유기 셀레늄 재료들 및 유기 발광 소자들에서 이들의 사용

申请号 KR1020167017199 申请日 2009-09-24 公开(公告)号 KR1020160078526A 公开(公告)日 2016-07-04
申请人 유니버셜 디스플레이 코포레이션; 发明人 시아추안쥔; 크웡레이몬드; 마빈; 린춘;
摘要 본발명은디벤조셀레노펜, 벤조[b]셀레노펜또는벤조[c]셀레노펜을포함하는유기셀레늄화합물들및 유기발광소자들에서이들의사용을제공한다.
权利要求
  • 양극 층과 음극 층 사이에 배치되는 유기 층을 포함하고,
    상기 유기 층은 유기 셀레늄 재료를 포함하며,
    상기 유기 셀레늄 재료는 하기로 이루어지는 그룹으로부터 선택되며,










    여기서, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 및 R 7 각각은 관련된 부분에 있는 임의의 가능한 위치에 대한 선택적인 치환기를 가리키며, 독립적으로 할로, 알킬, 헤테로알킬, 사이클로알킬, 알케닐, 알키닐, 아릴킬, 헤테로사이클릭 기, 아릴, 및 헤테로아릴로 이루어진 그룹으로부터 선택되고, Ar은 방향족 기를 가리키며, 2개의 분자 부분들을 연결하는 각각의 라인은 상기 각각의 부분 상의 임의의 가능한 위치에서 상기 2개의 부분 사이의 부착을 가리키는 것인 유기 발광 소자.
  • 양극 층과 음극 층 사이에 배치되는 유기 층을 포함하고,
    상기 유기 층은 유기 셀레늄 재료를 포함하며,
    상기 유기 셀레늄 재료는










    및 이들의 유도체들로 이루어지는 그룹으로부터 선택되는 것인 유기 발광 소자.
  • 제1항 또는 제2항에 있어서, 상기 유기 셀레늄 재료는 호스트 재료이며, 상기 유기 층은 도펀트 재료를 더 포함하는 것인 유기 발광 소자.
  • 제3항에 있어서, 상기 유기 층은 방출 층이며, 상기 도펀트 재료는 인광성 또는 형광성 도펀트 재료인 유기 발광 소자.
  • 제4항에 있어서, 상기 도펀트 재료는 인광성 도펀트 재료인 유기 발광 소자.
  • 제5항에 있어서, 상기 도펀트 재료는

    로 이루어지는 그룹으로부터 선택되는 인광성 도펀트 재료인 유기 발광 소자.
  • 제5항에 있어서, 상기 도펀트 재료는

    로 이루어지는 그룹으로부터 선택되는 인광성 도펀트 재료인 유기 발광 소자.
  • 제5항에 있어서, 상기 도펀트 재료는


    로 이루어지는 그룹으로부터 선택되는 인광성 도펀트 재료인 유기 발광 소자.
  • 제5항에 있어서, 정공 주입 층, 전자 주입 층, 정공 수송 층, 전자 수송 층, 정공 차단 층, 여기자 차단 층, 및 전자 차단 층으로 이루어지는 그룹으로부터 선택되는 하나 이상의 유기 층들을 더 포함하는 것인 유기 발광 소자.
  • 제9항에 있어서, 상기 정공 수송 층은 유기 셀레늄 재료를 포함하는 것인 유기 발광 소자.
  • 제9항에 있어서, 상기 전자 수송 층은 유기 셀레늄 재료를 포함하는 것인 유기 발광 소자.
  • 제1항에 있어서, 상기 유기 층은 정공 수송 층 또는 전자 수송 층인 유기 발광 소자.
  • 제2항에 있어서, 상기 유기 층은 정공 수송 층 또는 전자 수송 층인 유기 발광 소자.





  • 로 이루어지는 그룹으로부터 선택되며,
    여기서, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 및 R 7 각각은 관련된 부분에 있는 임의의 가능한 위치에 대한 선택적인 치환기를 가리키며, 독립적으로 할로, 알킬, 헤테로알킬, 사이클로알킬, 알케닐, 알키닐, 아릴킬, 헤테로사이클릭 기, 아릴, 및 헤테로아릴로 이루어진 그룹으로부터 선택되고, Ar은 방향족 기를 가리키며, 2개의 분자 부분들을 연결하는 각각의 라인은 상기 각각의 부분 상의 임의의 가능한 위치에서 상기 2개의 부분 사이의 부착을 가리키는 것인 유기 셀레늄 화합물.









  • 및 이들의 유도체들로 이루어지는 그룹으로부터 선택되는 것인 유기 셀레늄 화합물.
  • 说明书全文

    유기 셀레늄 재료들 및 유기 발광 소자들에서 이들의 사용{ORGANOSELENIUM MATERIALS AND THEIR USES IN ORGANIC LIGHT EMITTING DEVICES}

    본 출원은 그 전체가 여기에 참고로 포함되는, 2008년 9월 25일에 출원된, 미국 가출원 번호 제61/100,229호의 35 USC §119(e)의 이익을 청구하고 있다.

