首页 / 技术领域 / 压缩应力 / 专利数据
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 TOIT DE VEHICULE EN VERRE COMPRENANT DES ZONES LOCALES DE CONTRAINTE EN COMPRESSION PCT/FR2012/052330 2012-10-12 WO2013054060A1 2013-04-18 HENNION, Alexandre; FREBOURG, Philippe

L'invention concerne un toit de véhicule automobile comprenant deux bords longitudinaux et deux bords transversaux, symétrique par rapport à un plan longitudinal médian, consistant en un vitrage comprenant au moins une feuille de verre minéral, ladite feuille comprenant une ceinture de contraintes de bords en compression, ladite feuille comprenant au moins deux zones locales de contraintes en compression à l'intérieur de ladite ceinture et placées symétriquement par rapport audit plan de symétrie, chaque zone locale de contraintes en compression étant à moins de 30 cm d'un bord longitudinal.

162 圧縮応の強度分布を有する被膜を備えた表面被覆切削工具 PCT/JP2005/012205 2005-07-01 WO2006006429A1 2006-01-19 森口 秀樹; 福井 治世; 今村 晋也; 山口 浩司; 飯原 順次

 本発明の表面被覆切削工具(1)は、基材(2)と、該基材(2)上に形成された被膜(3)とを備える表面被覆切削工具(1)であって、該被膜(3)は、該基材(2)上の最外層となるものであり、かつ圧縮応を有しており、該圧縮応力は、上記被膜(3)の厚み方向に強度分布を有するように変化しており、該強度分布は、上記被膜の表面の圧縮応力が上記被膜の表面から、上記被膜の表面と上記被膜の底面との間に位置する第1の中間点まで連続的に減少し、該第1の中間点において極小点を有することを特徴としている。

163 FUEL CELL HAVING UNIFORM COMPRESSIVE STRESS DISTRIBUTION OVER ACTIVE AREA PCT/US1995002231 1995-02-23 WO1995023436A1 1995-08-31
Uniform compressive stress distribution is applied over the active area of a PEMFC stack (1) to increase the contact area between the electrically conductive components of the stack (1). This increases fuel cell stack (1) efficiency. Fuel cell stack (1) is constructed as a modular component readily connected with like modules for providing fuel cell stack (1) configurations capable of meeting a wide range of power generation for application to vehicles, including submersible vehicles up to utility power requirements.
164 允許高壓縮應的玻璃組成 TW108127376 2019-08-01 TWI734159B 2021-07-21 葛羅斯 提摩西麥克; GROSS, TIMOTHY MICHAEL
Alkali aluminosilicate glasses that may be ion exchanged to achieve ultra-high peak compressive stress. The glasses may be ion exchanged to achieve a peak compressive stress of at least about 1000 MPa and up to about 1500 MPa. The high peak compressive stress provides high strength for glasses with shallow flaw size distributions. These glasses have high Young’s moduli, which correspond to high fracture toughness and improved failure strength and are suitable for high-strength cover glass applications that experience significant bending stresses in use such as, for example, as cover glass in flexible displays.
165 具高壓縮應的離子可交換玻璃 TW101122443 2012-06-22 TW201307235A 2013-02-16 德奈卡馬修約翰; DEJNEKA, MATTHEW JOHN; 依利森亞當詹姆斯; ELLISON, ADAM JAMES; 毛羅約翰克利斯朵夫; MAURO, JOHN CHRISTOPHER
一種具有高壓縮應層之矽酸鋁玻璃製品。該玻璃製品包含至少約50莫%的SiO2與至少約11莫耳%的Na2O,以及具有處於至少約900 MPa的壓縮應力下之層與從玻璃製品的表面延伸進入該玻璃至少約30 μm的層深度。亦提供一種製作該種玻璃製品之方法。
166 具高壓縮應的離子可交換玻璃 TW101122443 2012-06-22 TWI591039B 2017-07-11 德奈卡馬修約翰; DEJNEKA, MATTHEW JOHN; 依利森亞當詹姆斯; ELLISON, ADAM JAMES; 毛羅約翰克利斯朵夫; MAURO, JOHN CHRISTOPHER
167 非誤差関数圧縮応プロファイルによるイオン交換ガラス JP2014559996 2013-02-27 JP2015511573A 2015-04-20 クレイグ ブックバインダー,ダナ; マイケル フィアッコ,リチャード; マイケル グロス,ティモシー; ルヴォヴィッチ ログノフ,ステファン
貯蔵された張の所定のレベルにおいて、相補誤差関数に従う応力プロファイルを有するガラスにおいて許容可能であるよりも高い表面圧縮およびより深い層深さ(DOL)を可能にする圧縮応力プロファイルを有するガラス。いくつかの例において、亀裂系の方向を変えることができる埋め込み層または増加する圧縮の極大が、層深さ内に存在する。これらの圧縮応力プロファイルは、相補誤差関数に従う圧縮応力および層深さを作り出す第一イオン交換工程と、ガラス内の応力を部分的に緩和させてより大きなアルカリイオンをより深くまで拡散させる、ガラスの歪点より低い温度での熱処理と、表面において高い圧縮応力を再確立するための短時間での再イオン交換と、を含む3工程プロセスによって達成される。
168 Nozzle assembly configured to minimize combined thermal and pressure stress during transients EP12173693.8 2012-06-26 EP2541103B8 2016-09-21 Bauver II, Wesley P.; Bairley, Donald W.; Perrin, Ian J.; Selby, Glenn T.; Terdalkar, Rahul J.
In a nozzle (214) and a nozzle assembly (210), for use in a pressure vessel, stress analysis is used to determine areas of stress concentration. The nozzle (214) is configured to reduce these stress concentrations.
169 Verfahren zum Einbringen von Druckeigenspannungen mittels Kugelstrahlen EP07024981.8 2004-12-15 EP1914323B1 2014-02-12 David, Walter
170 Amino vinylsilane precursors for compressively stressed SiN films EP12159248.9 2009-11-12 EP2465861A1 2012-06-20 Vorsa, Vasil; Johnson, Andrew David; Xiao, Manchao

