034] 根据本发明一些具体实施方案,其中,所述金属化合物选自一类金属化合物、或一类金属化合物和二类金属化合物的组合物。
[0035] 根据本发明一些具体实施方案,其中,所述一类金属化合物选自金属氢氧化物、金属氧化物、金属过氧化物、金属超氧化物中的一种或几种的组合。
[0036] 根据本发明一些具体实施方案,其中,所述二类金属化合物选自金属氯化物、金属氟化物、金属溴化物、金属硝酸盐、金属硫酸盐、金属磷酸盐、金属醋酸盐中的一种或几种的组合。
[0037] 其中可以理解的是,本发明所述的金属化合物中的金属即为形成所述钛酸盐的金属部分。
[0038] 根据本发明一些具体实施方案,其中,步骤S2所述加入金属化合物形成的溶液中金属离子的浓度为0.5摩尔每升至4.0摩尔每升。
[0039] 根据本发明一些具体实施方案,其中,所述加入金属化合物选自金属化合物固体或金属化合物水溶液。
[0040] 根据本发明一些具体实施方案,其中,所述常温常压条件中的温度为15摄氏度至35摄氏度;所述常温常压条件中的常压为室温下的标准大气压。
[0041] 根据本发明一些具体实施方案,其中,步骤S3所述醇选自甲醇、乙醇、丙醇、丁醇、戊醇、乙二醇、丙二醇、丙三醇、和聚乙二醇中的一种或者几种的组合。
[0042] 根据本发明一些具体实施方案,其中,步骤S3所述醇添加量占溶液的体积比为百分之五至百分之五十。
[0043] 根据本发明一些具体实施方案,其中,步骤S3所述沉淀剂添加量占溶液的体积比为百分之十五至百分之四十。
[0044] 根据本发明一些具体实施方案,其中,步骤S3所述分离采用固液分离的方式。
[0045] 根据本发明一些具体实施方案,其中,步骤S3所述分离采用离心分离、过滤分离、抽滤分离、膜分离中的一种。
[0046] 根据本发明一些具体实施方案,其中,步骤S3所述沉淀剂添加量占溶液的体积比为百分之十至百分之二十五。
[0047] 根据本发明一些具体实施方案,其中,步骤S4所述热处理的温度为150摄氏度至1000摄氏度,所述热处理的时间为1小时至24小时。根据本发明一些具体实施方案,其中,步骤S4所述热处理的温度为300摄氏度至700摄氏度。
[0048] 根据本发明一些具体实施方案,其中,步骤S4所述热处理的温度为350摄氏度至750摄氏度。
[0049] 根据本发明一些具体实施方案,其中,步骤S4所述热处理的时间为3小时至8小时。
[0050] 根据本发明一些具体实施方案,其中,对所述方法还包括对步骤S4制得的钛酸盐产物进行表面修饰的步骤;所述表面修饰包括负载选自如下材料中的一种或几种的组合:碳、碳纳米管石墨烯、黑磷、和金属。
[0051] 另一方面,本发明还提供了所述的制备方法制备得到的钛酸盐。
[0052] 再一方面,本发明还提供了所述的钛酸盐在制备压电领域材料和制备离子电池电极材料中的应用。
[0053] 根据本发明一些具体实施方案,其中,所述离子电池选自锂离子电池、钠离子电池、钾离子电池、或镁离子电池。
[0054] 综上所述,本发明提供了一种钛酸盐及其制备方法和应用。本发明的方法具有如下优点:
[0055] (1)该方法提供一种制备工艺简单,工艺参数易控制,易于大规模工业化生产的制备钛酸盐的方法。
[0056] (2)原料易得,生产成本较低。附图说明
[0057] 图1为本发明制备方法流程图
[0058] 图2为实施例1的纳米线状钛酸钠前驱物沉淀产物的SEM图;
[0059] 图3为实施例1的纳米线状钛酸钠产物的SEM图;
[0060] 图4为实施例1获得的纳米线状钛酸钠作为电极材料的钠离子电池的循环性能测试结果曲线图。
[0061] 图5为实施例7的钛酸锂前驱物沉淀产物的SEM图;
[0062] 图6为实施例7的钛酸锂纳米颗粒产物的SEM图;
[0063] 图7为实施例7获得的钛酸锂纳米颗粒作为电极材料的锂离子电池的循环性能测试结果曲线图。

具体实施方式

[0064] 以下通过具体实施例详细说明本发明的实施过程和产生的有益效果,旨在帮助阅读者更好地理解本发明的实质和特点,不作为对本案可实施范围的限定。
[0065] 实施例1