    청구된 본 발명은 대학 기업 공동연구 계약에 대한 하나 이상의 다음의 당사자들에 의해, 이들을 위해, 및/또는 이들과 관련하여 만들어졌다: Michigan 대학교, Princeton 대학교, Southern California 대학교, 및 Universal Display Corporation의 이사회들. 본 계약은 청구된 본 발명이 만들어진 날에 및 그날 전에 발효되었으며, 청구된 본 발명은 이 계약의 범위 내에서 수행된 활동들의 결과로서 만들어졌다.

    본 발명은 디벤조셀레노펜, 벤조[b]셀레노펜 또는 벤조[c]셀레노펜을 포함하는 유기 셀레늄 재료들 및 유기 발광 소자들에서 이들의 사용에 관한 것이다.

    유기 재료들을 사용하는 광전자 장치들이 여러 가지의 이유들 때문에 점점 더 요구되고 있다. 이런 장치들을 만드는데 사용되는 많은 재료들은 상대적으로 저렴하므로, 유기 광전자 장치들은 무기 장치들에 비해 비용 이점들에 대한 잠재력을 가진다. 더구나, 유연성과 같은 유기 재료들의 고유의 특성들은 이들을 유연한 기판 상의 제조와 같은 특별한 적용들에 매우 적합하게 만들 수 있다. 유기 광전자 장치의 예들은 유기 발광 소자들(OLEDs), 유기 광트랜지스터들, 유기 광전지 셀들, 및 유기 광검출기들을 포함한다. OLED들에 대하여, 유기 재료들은 종래의 재료들에 비해 성능 이점들을 가질 수 있다. 예를 들어, 유기 방출 층이 광을 방출하는 파장은 일반적으로 적당한 도펀트들로 쉽게 조정될 수 있다.

    OLED들은 전압이 장치에 걸쳐 가해질 때에 광을 방출하는 얇은 유기 필름들을 사용한다. OLED들은 평판 디스플레이들, 조명, 및 백라이팅과 같은 적용들에서 사용을 위한 점차 흥미를 끄는 기술이 되고 있다. 몇몇의 OLED 재료 및 구성이 그 전체가 참고로 여기에 포함된, 미국 특허 번호 제5,844,363호, 제6,303,238호, 및 제5,707,745호에서 설명된다.

    인광 방출 분자들의 하나의 적용은 풀 컬러 디스플레이(full color display)이다. 이와 같은 디스플레이에 대한 산업 표준들은 "포화된(saturated)" 색상들로 언급되는, 특정한 색상들을 방출하기 위해 적합한 픽셀들을 요구한다. 특히, 이 표준들은 포화된 적색, 녹색, 및 청색의 픽셀들을 요구한다. 색상은 본 기술분야에서 잘 알려진 CIE 좌표들을 사용하여 측정될 수 있다.

    녹색 방출 분자의 일 예는 식 I의 구조를 가지는, Ir(ppy) 3 로 표시되는, 트리스(2-페닐피리딘) 이리듐이다:

    이러한 도면 및 뒤의 도면들에서, 우리는 질소로부터 금속(여기서, Ir)까지의 배위 결합을 직선으로 묘사한다.

    여기에서 사용되는 바와 같이, "유기"라는 용어는 유기 광-전자 장치들을 제조하는데 사용될 수 있는 폴리머 재료들뿐만 아니라 저분자의 유기 재료들을 포함한다. "저분자(small molecule)"는 폴리머가 아닌 어떤 유기 재료를 가리키며, "저분자들"은 사실상 상당히 클 수 있다. 저분자들은 몇몇의 상황들에서 반복 유닛들을 포함할 수 있다. 예를 들어, 치환기로서 긴 사슬의 알킬기를 사용하는 것은 "저분자" 등급으로부터 분자를 제거하지 않는다. 저분자들은 또한, 예를 들어, 폴리머 골격 상의 측기(pendent group)로서 또는 골격의 일부분으로서 폴리머들에 포함될 수 있다. 저분자들은 또한 코어 부분에 형성된 일련의 화학적 셸들로 이루어지는, 덴드리머(dendrimer)의 코어 부분(core moiety)으로 역할을 할 수 있다. 덴드리머의 코어 부분은 형광 또는 인광 저분자 에미터(emitter)일 수 있다. 덴드리머는 "저분자"일 수 있으며, 현재 OLED들의 분야에 사용되는 모든 덴드리머들은 저분자들이라고 믿어지고 있다.

    여기에서 사용되는 바와 같이, "상부"는 기판으로부터 가장 멀리 떨어진 것을 의미하는 한편, "하부"는 기판에 가장 가까운 것을 의미한다. 제1 층이 제2 층의 "위에 배치되는 것"으로 설명되는 경우, 제1 층은 기판으로부터 더 멀리 떨어지게 배치된다. 제1 층이 제2 층과 "접촉하고" 있다는 것이 명기되지 않으면, 제1 층과 제2 층 사이에 다른 층들이 있을 수 있다. 예를 들어, 비록 그 사이에 다양한 유기 층들이 있다고 하더라도, 음극은 양극의 "위에 배치되는 것"으로 설명될 수 있다.

