首页 / 专利库 / 建筑材料 / 沥青 / 三维编织碳碳复合材料板及其制备方法

三维编织复合材料板及其制备方法

阅读:18发布:2023-12-17

专利汇可以提供三维编织复合材料板及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种三维编织 碳 碳 复合材料 板及其制备方法,属于碳碳复合材料领域。所述三维编织碳碳复合材料板包括表面耐烧蚀层、中间强度层和内部刚性层,表面耐烧蚀层、中间强度层和内部刚性层均采用三维编织预制体织物结构制备且采用改性耐高温 树脂 基体多次浸渍、惰性气体碳化之后高温 石墨 化处理形成。本发明层间结合强度较高,且具有高 刚度 和耐耐烧蚀的综合性能。,下面是三维编织复合材料板及其制备方法专利的具体信息内容。

1.一种三维编织复合材料板,其特征在于,包括表面耐烧蚀层、中间强度层和内部刚性层,所述表面耐烧蚀层、中间强度层和内部刚性层均采用三维编织预制体织物结构制备且采用改性耐高温树脂基体多次浸渍、惰性气体碳化之后高温石墨化处理形成。
2.根据权利要求1所述的三维编织碳碳复合材料板,其特征在于,所述内部刚性层中的三维编织预制体织物结构采用高模量碳纤维混杂陶瓷纤维在板状基底模具上编织,其中:
该高模量碳纤维采用M35J、M40J、M45J、M55J或M60J;
该陶瓷纤维采用碳化纤维、纤维、碳化纤维或氮化硼纤维;
该三维编织预制体织物结构采用三维四向、三维五向、三维六向、三维七向或者2.5维结构进行制备。
3.根据权利要求2所述的三维编织碳碳复合材料板,其特征在于,所述中间强度层中的三维编织预制体织物结构在所述内部刚性层的表面采用高强度碳纤维混杂高模量碳纤维制备,其中:
该高强度碳纤维采用T300、T700、T800、T1000或T1200;
该高模量碳纤维采用M35J、M40J、M45J、M55J或M60J;
该三维编织预制体织物结构采用三维四向、三维五向、三维六向、三维七向或者2.5维结构进行制备。
4.根据权利要求3所述的三维编织碳碳复合材料板,其特征在于,所述表面耐烧蚀层中的三维编织预制体织物结构在所述中间强度层的表面采用陶瓷纤维混杂三维编织预制体结构制备,其中:
该陶瓷纤维采用碳化硅纤维、氧化铝纤维、碳化硼纤维、氮化硼纤维中的任意两种进行混杂;
该三维编织预制体织物结构采用三维四向、三维五向、三维六向、三维七向或者2.5维结构进行制备。
5.根据权利要求4所述的三维编织碳碳复合材料板,其特征在于,所述内部刚性层中碳纤维与陶瓷纤维的混杂比例控制在1:1~7:1,所述中间强度层中的高强度碳纤维与高模量碳纤维的混杂比例控制在1-5:1-6,所述表面耐烧蚀层中的陶瓷纤维的混杂比例控制在1:1~5:1。
6.一种权利要求1-5任一所述的三维编织碳碳复合材料板的制备方法,其特征在于,包括:
步骤1:制备三维编织预制体织物结构,其中:所述内部刚性层采用高模量碳纤维混杂陶瓷纤维在板状基底模具上编织,所述中间强度层在所述内部刚性层的表面采用高强度碳纤维混杂高模量碳纤维制备,所述中间强度层在所述内部刚性层的表面采用高强度碳纤维混杂高模量碳纤维制备;
步骤2:三维编织预制体织物结构制备完成之后,采用改性耐高温树脂基体在一定的浸渍压强下进行浸渍,浸渍完后在一定的温度下进行惰性气氛的碳化处理;
步骤3:所述步骤2重复多次进行,之后在一定的温度下进行真空石墨化处理得到三维编织碳碳复合材料板。
7.根据权利要求6所述的三维编织碳碳复合材料板的制备方法,其特征在于,所述步骤
2中,所述改性耐高温树脂基体的基本原料采用树脂、呋喃树脂或环氧树脂,改性添加剂采用沥青或石油沥青,所述改性添加剂在所述改性耐高温树脂基体中的添加比例为
5%-20%。
8.根据权利要求6所述的三维编织碳碳复合材料板的制备方法,其特征在于,所述步骤
2中,浸渍压强范围控制在3~80MPa,碳化处理的温度范围控制在900~1500℃。
9.根据权利要求6所述的三维编织碳碳复合材料板的制备方法,其特征在于,所述步骤
2的浸渍碳化处理的次数控制在5~8次之间。
10.根据权利要求6所述的三维编织碳碳复合材料板的制备方法,其特征在于,所述步骤3中,真空石墨化处理的温度范围控制在2000℃~3000℃。