The present invention is related to the deposition of intrinsically compressively stressed silicon nitride (SiN) or silicon carbonitride (SiCN) thin films, comprising depositing the film from an amino vinylsilane-based precursor using plasma enhanced chemical vapor deposition (PECVD). An exemplary amino vinylsilane-based precursor is Bis(iso-propylamino)divinylsilane (BIPADVS).

171 Amino vinylsilane precursors for the deposition of intrinsically compressively stressed SiN films EP09175806.0 2009-11-12 EP2192207A1 2010-06-02 Vorsa, Vasil; Johnson, Andrew David; Xiao, Manchao

The present invention is a method of depositing an intrinsically compressively stressed silicon nitride (SiN) or silicon carbonitride (SiCN) thin films, comprising depositing the film from an amino vinylsilane-based precursor using plasma enhanced chemical vapor deposition (PECVD). Exemplary amino vinylsilane-based precursors include Bis(iso-propylamino)vinylmethylsilane (BIPAVMS) and Bis(iso-propylamino)divinylsilane (BIPADVS).

172 Component of variable thickness having residual compressive stresses therein, and method therefor EP07110593.6 2007-06-19 EP1873261A1 2008-01-02 Luna, Alberto; Miller, Joshua Leigh

A method of reducing crack propagation includes: providing a metallic component (122) having an exterior surface, and using a burnishing element (114) to apply a varying to the exterior surface within a selected area, within which the component has a varying thickness, so as to create a region (150) of residual compressive stress of surrounded by an interior boundary (154). The distance from the interior boundary (148) to the exterior surface at any location within the selected area is independent of the thickness of the component (122) at that location, and may be controlled by changing the pressure and/or an amount of overlap between burnished segments.