    여기에서 사용되는 바와 같이, "용액 처리 가능한 "은 용액이나 현탁액의 형태의 액체 매질에 용해되거나, 분산되거나, 또는 수송되며/수송되거나 이로부터 침전될 수 있는 것을 의미한다.

    리간드는 이 리간드가 직접 방출성 재료의 광활성적 특성들에 기여한다고 믿어질 때 "광활성적(photoactive)"으로 언급될 수 있다. 비록 보조적 리간드가 광활성적 리간드의 특성들을 바꿀 수 있더라도, 이 리간드가 광활성적 특성들에 기여하지 않는다고 믿어질 때 리간드는"보조적(ancillary)"으로 언급될 수 있다.

    여기에서 사용되는 바와 같으며, 본 기술분야에서 숙련된 사람에 의해 일반적으로 이해될 수 있는 바와 같이, 제1 "최고 피점유 분자 궤도"(HOMO: Highest Occupied Molecular Orbital) 또는 "최저 비피점유 분자 궤도"(LUMO: Lowest Unoccupied Molecular Orbital) 에너지 레벨은 제1 에너지 레벨이 진공 에너지 레벨에 더 가깝다면 제2 HOMO 또는 LUMO 에너지 레벨"보다 크거"나 "보다 높"다. 이온화 포텐셜들(IP: ionization potentials)이 진공 레벨에 대하여 음의 에너지로 측정되기 때문에, 더 높은 HOMO 에너지 레벨은 더 작은 절대 값(덜 음인 IP)을 가지는 IP에 상응한다. 유사하게, 더 높은 LUMO 에너지 레벨은 더 작은 절대 값을 가지는 전자 친화도(EA: electron affinity)(덜 음인 EA)에 상응한다. 상부에 진공 레벨을 가지는, 종래의 에너지 레벨 도표에서, 재료의 LUMO 에너지 레벨은 동일한 재료의 HOMO 에너지 레벨보다 높다. "더 높은" HOMO나 LUMO 에너지 레벨은 "더 낮은" HOMO나 LUMO 에너지 레벨보다 이와 같은 도표의 상부에 더 가까운 것으로 나타난다.

    여기에서 사용되는 바와 같으며, 본 기술분야에서 숙련된 사람에 의해 일반적으로 이해될 수 있는 바와 같이, 제1 일함수는 이 제1 일함수가 더 높은 절대 값을 가진다면 제2 일함수보다 "크거"나 "높"다. 일함수들은 일반적으로 진공 레벨에 대하여 음수로 측정되기 때문에, 이는 "더 높은" 일함수가 더 음이라는 것을 의미한다. 상부에 진공 레벨을 가지는, 종래의 에너지 레벨 도면에서, "더 높은" 일함수는 하부 방향으로 진공 레벨로부터 더 멀리 떨어진 것으로 도시된다. 따라서, HOMO 및 LUMO 에너지 레벨들의 정의는 일함수들과 상이한 관행을 따른다.

    OLED들에 대한 보다 상세한 사항들, 및 위에 설명된 정의들은, 그 전체가 참고로 여기에 포함된, 미국 특허 번호 제7,279,704호에서 발견될 수 있다.

    [선행기술문헌]

    [특허문헌]

    미국 특허 번호 제5,844,363호, 미국 특허 번호 제6,303,238호, 미국 특허 번호 제5,707,745호, 및 미국 특허 번호 제7,279,704호

    본 발명은 양극 층과 음극 층 사이에 배치되는 유기 층을 포함하는, 유기 발광 소자를 제공한다. 유기 층은 디벤조셀레노펜을 포함하는 화합물, 벤조[b]셀레노펜을 포함하는 화합물, 및 벤조[c]셀레노펜을 포함하는 화합물로 이루어지는 그룹으로부터 선택되는 유기 셀레늄 재료를 포함한다. 본 발명의 유기 발광 소자에 사용될 수 있는 유기 셀레늄 화합물들이 여기서 아래에 개시된다. 본 발명은 또한 이와 같은 유기 셀레늄 화합물들을 제공한다.

    일 실시예에서, 유기 셀레늄 재료는 호스트 재료이며, 유기 층은 도펀트 재료를 더 포함한다. 도펀트 재료는 인광성 또는 형광성 도펀트 재료일 수 있다. 바람직한 실시예에서, 도펀트 재료는 아래의 표 1에 개시된 어떤 인광성 도펀트 재료와 같은, 인광성 도펀트 재료이다.

    일 실시예에서, 본 발명의 유기 발광 소자는 정공 주입 층, 전자 주입 층, 정공 수송 층, 전자 수송 층, 정공 차단 층, 여기자 차단 층, 및 전자 차단 층으로 이루어지는 그룹으로부터 선택되는 하나 이상의 유기 층들을 더 포함한다.

    일 실시예에서, 정공 수송 층 또는 전자 수송 층은 유기 셀레늄 재료를 포함한다.