[0066] 按照图1所述流程,搅拌条件下,将4克异丙醇钛分散于100毫升水中,后加入8毫升浓度为30%的过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加10克氢氧化钠,搅拌形成浅黄色透明溶液。接着,在室温条件下往上述透明溶液中缓慢添加30毫升的乙醇,搅拌后获得一维纳米线状前驱物沉淀,采用过滤的分离方式获得钛酸钠前驱物沉淀,其SEM图如图2所示。随后,将前驱物沉淀干燥,后于300摄氏度下加热24小时,获得一维纳米线状钛酸钠产物,其SEM图如图3所示。图4为本实施例获得的纳米线状钛酸钠作为电极材料的钠离子电池的循环性能测试结果曲线图。钠离子电池电极的制备采用刮涂方法,首先按照钛酸钠分级结构微球:super P:聚偏氟乙烯(PVDF)=7:2:1质量比,以N-甲基吡咯烷酮(NMP)为溶剂混成浆料,再用刮涂机把浆料均匀的涂覆在铜箔上,后在手套箱中以金属锂做对电极,电解液采用1mol/L NaClO4溶解在EC/DMC(体积比为1:1)并且添加了体积分数为2%的FEC作为添加剂,Glass Fiber作为隔膜,组装成型号为CR2032的纽扣电池进行电化学测试。图4可以看出,由于材料粒径小,具有一维线状结构,材料的钠离子电池性能测试结果优异,在20C的高倍率充放电速率下循环3000次后,仍具有90mAh g-1的放电容量,表现出极高的钠离子电池性能及非常优异的长时间循环稳定性
[0067] 实施例2
[0068] 按照图1所述流程,搅拌条件下,将3克异丙醇钛分散于100毫升水中,后加入6克过氧化尿素,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加8克氧化钠,搅拌形成浅黄色透明溶液。接着,在室温条件下往上述透明溶液中缓慢添加10毫升的异丙醇,搅拌后获得前驱物沉淀,采用抽滤的分离方式获得钛酸钠前驱物沉淀,其SEM图基本与图2所示一致。随后,将前驱物沉淀干燥,后于450摄氏度下加热4小时,获得钛酸钠产物,其SEM图基本与图3所示一致。
[0069] 实施例3
[0070] 按照图1所述流程,搅拌条件下,将1克钛酸四丁酯分散于100毫升水中,后加入2毫升浓度为30%的过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加2克过氧化钠和3克氯化钠,搅拌形成浅黄色透明溶液。接着,在室温条件下往上述透明溶液中缓慢添加30毫升的甲醇,搅拌后获得前驱物沉淀,采用离心的分离方式获得钛酸钠前驱物沉淀,其SEM图基本与图2所示一致。随后,将前驱物沉淀干燥,后于900摄氏度下加热1小时,获得钛酸钠产物,其SEM图基本与图3所示一致。
[0071] 实施例4
[0072] 按照图1所述流程,搅拌条件下,将2克硫酸钛溶解于100毫升水中,后加入10毫升浓度为30%的过氧乙酸,搅拌形成含有钛的过氧络合物溶液。接着,往上述过氧络合物溶液中添加3克超氧化钠和5克醋酸钠,搅拌形成浅黄色透明溶液。接着,在室温条件下往上述透明溶液中缓慢添加30毫升的丙醇,搅拌后获得前驱物沉淀,采用膜分离方式获得钛酸钠前驱物沉淀,其SEM图基本与图2所示一致。随后,将前驱物分离干燥,后于800摄氏度下加热2小时,获得钛酸钠产物,其SEM图基本与图3所示一致。
[0073] 实施例5
[0074] 按照图1所述流程,搅拌条件下,将2克乙醇钛超声分散于100毫升水中,后加入4毫升浓度为30%的过氧化氢,搅拌形成含有钛的过氧络合物溶液。接着,往上述过氧络合物溶液中添加8克超氧化钠,搅拌形成浅黄色透明溶液。接着,在室温条件下往上述透明溶液中缓慢添加5毫升的丁醇,搅拌后获得前驱物沉淀,采用过滤的分离方式获得钛酸钠前驱物沉淀,其SEM图基本与图2所示一致。随后,将前驱物沉淀干燥,后于650摄氏度下加热3小时,获得钛酸钠产物,其SEM图基本与图3所示一致。
[0075] 实施例6
[0076] 按照图1所述流程,搅拌条件下,将4克四氟化钛超声分散于100毫升水中,后加入10毫升浓度为30%的过氧化氢和浓度为千分之一的羟丙基甲基纤维素,搅拌形成含有钛的过氧络合物溶液。接着,往上述过氧络合物溶液中添加10克氢氧化钠,搅拌形成浅黄色透明溶液。接着,在室温条件下往上述透明溶液中缓慢添加20毫升的丙二醇,搅拌后获得前驱物沉淀,采用过滤的分离方式获得钛酸钠前驱物沉淀,其SEM图基本与图2所示一致。随后,将前驱物沉淀干燥,后于500摄氏度下加热4小时,获得钛酸钠产物,其SEM图基本与图3所示一致。
