首页 / 专利库 / 畜牧业 / 遗传优势 / 一种基于GA-BP神经网络粮情监测方法

一种基于GA-BP神经网络粮情监测方法

阅读:962发布:2020-05-12

专利汇可以提供一种基于GA-BP神经网络粮情监测方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种基于GA-BP神经网络粮情监测方法。使用遗传 算法 来优化BP神经网络的权值和 阈值 , 遗传算法 通过选择、交叉和变异操作找到最优适应度值对应个体。BP神经网络预测用遗传算法得到最优个体对网络初试权值和阈值赋值,网络经训练后预测函数输出。本发明将优化后的GA-BP神经网络模型用于粮情监测系统,对粮仓进行实时监测,具有客观、高效、准确的优势,规避了人工预测易疲劳、易主观化等经验型管理的 缺陷 。,下面是一种基于GA-BP神经网络粮情监测方法专利的具体信息内容。

1.一种基于GA-BP神经网络粮情监测方法,其特征在于,包括如下步骤:
1)初始化BP神经网络的隐藏层节点数m;BP神经网络的隐藏层节点数 n为输
入层节点数,l为输出层节点数;
2)设定隐藏层间的传递函数为tanh函数,即 隐藏层至输出层的传递
函数为sigmiod函数,即
3)利用传感器采集粮仓指标数据,并利用中控中心上传数据至服务器
4)利用采集的粮仓指标数据建立粮仓数据集T,并从粮仓数据集T中随机选取元素构建数据样本训练集TR和测试集TE;
5)依次对粮仓指标数据中的每一个元素进行归一化处理;
6)利用GA对BP神经网络的连接权值和阈值进行优化,建立GA-BP粮情监测模型;
7)进行粮情监测,判断是否有虫害,即将测试集TE输入到优化后的BP神经网络,如果输出为0表示有虫害,1表示无虫害。
2.如权利要求1所述的基于GA-BP神经网络粮情监测方法,其特征在于,所述步骤3)中的粮仓指标数据包括:节点温度Tnode、室内温度Tin、室外温度Tout、节点湿度Hnode、室内湿度Hin、室外湿度Hout、节点二Co2node、室内二氧化碳Co2in和室外二氧化碳Co2out。
3.如权利要求1所述的基于GA-BP神经网络粮情监测方法,其特征在于,所述步骤5)中归一化公式如下:
式中,x′i表示粮仓指标数据中第i个元素的归一化结果,xi表示粮仓指标数据中第i个元素,min(xi)和max(xi)分别是xi的最小值和最大值。
4.如权利要求1所述的基于GA-BP神经网络粮情监测方法,其特征在于,所述步骤6)中建立GA-BP粮情监测模型包括如下步骤:
6.1)构建种群集合D,D={i1,i2,i3...in},D中的每一个元素i为个体,个体i包括:输入层和隐含层连接权值 隐含层阈值ωin、隐含层与输出层连接权值 以及输出层阈值ωout;
6.2)计算种群D中每个元素i的个体适应度,计算公式如下:
式中,Fi表示元素i的个体适应度,n为网络输出节点数;yi为BP神经网络第i个节点的期望输出,oi为第i个节点的实际输出;k为系数;
6.3)计算种群D中每个元素i的选择概率pi,计算公式如下:
式中,Fi为元素i的个体适应度,由于适应度值越小越好,所以在个体选择前对适应度求倒数;k为系数;N为种群个体数目;
6.4)将第k个个体ak和第l个个体al在j位进行交叉,计算公式如下:
akj=akj(1-b)+aljb,alj=alj(1-b)+akjb
式中,b是[0,1]之间的随机数;
6.5)选取第i个个体的第j个基因aij进行变异,计算公式如下:
式中,amax为基因aij的上界;amin为基因的下界; g为当前迭代
数;Gmax是最大进化次数;r为[0,1]间的随机数;
6.6)判断是否达到最大迭代次数,如果达到则结束遗传算法计算,选取适应度值最大的个体作为BP神经网络的最优初始化权值和阈值,转到步骤6.7);否则转步骤6.3);
6.7)利用最优初始化权值和阈值对训练集TR进行BP神经网络训练,输出优化后的BP神经网络。
5.如权利要求1所述的基于GA-BP神经网络粮情监测方法,其特征在于,所述方法基于神经网络粮情监测系统实现,所述神经网络粮情监测系统包括传感器模块、中控模块和云端服务器;所述传感器模块安装在粮仓内,包括温湿度传感器、二氧化碳传感器,温湿度传感器用于采集粮仓的温度、湿度,二氧化碳传感器用于采集粮仓的二氧化碳含量,温湿度传感器节点每隔1米安装1个,二氧化碳传感器在粮仓中安装4个;所述中控模块由树莓派和4G模块组成,用于将采集到的粮仓指标数据传输到云端服务器;所述云端服务器用存储数据和GA-BP神经网络训练监测数据;传感器模块与中控模块通过RS485转usb串口线连接,中控模块和云端服务器通过4G网络无线连接。