    도 1은 유기 발광 소자를 도시한다.
    도 2는 별도의 전자 수송 층을 가지지 않는 뒤집힌 유기 발광 소자를 도시한다.

    일반적으로, OLED는 양극과 음극 사이에 배치되며 이들에 전기적으로 연결되는 적어도 하나의 유기 층을 포함한다. 전류가 가해질 때, 양극은 유기 층(들)으로 정공들을 주입하며 음극은 전자들을 주입한다. 주입된 정공들 및 전자들 각각은 반대로 대전된 전극을 향해 이동한다. 전자와 정공이 동일한 분자에 위치될 때에, 여기된 에너지 상태를 가지는 위치된 전자-정공 쌍인 "여기자(exciton)"가 형성된다. 여기자가 광방출 메커니즘을 통해 방출될 때에 광은 방출된다. 몇몇의 경우에, 여기자는 엑시머(excimer) 또는 엑시플렉스(exciplex)에 위치될 수 있다. 열적 완화(thermal relaxation)와 같은, 비방사성 메커니즘들이 또한 일어날 수 있지만, 일반적으로 바람직하지 않은 것으로 여겨진다.

    초기 OLED들은, 예를 들어,그 전체가 참고로 여기에 포함된, 미국 특허 번호 제4,769,292호에 개시된 바와 같은 이들의 단일항 상태들("형광성")로부터 광을 방출하는 방출성 분자들을 사용하였다. 형광성 발광은 일반적으로 10 나노초(nanoseconds)보다 짧은 시간 프레임으로 일어난다.

    더 최근에는, 삼중항 상태들("인광성")로부터 광을 방출하는 방출성 재료들을 가지는 OLED들이 나타났다. Baldo 등의, "유기 전계발광 소자들로부터 나오는 고효율의 인광 방출(Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices)," 네이쳐, 395권, 151-154, 1998; ("Baldo-I") 및 Baldo 등의, "전계인광에 기초한 고효율 녹색 유기 발광 소자들(Very high-efficiency green organic light-emitting devices based on electrophosphorescence)," Appl. Phys. Lett., 75권, No. 3, 4-6 (1999) ("Baldo-II")이 그 전체가 참고로 포함된다. 인광성은 참고로 포함된, 미국 특허 번호 제7,279,704호의 5-6 칼럼에 더 상세하게 설명된다.

    도 1은 유기 발광 소자(100)를 도시한다. 도면들은 반드시 축척에 맞게 그려질 필요는 없다. 소자(100)는 기판(110), 양극(115), 정공 주입 층(120), 정공 수송 층(125), 전자 차단 층(130), 방출 층(135), 정공 차단 층(140), 전자 수송 층(145), 전자 주입 층(150), 보호 층(155), 및 음극(160)을 포함할 수 있다. 음극(160)은 제1 도전 층(162) 및 제2 도전 층(164)을 가지는 화합물 음극이다. 소자(100)는 순서대로, 설명된 이 층들을 부착시킴으로써 제조될 수 있다. 이 다양한 층들의 특성들과 기능들뿐만 아니라 예시적 재료들은 참고로 포함된, 미국 특허 번호 제7,279,704호의 6-10 칼럼에 더 상세하게 설명된다.

    이 층들 각각에 대한 더 많은 예들이 이용 가능하다. 예를 들어, 유연하며 투명한 기판-양극 조합이 그 전체가 참고로 포함된, 미국 특허 번호 제5,844,363호에 개시된다. p-도핑된 정공 수송 층의 일 예는 그 전체가 참고로 포함된, 미국 특허출원 공개 번호 제2003/0230980호에 개시된 바와 같이, 50:1의 몰비로 F.sub.4-TCNQ로 도핑된 m-MTDATA이다. 방출성 및 호스트 재료들의 예들은 그 전체가 참고로 포함된, Thompson 등의 미국 특허 번호 제6,303,238호에 개시된다. n-도핑된 전자 수송 층의 일 예는 그 전체가 참고로 포함된, 미국 특허출원 공개 번호 제2003/0230980호에 개시된 바와 같이, 1:1의 몰비로 Li로 도핑된 BPhen이다. 그 전체가 참고로 포함된, 미국 특허 번호 제5,703,436호 및 미국 특허 번호 제5,707,745호는 덮는 투명한, 전기 전도성의, 스퍼터 증착된 ITO 층과 함께 Mg:Ag와 같은 금속의 얇은 층을 가지는 화합물 음극들을 포함하는 음극들의 예들을 개시한다. 차단 층들의 이론과 사용은 그 전체가 참고로 포함되는, 미국 특허 번호 제6,097,147호와 미국 특허출원 공개 번호 제2003/0230980호에 더 상세하게 설명된다. 주입 층들의 예들은 그 전체가 참고로 포함되는, 미국 특허출원 공개 번호 제2004/0174116호에 제공된다. 보호 층들의 설명은 그 전체가 참고로 포함되는, 미국 특허출원 공개 번호 제2004/0174116호에서 발견될 수 있다.