[0077] 实施例7
[0078] 按照图1所示流程,搅拌条件下,将3克四氯化钛溶解于100毫升水中形成溶液,后缓慢滴加浓度为0.1摩尔每升的氢氧化锂到上述溶液中,直至溶液呈中性,使四氯化钛逐渐并完全水解生成水合钛酸,后将水合钛酸超声分散,用去离子水洗涤多次,离心分离,得到水合钛酸。其次,将上述水合钛酸分散于100毫升水中,后加入5毫升浓度为30%的过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加5克氢氧化锂,搅拌形成浅黄色透明溶液。接着,在室温条件下往上述透明溶液中缓慢添加50毫升的乙醇,搅拌后获得纳米线状结构钛酸锂前驱物沉淀,采用过滤的分离方式获得钛酸锂前驱物沉淀,其SEM图如图5所示。随后,将前驱物沉淀干燥,后于350摄氏度下退火3小时,获得纳米结构钛酸锂产物,其SEM图如图6所示。图7为本实施例获得的钛酸锂纳米颗粒作为电极材料的锂离子电池的循环性能测试结果曲线图。锂离子电池电极的制备采用刮涂方法,首先按照钛酸锂分级结构微球产物:super P:聚偏氟乙烯(PVDF)=7:2:1的质量比,以N-甲基吡咯烷酮(NMP)为溶剂混成浆料,再用刮涂机把浆料均匀的涂覆在铜箔上,后在手套箱中以金属锂做对电极,1mol/L LiPF6/EC-DMC-EMC(1:1:1)作为电解液,Glass Fiber作为隔膜,组装成型号为CR2032的纽扣电池进行电化学测试。图7可以看出,由于材料粒径小,材料的锂离子电池性能测试结果优异,在20C的高倍率充放电速率下循环3000次后,仍具有135mAh g-1的放电容量,表现出极高的锂离子电池性能及非常优异的长时间循环稳定性。
[0079] 实施例8
[0080] 按照图1所述流程,搅拌条件下,将3克钛酸四丁酯分散于100毫升水中,后加入10毫升浓度为30%的过氧化尿素,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加3克过氧化锂和4克醋酸锂,搅拌形成浅黄色透明溶液。接着,在室温条件下往上述透明溶液中缓慢添加30毫升的丙醇,搅拌后获得前驱物沉淀,采用离心的分离方式获得钛酸锂前驱物沉淀,其SEM图基本与图5所示一致。随后,将前驱物沉淀干燥,后于500摄氏度下加热4小时,获得钛酸锂产物,其SEM图基本与图6所示一致。
[0081] 实施例9
[0082] 按照图1所示流程,搅拌条件下,将3克硫酸氧钛溶解于100毫升水中形成溶液,后缓慢滴加浓度为0.1摩尔每升的氢氧化钾到上述溶液中,直至溶液呈中性,使硫酸氧钛逐渐并完全水解生成水合钛酸,后将水合钛酸超声分散,用去离子水洗涤多次,离心分离,得到水合钛酸。其次,将上述水合钛酸分散于100毫升水中,后加入5毫升浓度为30%的过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加12克氢氧化钾,搅拌形成浅黄色透明溶液。接着,在室温条件下往上述透明溶液中缓慢添加100毫升的异丙醇,搅拌后获得纳米结构钛酸钾前驱物沉淀,采用过滤的分离方式获得钛酸钾前驱物沉淀。随后,将前驱物沉淀干燥,后于350摄氏度下退火6小时,获得纳米结构钛酸钾产物。
[0083] 实施例10
[0084] 按照图1所示流程,搅拌条件下,将3克四氯化钛溶解于100毫升水中形成溶液,后缓慢滴加浓度为0.1摩尔每升的氨水到上述溶液中,直至溶液呈中性,使四氯化钛逐渐并完全水解生成水合钛酸,后将水合钛酸超声分散,用去离子水洗涤多次,离心分离,得到水合钛酸。其次,将上述水合钛酸分散于100毫升水中,后加入10毫升浓度为30%的过氧化氢,搅拌形成含有钛的过氧络合物悬浊液。接着,往上述过氧络合物悬浊液中添加1克氢氧化钡和3克氯化钡,搅拌形成浅黄色透明溶液。接着,在室温条件下往上述透明溶液中缓慢添加100毫升的异丙醇,搅拌后获得前驱物沉淀,采用过滤的分离方式获得钛酸钡前驱物沉淀。随后,将前驱物沉淀干燥,后于550摄氏度下退火3小时,获得钛酸钡产物。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