173 SILICON SUBSTRATES WITH COMPRESSIVE STRESS AND METHODS FOR PRODUCTION OF THE SAME US15192503 2016-06-24 US20160307754A1 2016-10-20 Yao-Chung Chang; Chia-Wen Ko; Manhsuan Lin
A heterostructure may include a substrate having a first primary surface, a second primary surface, and a diffusion layer extending a depth into the substrate from the first primary surface; and a deposition layer disposed on the second primary surface of the substrate. The heterostructure may further include an epitaxial layer disposed on the deposition layer.
174 Ion exchangeable glass with high compressive stress US13533298 2012-06-26 US09290413B2 2016-03-22 Matthew John Dejneka; Adam James Ellison; John Christopher Mauro
An aluminosilicate glass article having a high compressive stress layer. The glass article comprises at least about 50 mol % SiO2 and at least about 11 mol % Na2O, and has a layer under a compressive stress of at least about 900 MPa and the depth of layer that extends at least about 30 μm from the surface of the glass article into the glass. A method of making such a glass article is also provided.
175 Compressive stress system for a gas turbine engine US13235566 2011-09-19 US08985956B2 2015-03-24 Nicholas Alvin Hogberg
The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket attached to a rotor, a second bucket attached to the rotor, the first and the second buckets defining a shank pocket therebetween, and a compressive stress spring positioned within the shank pocket.
176 THIN FILM MAGNETIC HEAD WITH SIDE LAYERS UNDER COMPRESSION STRESS US13853293 2013-03-29 US20140293473A1 2014-10-02 Shohei KAWASAKI; Shuji OKAME; Takayasu KANAYA; Satoshi MIURA; Kenzo MAKINO; Takumi YANAGISAWA; Takahiko MACHITA; Masashi SANO; Hideyuki UKITA
A thin film magnetic head includes a spin valve film that includes a magnetization free layer, a magnetization pinned layer and a non-magnetic spacer layer that is disposed between the magnetization free and pinned layers, and a pair of side layers that are disposed at both sides of the spin valve film in a track width direction and at least in the vicinity of the magnetization free layer and the magnetization pinned layer. Each of the side layers has a bias magnetic field application layer that includes a soft magnetic layer and applies a bias magnetic field in the track width direction to the magnetization free layer, and a gap layer that is positioned between the spin valve film and the bias magnetic field application layer, and the side layers have compression stresses at least in the vicinity of the magnetization pinned layer.
177 Method to reduce compressive stress in the silicon substrate during silicidation US09666315 2000-09-21 US06284610B1 2001-09-04 Randall Cher Liang Cha; Chee Tee Chua; Kin Leong Pey; Lap Chan
A method for siliciding source/drain junctions is described wherein compressive stress of the underlying silicon is avoided by the insertion of a buffer layer between the silicide and the silicon. A gate electrode and associated source/drain extensions are provided in and on a semiconductor substrate. A buffer oxide layer is deposited overlying the semiconductor substrate and the gate electrode. A polysilicon layer is deposited overlying the buffer oxide layer. The polysilicon layer will form the source/drain junctions and silicon source. The source/drain junctions are silicided whereby the buffer oxide layer provides compressive stress relief during the siliciding.
178 Method and means for attaining a predetermined compressive stress US886553 1978-03-14 US4182189A 1980-01-08 Carl G. Dock; Nils G. Schrewelius
A method for attaining a predetermined compressive stress is achieved by a device in the form of a washer, coating, or plug which as a function of pressure does not yield significantly, but when a predetermined pressure is reached, a sudden change in structure takes place which effects detonation of an explosive mixture which detonation is indicated by a sound, a puff of smoke, a change of appearance, a sudden release of heat, or an instantaneous increase in friction. The device includes a porous brittle body in which an explosive substance has been absorbed, and also preferably hard particles that aid in effecting detonation when the porous body goes through a physical change. The detonation can also join contact surfaces together, serve as an indication of desired prestress or torque applied to a fastener, to indicate a load limit, and the like.
179 Device for alternately applying tensile stress and compressive stress to test piece JP784176 1976-01-27 JPS5263384A 1977-05-25 JIYAN KUROODO KUREBAN; JIYAN KUROODO FUKAN
180 큰 내부 압축 스트레스를 갖는 접착막을 사용한 듀얼다마신 배선 구조물을 형성하는 방법 및 그에 의해 제조된구조물 KR1020070087302 2007-08-29 KR101241410B1 2013-03-12 김재학; 레스타이노,대릴디.; 위도도,존니
배선 구조물을 형성하는 방법은 제1 유전막 상에 제1 금속 배선 패턴을 형성하고, 상기 제1 구리 배선 패턴 상에 캡핑막(예를 들어, SiCN막)을 형성하는 것을 포함한다. 약 500-700sccm 의 체적유량의 옥타메틸씨클로테트라실란을 포함하는 제1 소스 가스 및 약 1000-3000sccm 범위의 체적유량의 헬륨을 포함하는 제2 가스를 사용하여 캡핑막 상에 접착막을 증착한다. 증착 공정의 목적은 약 150MPa 이상의 내부 압축 스트레스를 가지는 접착막을 형성함으로써, 접착막에 의해 백-엔드 공정을 진행하는 동안의 식각/세정에서의 손상 및 습기 흡수를 줄일 수 있도록 하는 것이다. 접착막 상에는 부가적인 유전막 및 금속막이 증착된다. 듀얼 다마신 배선 구조물, 압축 스트레스
QQ群二维码
意见反馈