    도 2는 뒤집힌 OLED(200)를 도시한다. 이 소자는 기판(210), 음극(215), 방출 층(220), 정공 수송 층(225), 및 양극(230)을 포함한다. 소자(200)는 순서대로, 설명된 층들을 부착시킴으로써 제조될 수 있다. 가장 일반적인 OLED 형상이 양극의 위에 배치되는 음극을 가지며, 소자(200)가 양극(230)의 아래에 배치되는 음극(215)을 가지기 때문에, 소자(200)는 "뒤집힌" OLED로 언급될 수 있다. 소자(100)에 대하여 설명된 것들과 유사한 재료들이 소자(200)의 상응하는 층들에 사용될 수 있다. 도 2는 어떻게 몇몇의 층들이 소자(100)의 구조로부터 생략될 수 있는가에 대한 일 예를 제공한다.

    도 1 및 도 2에 도시된 단순한 적층 구조는 한정하지 않는 예로서 제공되며, 본 발명의 실시예들은 폭 넓은 다양한 다른 구조들과 관련하여 사용될 수 있다고 이해된다. 설명되는 구체적인 재료들과 구조들은 사실상 예를 든 것이며, 다른 재료들과 구조들이 사용될 수 있다. 기능성 OLED들은 설명된 다양한 층들을 다른 방식으로 결합함으로써 성취될 수 있거나, 층들이 디자인, 성능, 및 비용 요인들에 근거하여 완전히 생략될 수 있다. 구체적으로 설명되지 않은 다른 층들이 또한 포함될 수 있다. 구체적으로 설명된 것들과 다른 재료들이 사용될 수 있다. 비록 여기에 제공되는 많은 예들이 다양한 층들이 단일 재료를 포함하는 것으로 설명하지만, 호스트와 도펀트의 혼합물과 같은, 재료들의 조합들, 또는 더 일반적인 혼합물이 사용될 수 있다고 이해된다. 또한, 층들은 다양한 하위층들을 가질 수 있다. 여기에서 다양한 층들에 주어진 이름들은 엄격히 한정하려고 하는 것이 아니다. 예를 들어, 소자(200)에서, 정공 수송 층(225)은 정공들을 수송하며 방출 층(220)으로 정공들을 주입하며, 정공 수송 층 또는 정공 주입 층으로 설명될 수 있다. 일 실시예에서, OLED는 음극과 양극 사이에 배치되는 "유기 층"을 가지는 것으로 설명될 수 있다. 이 유기 층은 단일 층을 포함할 수 있거나, 예를 들어, 도 1 및 도 2에 대하여, 설명된 바와 같이 상이한 유기 재료들을 가지는 다수의 층들을 더 포함할 수 있다.

    그 전체가 참고로 포함된, Friend 등의 미국 특허 번호 제5,247,190호에 개시된 바와 같은 폴리머 재료들(PLEDs)로 구성되는 OLED들과 같이, 구체적으로 설명되지 않은 구조들 및 재료들이 또한 사용될 수 있다. 추가적인 예로서, 단일 유기 층을 가지는 OLED들이 사용될 수 있다. OLED들은, 예를 들어, 그 전체가 참고로 포함된, Forrest 등의 미국 특허 번호 제5,707,745호에 설명된 바와 같이, 적층될 수 있다. OLED 구조는 도 1 및 도 2에 도시된 단일 층 구조로부터 벗어날 수 있다. 예를 들어, 기판은 그 전체가 참고로 포함된, Forrest 등의 미국 특허 번호 제6,091,195호에 설명된 바와 같은 메사 구조(mesa structure), 및/또는 Bulovic 등의 미국 특허 번호 제5,834,893호에 설명된 바와 같은 피트 구조(pit structure)와 같은, 아웃-커플링(out-coupling)을 개선하기 위해 각도가 있는 반사 표면을 포함할 수 있다.