说明书全文

一种基于GA-BP神经网络粮情监测方法

技术领域

[0001] 本发明涉及粮食安全领域,具体涉及一种基于GA-BP神经网络粮情监测方法。

背景技术

[0002] 粮食是国民经济的基础,在努提高粮食产量的同时,有必要保持合理的粮食储备。粮情参数的快速、准确监测是实现科学储粮的前提。然而,目前的粮情监测还是停留在人工经验,并不具备智能化。实时性不足,精确度不高。所以使用机器学习的方法代替人工进行粮情监测是刻不容缓的。
[0003] BP(Error Back Propagation)神经网络又称误差反向传播神经网络,是诸多神经网络模型中应用最广泛的一种,也是解决非线性问题的有力工具,它将信息全部存储于网络的连接权系数中,使网络具有一定的泛化能力和容错性。BP神经网络可以将多种粮情信息进行融合处理,从而给出更加真实可靠的粮情监测结果。但传统的BP算法采用的是梯度下降法,收敛速度较慢,训练时也易陷入局部极小值。
[0004] 遗传算法(Genetic Algorithm,GA)是一种自适应启发式全局搜索算法,它仿效生物的进化和遗传,根据适者生存和优胜劣汰的进化原则,不断得到更优的群体,同时以全局并行搜索的方式来搜索优化群体中的最优个体,使待解决的问题一步一步逼近最优解或近似最优解。