说明书全文

三维编织复合材料板及其制备方法

技术领域

[0001] 本发明涉及碳碳复合材料领域,特别是指一种三维编织碳碳复合材料板及其制备方法。

背景技术

[0002] 碳碳复合材料板材的工作温度通常在1000℃~3000℃范围内,不但需要耐受较高的使用温度,而且需要有较高的结构强度和刚度,碳碳复合材料板是国防、高温工业以及航空航天设备领域的重要高温结构材料,其中高温碳碳复合材料具有低比重、高比强度、高比模量、低热膨胀系数等综合优异特性,在高温结构材料应用环境下有着其他高分子复合材料和金属材料无可比拟的应用前景。
[0003] 传统的碳碳复合材料结构部件一般采用无机纤维缠绕成型或者二维叠层纤维织物结构,这种织物结构的纤维排布在层间厚度方向没有纤维增强,层间的强度仅由碳基体提供,层间结合强度弱,在高温服役条件下的层间弱化问题导致使用寿命较短,鉴于此,需要一种新型结构的织物预制体的多层结构提高强度、刚度和耐烧蚀的综合性能。

发明内容

[0004] 本发明提供一种三维编织碳碳复合材料板及其制备方法,层间结合强度较高,且具有高刚度和耐耐烧蚀的综合性能。
[0005] 为解决上述技术问题,本发明提供技术方案如下:
[0006] 一方面,本发明提供一种三维编织碳碳复合材料板,包括表面耐烧蚀层、中间强度层和内部刚性层,所述表面耐烧蚀层、中间强度层和内部刚性层均采用三维编织预制体织物结构制备且采用改性耐高温树脂基体多次浸渍、惰性气体碳化之后高温石墨化处理形成。
[0007] 进一步的,所述内部刚性层中的三维编织预制体织物结构采用高模量碳纤维混杂陶瓷纤维在板状基底模具上编织,其中:
[0008] 该高模量碳纤维采用M35J、M40J、M45J、M55J或M60J;
[0009] 该陶瓷纤维采用碳化纤维、纤维、碳化纤维或氮化硼纤维;
[0010] 该三维编织预制体织物结构采用三维四向、三维五向、三维六向、三维七向或者2.5维结构进行制备。
[0011] 进一步的,所述中间强度层中的三维编织预制体织物结构在所述内部刚性层的表面采用高强度碳纤维混杂高模量碳纤维制备,其中:
[0012] 该高强度碳纤维采用T300、T700、T800、T1000或T1200;
[0013] 该高模量碳纤维采用M35J、M40J、M45J、M55J或M60J;
[0014] 该三维编织预制体织物结构采用三维四向、三维五向、三维六向、三维七向或者2.5维结构进行制备。
[0015] 进一步的,所述表面耐烧蚀层中的三维编织预制体织物结构在所述中间强度层的表面采用陶瓷纤维混杂三维编织预制体结构制备,其中:
[0016] 该陶瓷纤维采用碳化硅纤维、氧化铝纤维、碳化硼纤维、氮化硼纤维中的任意两种进行混杂;
[0017] 该三维编织预制体织物结构采用三维四向、三维五向、三维六向、三维七向或者2.5维结构进行制备。
[0018] 进一步的,所述内部刚性层中碳纤维与陶瓷纤维的混杂比例控制在1:1~7:1,所述中间强度层中的高强度碳纤维与高模量碳纤维的混杂比例控制在1-5:1-6,所述表面耐烧蚀层中的陶瓷纤维的混杂比例控制在1:1~5:1。
[0019] 另一方面,本发明还提供一种上述的三维编织碳碳复合材料板的制备方法,包括:
[0020] 步骤1:制备三维编织预制体织物结构,其中:所述内部刚性层采用高模量碳纤维混杂陶瓷纤维在板状基底模具上编织,所述中间强度层在所述内部刚性层的表面采用高强度碳纤维混杂高模量碳纤维制备,所述中间强度层在所述内部刚性层的表面采用高强度碳纤维混杂高模量碳纤维制备;
[0021] 步骤2:三维编织预制体织物结构制备完成之后,采用改性耐高温树脂基体在一定的浸渍压强下进行浸渍,浸渍完后在一定的温度下进行惰性气氛的碳化处理;
[0022] 步骤3:所述步骤2重复多次进行,之后在一定的温度下进行真空石墨化处理得到三维编织碳碳复合材料板。
[0023] 进一步的,所述步骤2中,所述改性耐高温树脂基体的基本原料采用树脂、呋喃树脂或环氧树脂,改性添加剂采用沥青或石油沥青,所述改性添加剂在所述改性耐高温树脂基体中的添加比例为5%-20%。
[0024] 进一步的,所述步骤2中,浸渍压强范围控制在3~80MPa,碳化处理的温度范围控制在900~1500℃。
[0025] 进一步的,所述步骤2的浸渍碳化处理的次数控制在5~8次之间。
[0026] 进一步的,所述步骤3中,真空石墨化处理的温度范围控制在2000℃~3000℃。
[0027] 本发明具有以下有益效果:
[0028] 本发明的三维编织碳碳复合材料板及其制备方法,三维编织碳碳复合材料板包括表面耐烧蚀层、中间强度层和内部刚性层三部分组成,其中内部刚性层采用高模量碳纤维混杂陶瓷纤维三维编织预制体结构制备,中间强度层采用高强度碳纤维混杂高模量碳纤维三维编织预制体结构制备,表面耐烧蚀层采用陶瓷纤维混杂三维编织预制体结构制备,多层三维编织预制体织物结构整体完成之后,采用改性耐高温树脂多次浸渍碳化和石墨化处理后,形成碳碳复合材料板,该板材具有低密度、高强度、高刚度、耐烧蚀等综合性能,可用于军工耐高温、工业耐烧蚀领域的重要组成部件。附图说明
[0029] 图1为本发明的三维编织碳碳复合材料板的结构示意图。