    다르게 명시하지 않으면, 다양한 실시예들의 어떤 층들은 어떤 적당한 방법에 의해 부착될 수 있다. 유기 층들에 대하여, 바람직한 방법들은 열 증발, 그 전체가 참고로 포함된 미국 특허 번호 제6,013,982호 및 제6,087,196호에 설명된 바와 같은 잉크젯, 그 전체가 참고로 포함된 Forrest 등의 미국 특허 번호 제6,337,102호에 설명된 바와 같은 유기 기상 부착(OVPD: organic vapor phase deposition), 및 그 전체가 참고로 포함된 미국 특허출원 번호 제10/233,470호에 설명된 바와 같은 유기 증기 젯 프린팅(OVJP: organic vapor jet printing)에 의한 부착을 포함한다. 다른 적당한 부착 방법들은 스핀 코팅(spin coating)과 다른 용액 기반 공정들을 포함한다. 용액 기반 공정들은 바람직하게는 질소 또는 불활성 분위기에서 수행된다. 다른 층들에 대하여, 바람직한 방법들은 열 증착을 포함한다. 바람직한 패터닝 방법들은 마스크를 통한 부착, 그 전체가 참고로 포함된 미국 특허 번호 제6,294,398호 및 제6,468,819호에 설명된 바와 같은 냉온 용접, 및 잉크젯과 OVJD와 같은 몇몇의 부착 방법들과 연관된 패터닝을 포함한다. 다른 방법들이 또한 사용될 수 있다. 부착되는 재료들은 특정한 부착 방법에 적합하게 만들기 위해 변경될 수 있다. 예를 들어, 분지되거나 분지되지 않으며, 바람직하게는 적어도 3개의 탄소들을 함유하는, 알킬기 및 아릴기와 같은 치환기들이 용액 처리를 받는 이들의 성능을 향상시키기 위해 저분자들로 사용될 수 있다. 20개 이상의 탄소들을 가지는 치환기들이 사용될 수 있으며, 3 내지 20개의 탄소들이 바람직한 범위이다. 비대칭적인 재료들이 더 낮은 재결정화 경향을 가질 수 있기 때문에, 비대칭적인 구조들을 가지는 재료들은 대칭적인 구조들을 가지는 재료들보다 양호한 용액 처리 성능을 가질 수 있다. 덴드리머 치환기들이 용액 처리를 받는 저분자들의 성능을 향상시키기 위해 사용될 수 있다.

    본 발명의 실시예들에 따라 제조된 소자들은 평판 디스플레이들, 컴퓨터 모니터들, 텔레비젼들, 광고판들, 내부나 외부 조명 및/또는 신호를 위한 라이트들, 헤드 업 디스플레이들, 완전 투명 디스플레이들, 유연한 디스플레이들, 레이저 프린터들, 전화기들, 휴대폰들, 개인 휴대 단말기들(PDAs), 랩톱 컴퓨터들, 디지털 카메라들, 캠코더들, 뷰파인더들, 마이크로-디스플레이들, 차량들, 큰 면적의 벽, 영화관이나 경기장의 스크린, 또는 표지판을 포함하는, 폭 넓게 다양한 소비자 제품들에 포함될 수 있다. 다양한 제어 메커니즘들이 수동 매트릭스와 능동 매트릭스를 포함하는, 본 발명에 따라 제조된 소자들을 제어하기 위해 사용될 수 있다. 많은 소자들은 18℃ 내지 30℃와 같이, 인간에게 쾌적한 온도 범위에서, 더 바람직하게는 실온(20 내지 25℃)에서 사용하기 위한 것이다.

    여기에 설명된 재료들과 구조들은 OLED들과 다른 소자들에 적용될 수 있다. 예를 들어, 유기 태양 전지들 및 유기 광검출기들과 같은 다른 광전자 장치들은 이 재료들과 구조들을 사용할 수 있다. 더 일반적으로, 유기 트랜지스터들과 같은, 유기 소자들은 이 재료들과 구조들을 사용할 수 있다.

    할로, 할로겐, 알킬, 사이클로알킬, 알케닐, 알키닐, 아랄킬, 헤테로사이클릭 기, 아릴, 방향족기, 및 헤테로아릴이라는 용어들은 본 기술분야에 공지되어 있으며, 참고로 여기에 포함되는, 미국 특허 번호 제7,279,704호의 31-32 칼럼에서 정의된다.

    본 발명은 디벤조셀레노펜, 벤조[b]셀레노펜 및/또는 벤조[c]셀레노펜을 포함하는 유기 셀레늄 화합물을 제공한다. 본 발명은 또한, 예를 들어, 호스트 재료들과 같이 이런 재료들이 사용되는 OLED 소자들을 제공한다.

    본 발명의 유기 셀레늄 화합물은 1개, 2개, 3개, 4개 또는 그 이상의 디벤조셀레노펜 부분들, 벤조[b]셀레노펜 부분들, 벤조[c]셀레노펜 부분들 또는 이들의 혼합물을 포함할 수 있다. 디벤조셀레노펜 부분들, 벤조[b]셀레노펜 부분들, 벤조[c]셀레노펜 부분들 또는 이들의 혼합물은 직접 또는 하나 이상의 다른 분자 부분들을 통해 연결될 수 있다.

    일 실시예에서, 유기 셀레늄 화합물은

    로 이루어지는 그룹으로부터 선택되며 여기서 R 1 , R 2 , R 3 , R 4 , R 5 , R 6 및 R 7 각각은 관련된 부분에 있는 임의의 가능한 위치에 대한 선택적인 치환기를 가리키며, Ar은 방향족기를 가리키며, 2개의 분자 부분들을 연결하는 각각의 라인은 각각의 부분들에 대한 임의의 가능한 위치에서 이 2개의 부분들 사이의 부착을 가리킨다. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 및 R 7 각각은 다수의 치환들을 의미할 수 있다.