发明内容

[0005] 针对现有粮情监测技术无法兼顾精准度高、实时高等情况,本发明提出一种基于GA-BP神经网络粮情监测方法,根据粮情测控系统采集实时粮情数据对粮仓是否生虫做智能化的决策,为粮仓监测提供一种高效、可靠的方法,提高了粮仓粮情监测系统的智能化程度。
[0006] 为了实现上述目的,本发明采用的技术方案如下:一种基于GA-BP神经网络粮情监测方法,包括如下步骤:
[0007] 1)初始化BP神经网络的隐藏层节点数m;BP神经网络的隐藏层节点数 n为输入层节点数,l为输出层节点数;
[0008] 2)设定隐藏层间的传递函数为tanh函数,即 隐藏层至输出层的传递函数为sigmiod函数,即
[0009] 3)利用传感器采集粮仓指标数据,并利用中控中心上传数据至服务器
[0010] 4)利用采集的粮仓指标数据建立粮仓数据集T,并从粮仓数据集T中随机选取元素构建数据样本训练集TR和测试集TE;
[0011] 5)依次对粮仓指标数据中的每一个元素进行归一化处理;
[0012] 6)利用GA对BP神经网络的连接权值和阈值进行优化,建立GA-BP粮情监测模型;
[0013] 7)进行粮情监测,判断是否有虫害,即将测试集TE输入到优化后的BP神经网络,如果输出为0表示有虫害,1表示无虫害。
[0014] 进一步的,上述步骤3)中的粮仓指标数据包括:节点温度Tnode、室内温度Tin、室外温度Tout、节点湿度Hnode、室内湿度Hin、室外湿度Hout、节点二Co2node、室内二氧化碳Co2in和室外二氧化碳Co2out。
[0015] 进一步的,上述步骤5)中归一化公式如下:
[0016]
[0017] 式中,x′i表示粮仓指标数据中第i个元素的归一化结果,xi表示粮仓指标数据中第i个元素,min(xi)和max(xi)分别是xi的最小值和最大值。
[0018] 进一步的,上述步骤6)中建立GA-BP粮情监测模型包括如下步骤:
[0019] 6.1)构建种群集合D,D={i1,i2,i3...in},D中的每一个元素i为个体,个体i包括:输入层和隐含层连接权值 隐含层阈值ωin、隐含层与输出层连接权值 以及输出层阈值ωout;
[0020] 6.2)计算种群D中每个元素i的个体适应度,计算公式如下:
[0021]
[0022] 式中,Fi表示元素i的个体适应度,n为网络输出节点数;yi为BP神经网络第i个节点的期望输出,oi为第i个节点的实际输出;k为系数;
[0023] 6.3)计算种群D中每个元素i的选择概率pi,计算公式如下:
[0024]
[0025] 式中,Fi为元素i的个体适应度,由于适应度值越小越好,所以在个体选择前对适应度求倒数;k为系数;N为种群个体数目;
[0026] 6.4)将第k个个体αk和第l个个体al在j位进行交叉,计算公式如下:
[0027] akj=akj(1-b)+aljb,alj=alj(1-b)+akjb
[0028] 式中,b是[0,1]之间的随机数;
[0029] 6.5)选取第i个个体的第j个基因aij进行变异,计算公式如下:
[0030]
[0031] 式中,amax为基因αij的上界;αmin为基因的下界; g为当前迭代次数;Gmax是最大进化次数;r为[0,1]间的随机数;
[0032] 6.6)判断是否达到最大迭代次数,如果达到则结束遗传算法计算,选取适应度值最大的个体作为BP神经网络的最优初始化权值和阈值,转到步骤6.7);否则转步骤6.3);
[0033] 6.7)利用最优初始化权值和阈值对训练集TR进行BP神经网络训练,输出优化后的BP神经网络。
[0034] 进一步的,本发明所述的基于GA-BP神经网络粮情监测方法基于神经网络粮情监测系统实现,所述神经网络粮情监测系统包括传感器模块、中控模块和云端服务器;所述传感器模块安装在粮仓内,包括温湿度传感器、二氧化碳传感器,温湿度传感器用于采集粮仓的温度、湿度,二氧化碳传感器用于采集粮仓的二氧化碳含量,温湿度传感器节点每隔1米安装1个,二氧化碳传感器在粮仓中安装4个;所述中控模块由树莓派和4G模块组成,用于将采集到的粮仓指标数据传输到云端服务器;所述云端服务器用存储数据和GA-BP神经网络训练监测数据;传感器模块与中控模块通过RS485转usb串口线连接,中控模块和云端服务器通过4G网络无线连接。
[0035] 本发明利用遗传算法优化BP神经网络的权值和阈值,将优化后的GA-BP神经网络模型用于粮情监测系统,对粮仓进行实时监测,具有客观、高效、准确的优势,规避了人工预测易疲劳、易主观化等经验型管理的缺陷附图说明
[0036] 图1为本发明中基于GA-BP神经网络粮情监测系统组成示意图。
[0037] 图2为本发明中基于GA-BP神经网络粮情监测方法流程图
[0038] 图3为本发明中GA-BP算法流程图。