具体实施方式

[0030] 为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
[0031] 一方面,本发明提供一种三维编织碳碳复合材料板,如图1所示,包括表面耐烧蚀层1、中间强度层2和内部刚性层3,表面耐烧蚀层1、中间强度层2和内部刚性层3均采用三维编织预制体织物结构制备且采用改性耐高温树脂基体多次浸渍、惰性气体碳化之后高温石墨化处理形成。
[0032] 本发明的三维编织碳碳复合材料板,三维编织碳碳复合材料板包括表面耐烧蚀层、中间强度层和内部刚性层三部分组成,其中内部刚性层采用高模量碳纤维混杂陶瓷纤维三维编织预制体结构制备,中间强度层采用高强度碳纤维混杂高模量碳纤维三维编织预制体结构制备,表面耐烧蚀层采用陶瓷纤维混杂三维编织预制体结构制备,多层三维编织预制体织物结构整体完成之后,采用改性耐高温树脂多次浸渍碳化和石墨化处理后,形成碳碳复合材料板,该板材具有低密度、高强度、高刚度、耐烧蚀等综合性能,可用于军工耐高温、工业耐烧蚀领域的重要组成部件。
[0033] 进一步的,内部刚性层3中的三维编织预制体织物结构采用高模量碳纤维混杂陶瓷纤维在板状基底模具上编织,该高模量碳纤维可以采用M35J、M40J、M45J、M55J、M60J中的任意一种,该陶瓷纤维可以采用碳化硅纤维、氧化铝纤维、碳化硼纤维、氮化硼纤维中的任意一种,碳纤维与陶瓷纤维的混杂比例根据设计要求灵活掌握;该三维编织预制体织物结构可以采用三维四向、三维五向、三维六向、三维七向,也可以采用2.5维结构进行制备。
[0034] 优选的,中间强度层2中的三维编织预制体织物结构在内部刚性层3的表面采用高强度碳纤维混杂高模量碳纤维制备,该高强度碳纤维可以采用T300、T700、T800、T1000、T1200中的任意一种,该高模量碳纤维可以采用M35J、M40J、M45J、M55J、M60J中的任意一种,高强度碳纤维和高模量碳纤维的混杂比例根据设计要求灵活掌握,该三维编织预制体织物结构可以采用三维四向、三维五向、三维六向、三维七向,也可以采用2.5维结构进行制备。
[0035] 进一步的,表面耐烧蚀层1中的三维编织预制体织物结构在中间强度层2的表面采用陶瓷纤维混杂三维编织预制体结构制备,该陶瓷纤维可以采用碳化硅纤维、氧化铝纤维、碳化硼纤维、氮化硼纤维中的任意两种进行混杂,陶瓷纤维的混杂比例根据设计要求灵活掌握,该三维编织预制体织物结构采用三维四向、三维五向、三维六向、三维七向,也可以采用2.5维结构进行制备。
[0036] 本发明中,内部刚性层3中碳纤维与陶瓷纤维的混杂比例可以控制在1:1~7:1,中间强度层2中的高强度碳纤维与高模量碳纤维的混杂比例可以控制在1-5:1-6,表面耐烧蚀层1中的陶瓷纤维的混杂比例可以控制在1:1~5:1。
[0037] 另一方面,本发明还提供一种上述的三维编织碳碳复合材料板的制备方法,包括:
[0038] 步骤1:制备三维编织预制体织物结构,其中:内部刚性层采用高模量碳纤维混杂陶瓷纤维在板状基底模具上编织,中间强度层在内部刚性层的表面采用高强度碳纤维混杂高模量碳纤维制备,中间强度层在内部刚性层的表面采用高强度碳纤维混杂高模量碳纤维制备;