    적당한 치환기들은 할로, 알킬, 헤테로알킬, 사이클로알킬, 알케닐, 알키닐, 아릴킬, 헤테로사이클릭 기, 아릴, 및 헤테로아릴을 포함하지만 이들에 한정되지는 않는다. 바람직하게는, 치환기는 헤테로사이클릭 기, 아릴, 방향족기, 및 헤테로아릴로 이루어지는 그룹으로부터 선택된다. 일 실시예에서, 치환기는 벤젠 및 치환된 벤젠; 벤조사이클로프로펜, 벤조사이클로프로판, 벤조사이클로부타디엔, 및 벤조사이클로부텐, 나프탈렌, 안트라센, 테트라센, 펜타센, 페난트렌, 트리페닐렌, 헬리센들, 코라눌렌, 아줄렌, 아세나프틸렌, 플루오렌, 크리센, 플루오란텐, 피렌, 벤조피렌, 코로넨, 헥사센, 파이센, 페릴렌과 같은 다방향족기(polyaromatic group); 및 푸란, 벤조푸란, 이소벤조푸란, 피롤, 인돌, 이소인돌, 티오펜, 벤조티오펜, 벤조[c]티오펜, 이미다졸, 벤즈이미다졸, 푸린, 피라졸, 인다졸, 옥사졸, 벤조옥사졸, 이소옥사졸, 벤지스옥사졸, 티아졸, 벤조티아졸, 피리딘, 퀴놀린, 이소퀴놀린, 피라진, 퀴녹살린, 아크리딘, 피리미딘, 키나졸린, 피리다진, 신놀린과 같은 헤테로방향족기(heteroaromatic group); 및 이들의 유도체들을 포함하지만 이들에 한정되지는 않는 방향족기이다.

    2개의 분자 부분들을 연결하는 라인에 의해 표시되는 바와 같이 2개의 분자 부분들 사이의 연결은 단일 결합이나 다중 결합들일 수 있다. 일 실시예에서, 연결은 각각의 분자 부분들에서 2개의 원자들 사이의 단일 결합이다. 다른 실시예에서, 연결은 다중 결합들에 의한 것이며, 예를 들어 융합 고리에 의한 것이다.

    다른 실시예에서, 본 발명은 다음의 것들 및 이들의 유도체들로 이루어지는 그룹으로부터 선택된 유기 셀레늄 화합물을 제공한다:

    할로, 알킬, 헤테로알킬, 사이클로알킬, 알케닐, 알키닐, 아릴킬, 헤테로사이클릭기, 아릴, 및 헤테로아릴을 포함하지만 이들에 한정되지는 않는, 치환기에 의해 치환된 화합물들과 같은, 유도체들이 고려된다.

    일 실시예에서, 유기 셀레늄 화합물은

    또는

    또는 할로, 알킬, 헤테로알킬, 사이클로알킬, 알케닐, 알키닐, 아릴킬, 헤테로사이클릭 기, 아릴, 및 헤테로아릴을 포함하지만 이들에 한정되지는 않는, 치환기에 의해 치환된 화합물과 같은, 이들의 유도체이다.

    또 다른 실시예에서, 유기 셀레늄 화합물은 다음의 것들 및 이들의 유도체들로 이루어지는 그룹으로부터 선택된다:

    할로, 알킬, 헤테로알킬, 사이클로알킬, 알케닐, 알키닐, 아릴킬, 헤테로사이클릭기, 아릴, 및 헤테로아릴을 포함하지만 이들에 한정되지는 않는, 치환기에 의해 치환된 화합물들과 같은, 유도체들이 고려된다.

    본 발명의 유기 셀레늄 화합물은 아래의 예들에 설명되는 방법들을 포함하지만 이들에 한정되지는 않는 본 기술분야에 공지된 방법들에 의해 준비될 수 있다.

    본 발명의 유기 셀레늄 화합물을 포함하는 유기 발광 소자가 또한 제공된다. 이 소자는 양극, 음극, 및 양극과 음극 사이에 배치되는 유기 방출 층을 포함할 수 있다. 유기 방출 층은 호스트 및 인광성 도펀트를 포함할 수 있다. 일 실시예에서, 이 소자는 방출 층의 호스트 재료로 본 발명의 유기 셀레늄 재료를 포함한다. 아래의 표 1에 있는 도펀트들 중의 어느 것도 호스트 재료로서 유기 셀레늄 재료와 조합하여 방출 층에 사용될 수 있다. 바람직한 실시예에서, 도펀트는 표 1에 있는 적색 도펀트들의 목록으로부터 선택되는 적색 도펀트이다. 다른 바람직한 실시예에서, 도펀트는 표 1에 있는 녹색 도펀트들의 목록으로부터 선택되는 녹색 도펀트이다. 또 다른 실시예에서, 도펀트는 표 1에 있는 청색 도펀트들의 목록으로부터 선택되는 청색 도펀트이다.

    방출 층에 있는 도펀트의 농도는 사용되는 특정한 도펀트 및 소자의 요구조건에 기초하여 본 기술분야의 숙련된 사람에 의해 결정될 수 있다.

    유기 발광 소자는 정공 수송 층(HTL: hole transporting layer) 또는 전자 수송 층(ETL: electron transporting layer)을 추가적으로 포함할 수 있다. 바람직한 실시예들에서, 정공 수송 층 또는 전자 수송 층은 본 발명의 유기 셀레늄 재료를 포함한다.