具体实施方式

[0039] 下面结合附图以及具体实施例对本发明作进一步的说明,需要指出的是,下面仅以一种最优化的技术方案对本发明的技术方案以及设计原理进行详细阐述,但本发明的保护范围并不限于此。
[0040] 所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。
[0041] 本发明的基于GA-BP神经网络粮情监测方法是在神经网络粮情监测系统上实现的,神经网络粮情监测系统由传感器模块、中控模块和云端服务器组成,如图1所示;其中,传感器模块安装在粮仓内,包括温湿度传感器、二氧化碳传感器,温湿度传感器用于采集粮仓的温度、湿度,二氧化碳传感器用于采集粮仓的二氧化碳含量,温湿度传感器节点每隔一米安装一个,粮仓内二氧化碳变化幅度不大,则在粮仓中安装四个二氧化碳传感器;中控模块由树莓派和4G模块组成,用于将采集到的粮仓指标数据传输到云端服务器,云端服务器用存储数据和GA-BP神经网络训练监测数据;传感器模块与中控模块通过RS485转usb串口线连接,中控模块和云端服务器通过4G网络无线连接;
[0042] 基于GA-BP神经网络粮情监测方法如图2所示,包括如下步骤:
[0043] 1)初始化BP神经网络的隐藏层节点数m;BP神经网络的隐藏层节点数 n为输入层节点数,l为输出层节点数;
[0044] 2)设定隐藏层间的传递函数为tanh函数,即 隐藏层至输出层的传递函数为sigmiod函数,即
[0045] 3)利用传感器模块采集粮仓指标数据,并利用中控中心上传数据至云服务器,其中,粮仓指标数据包括:节点温度Tnode、室内温度Tin、室外温度Tout、节点湿度Hnode、室内湿度Hin、室外湿度Hout、节点二氧化碳Co2node、室内二氧化碳Co2in和室外二氧化碳Co2out;
[0046] 4)利用采集的粮仓指标数据建立粮仓数据集T,并从粮仓数据集T中随机选取元素构建数据样本训练集TR和测试集TE;
[0047] 具体实施例中,采集一年内的粮仓指标数据建立粮仓数据集T={α1,α2,α3,...αn},集合中每个元素αi代表了一次采集的粮仓指标数据{Tnode,Tin,Tout,Hnode,Hin,Hout,Co2node,Co2in,Co2out};从粮仓数据集T中随机选取70%的元素构建网络训练集TR,剩下30%的元素构建测试集TE;
[0048] 5)依次对粮仓指标数据中的每一个元素进行归一化处理,归一化公式如下:
[0049]
[0050] 式中,x′i表示粮仓指标数据中第i个元素的归一化结果,xi表示粮仓指标数据中第i个元素,min(xi)和max(xi)分别是xi的最小值和最大值;
[0051] 6)利用GA对BP神经网络的连接权值和阈值进行优化,建立GA-BP粮情监测模型;
[0052] 本发明中,传统的BP算法采用的是梯度下降法,收敛速度较慢,训练时也易陷入局部极小值。使用遗传算法来优化BP神经网络的权值和阈值,种群中的每个个体都包含了一个网络所有权值和阈值,个体通过适应度函数计算个体适应度值,遗传算法通过选择、交叉和变异操作找到最优适应度值对应个体,利用GA对BP神经网络的连接权值和阈值进行优化;如图3所示,包括如下步骤:
[0053] 6.1)构建种群集合D,D={i1,i2,i3...in},D中的每一个元素i为个体,个体i包括:输入层和隐含层连接权值 隐含层阈值ωin、隐含层与输出层连接权值 以及输出层阈值ωout;
[0054] 6.2)计算种群D中每个元素i的个体适应度,计算公式如下:
[0055]
[0056] 式中,Fi表示元素i的个体适应度,n为网络输出节点数;yi为BP神经网络第i个节点的期望输出,oi为第i个节点的实际输出;k为系数;
[0057] 6.3)计算种群D中每个元素i的选择概率pi,计算公式如下:
[0058]
[0059] 式中,Fi为元素i的个体适应度,由于适应度值越小越好,所以在个体选择前对适应度求倒数;k为系数;N为种群个体数目;
[0060] 6.4)将第k个个体ak和第l个个体al在j位进行交叉,计算公式如下:
[0061] akj=akj(1-b)+aljb,alj=alj(1-b)+akib
[0062] 式中,b是[0,1]之间的随机数;
[0063] 6.5)选取第i个个体的第j个基因aij进行变异,计算公式如下:
[0064]
[0065] 式中,amax为基因aij的上界;amin为基因的下界; g为当前迭代次数;Gmax是最大进化次数;r为[0,1]间的随机数;
[0066] 6.6)判断是否达到最大迭代次数,如果达到则结束遗传算法计算,选取适应度值最大的个体作为BP神经网络的最优初始化权值和阈值,转到步骤6.7);否则转步骤6.3);
[0067] 6.7)利用最优初始化权值和阈值对训练集TR进行BP神经网络训练,输出优化后的BP神经网络;
[0068] 7)进行粮情监测,判断是否有虫害,即将测试集TE输入到优化后的BP神经网络,如果输出为0表示有虫害,1表示无虫害。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