[0039] 步骤2:三维编织预制体织物结构制备完成之后,采用改性耐高温树脂基体在一定的浸渍压强下进行浸渍,浸渍完后在一定的温度下进行惰性气氛的碳化处理;
[0040] 步骤3:步骤2重复多次进行,之后在一定的温度下进行真空石墨化处理得到三维编织碳碳复合材料板。
[0041] 本发明的三维编织碳碳复合材料板的制备方法,三维编织碳碳复合材料板包括表面耐烧蚀层、中间强度层和内部刚性层三部分组成,其中内部刚性层采用高模量碳纤维混杂陶瓷纤维三维编织预制体结构制备,中间强度层采用高强度碳纤维混杂高模量碳纤维三维编织预制体结构制备,表面耐烧蚀层采用陶瓷纤维混杂三维编织预制体结构制备,多层三维编织预制体织物结构整体完成之后,采用改性耐高温树脂多次浸渍碳化和石墨化处理后,形成碳碳复合材料板,该板材具有低密度、高强度、高刚度、耐烧蚀等综合性能,可用于军工耐高温、工业耐烧蚀领域的重要组成部件。
[0042] 进一步的,步骤2中,改性耐高温树脂基体的基本原料可以采用酚醛树脂、呋喃树脂、环氧树脂中的任意一种,改性添加剂采用煤沥青、石油沥青中的任意一种,改性添加剂在改性耐高温树脂基体中的添加比例可以为5%-20%。
[0043] 优选的,步骤2中,浸渍压强范围可以控制在3~80MPa,碳化处理的温度范围可以控制在900~1500℃。
[0044] 进一步的,步骤2的浸渍碳化处理的次数根据体密度的变化幅度而定,具体地,可以控制在5~8次左右。
[0045] 本发明中,步骤3中,真空石墨化处理的温度范围可以控制在2000℃~3000℃。
[0046] 下面结合具体实施例进一步说明本发明的特征和细节,但所列过程和数据并不意味着对本发明范围的限制。
[0047] 实施例1
[0048] 一种三维编织碳碳复合材料板,其内部刚性层采用M35J碳纤维混杂碳化硅纤维,混杂比例为2:1,混杂纤维采用三维四向加工预制体织物,在内部刚性层表面采用高强度T300碳纤维混杂高模量M60J碳纤维,混杂比例为1:4,混杂纤维采用三维五向制备中间强度层预制体织物,在中间强度层表面采用氮化硼纤维和氧化铝纤维混杂,混杂比例为5:1,混杂纤维采用三维四向制备表面耐烧蚀层预制体织物;
[0049] 多层三维编织预制体织物制备之后,采用石油沥青重量比20%添加量的酚醛树脂基体,在3MPa压强下浸渍,浸渍后在1500℃下的高纯氮气环境下碳化,浸渍碳化反复6次,经过多次浸渍碳化处理后在2000℃下石墨化处理后制备成碳碳复合材料板。
[0050] 实施例2
[0051] 一种三维编织碳碳复合材料板,其内部刚性层采用M40J碳纤维混杂氧化铝纤维,混杂比例为3:1,混杂纤维采用三维六向加工预制体织物。在内部刚性层表面采用高强度T700碳纤维混杂高模量M45J碳纤维,混杂比例为1:6,混杂纤维采用三维五向制备中间强度层预制体织物,在中间强度层表面采用碳化硼纤维和碳化硅纤维混杂,混杂比例为1:1,混杂纤维采用三维四向制备表面耐烧蚀层预制体织物;
[0052] 多层三维编织预制体织物制备之后,采用煤沥青重量比10%添加量的呋喃树脂基体,在80MPa压强下浸渍,浸渍后在1500℃下的高纯氮气环境下碳化,浸渍碳化反复8次,经过多次浸渍碳化处理后在2000℃下石墨化处理后制备成碳碳复合材料板。
[0053] 实施例3
[0054] 一种三维编织碳碳复合材料板,其内部刚性层采用M55J碳纤维混杂氮化硼纤维,混杂比例为1:1,混杂纤维采用2.5维结构加工预制体织物。在内部刚性层表面采用高强度T1200碳纤维混杂高模量M45J碳纤维,混杂比例为5:1,混杂纤维采用三维七向制备中间强度层预制体织物。在中间强度层表面采用氮化硼纤维和碳化硅纤维混杂,混杂比例为2:1,混杂纤维采用2.5维结构制备表面耐烧蚀层预制体织物;
[0055] 多层三维编织预制体织物制备之后,采用煤沥青重量比10%添加量的环氧树脂基体,在20MPa压强下浸渍,浸渍后在1000℃下的高纯氮气环境下碳化,浸渍碳化反复5次,经过多次浸渍碳化处理后在3000℃下石墨化处理后制备成碳碳复合材料板。
[0056] 实施例4
[0057] 一种三维编织碳碳复合材料板,其内部刚性层采用M60J碳纤维混杂碳化硅纤维,混杂比例为7:1,混杂纤维采用三维四向加工预制体织物,在内部刚性层表面采用高强度T800碳纤维混杂高模量M55J碳纤维,混杂比例为5:3,混杂纤维采用三维五向制备中间强度层预制体织物,在中间强度层表面采用碳化硼纤维和碳化硅纤维混杂,混杂比例为2:1,混杂纤维采用三维四向制备表面耐烧蚀层预制体织物;
[0058] 多层三维编织预制体织物制备之后,采用石油沥青重量比15%添加量的酚醛树脂基体,在40MPa压强下浸渍,浸渍后在1200℃下的高纯氮气环境下碳化,浸渍碳化反复6次,经过多次浸渍碳化处理后在2500℃下石墨化处理后制备成碳碳复合材料板。
[0059] 在本发明中,制备方法的条件不同,得到的三维编织碳碳复合材料板的性能会有不同,为更好地证明本发明的低密度、高强度、高刚度、耐烧蚀性能,构建如下对比例:
[0060] 对比例1:
[0061] 一种二维编织碳碳复合材料板,将表面耐烧蚀层、中间强度层和内部刚性层的三维编织预制体织物结构替换为二维叠层结构的纤维织物,其余条件与实施例4相同,制备和使用方法也与实施例4相同。
[0062] 对上述实施例1-4和对比例1制备的碳碳复合材料板对密度、强度、刚度和耐烧蚀等性能进行测试,测试结果见表1。
[0063] 表1
[0064]检验项目 实施例1 实施例2 实施例3 实施例4 对比例1
密度g/cm3 1.53 1.55 1.51 1.57 2
强度MPa 320 331 361 348 56
刚度MPa 220 236 256 228 167
烧蚀情况 无烧蚀 无烧蚀 无烧蚀 无烧蚀 烧蚀明显
[0065] 由表1可知,本发明的三维编织碳碳复合材料板与对比例1相比,其密度低、强度高、刚度高、耐烧蚀性能好,由表1还可以看出,实施例3的性能最好。
[0066] 以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