    다른 재료들과 조합

    유기 발광 소자에 있는 특정한 층에 유용한 것으로 여기에 설명된 유기 셀레늄 재료들은 이 소자에 존재하는 폭 넓게 다양한 다른 재료들과 조합하여 사용될 수 있다. 예를 들어, 본 발명의 유기 셀레늄 재료는 표 1에 개시된 하나 이상의 방출성 도펀트들과 조합하여 방출 층의 호스트로서 사용될 수 있다.

    유기 셀레늄 재료는 또한 수송 층들, 차단 층들, 주입 층들, 전극들 및 OLED에 존재할 수 있는 다른 층들에서 표 1에 개시된 폭 넓게 다양한 다른 호스트 재료들과 조합하여 사용될 수 있다.

    아래에 설명되거나 언급되는 재료들은 여기에 개시된 화합물들과 조합하여 유용할 수 있는 재료들의 한정하지 않은 예들이며, 본 기술분야의 숙련된 사람이 조합에 유용할 수 있는 다른 재료들을 확인하기 위해 문헌을 쉽게 참고할 수 있다.

    여기에 개시된 재료들에 더하며/더하거나 이들과 조합하여, 많은 정공 주입 재료들, 정공 수송 재료들, 호스트 재료들, 도펀트 재료들, 여기자/정공 차단 층 재료들, 전자 수송 및 전자 주입 재료들이 OLED에 사용될 수 있다. 여기에 개시된 재료들과 조합하여 OLED에 사용될 수 있는 재료들의 한정하지 않는 예들이 아래의 표 1에 실려 있다. 표 1에는 재료들의 한정하지 않는 분류들, 각각의 분류에 대한 화합물들의 한정하지 않는 예들, 및 재료들을 개시하는 참고문헌들이 있다.

    재료 재료의 예들 공개문헌들
    정공 주입 재료들
    프탈로시아닌 및 포르피린 화합물들 Appl. Phys. Lett. 69, 2160 (1996)
    스타버스트 트리아릴아민들 J. Lumin. 72-74, 985 (1997)
    CF x 불화탄화수소 폴리머 Appl. Phys. Lett. 78, 673 (2001)
    전도성 폴리머들(예를 들어, PEDOT: PSS, 폴리아닐린, 폴리티오펜) Synth. Met. 87, 171 (1997)
    WO2007002683
    포스폰산 및 실란 SAM들 US20030162053
    전도성 도펀트들을 가지는트리아릴아민
    또는 폴리티오펜 폴리머들
    EA01725079A1
    몰리브덴 및 텅스텐 산화물들과 같은 금속 산화물들과 착체된 아릴아민들 SID Symposium Digest, 37, 923 (2006)
    WO2009018009
    p-타입 반도체 유기 착염들 US20020158242
    금속 유기 금속 착염들 US20060240279
    가교 가능한 화합물들 US20080220265
    정공 수송 재료들
    트리아릴아민들 (예를 들어, TPD, a-NPD) Appl. Phys. Lett. 51, 913 (1987)
    US5061569
    EP650955

    J. Mater. Chem. 3, 319 (1993)

    Appl. Phys. Lett. 90, 183503 (2007)

    Appl. Phys. Lett. 90, 183503 (2007)
    스피로플루오렌 코어에 있는 트리아릴아민 Synth. Met. 91, 209 (1997)
    아릴아민 카르바졸 화합물들 Adv. Mater. 6, 677 (1994), US20080124572
    (디)벤조티오펜/(디)벤조푸란을 가지는 트리아릴아민 US20070278938, US20080106190
    인돌로카르바졸들 Synth. Met. 111, 421 (2000)
    이소인돌 화합물들 Chem. Mater. 15, 3148 (2003)
    금속 카르벤 착염들 US20080018221
    인광성 OLED 호스트 재료들
    적색 호스트들
    아릴카르바졸들 Appl. Phys. Lett. 78, 1622 (2001)
    금속 8-하이드록시퀴놀레이트들(예를 들어, Alq 3 , BAlq) Nature 395, 151 (1998)
    US20060202194
    WO2005014551
    WO2006072002
    금속 펜옥시벤조티아졸 화합물들 Appl. Phys. Lett. 90, 123509 (2007)
    콘주게이트 올리고머들 및 폴리머들
    (예를 들어, 폴리플루오렌)
    Org. Electron. 1, 15 (2000)
    방향족 용융 고리들 WO2009066779, WO2009066778, WO2009063833, US20090045731, US20090045730,
    WO2009008311, US20090008605, US20090009065
    아연 착염들 WO2009062578
    녹색 호스트들
    아릴카르바졸들 Appl. Phys. Lett. 78, 1622 (2001)
    US20030175553
    WO2001039234
    아릴트리페닐렌 화합물들 US20060280965
    US20060280965
    WO2009021126
    공여체 수용체 타입 분자들 WO2008056746
    아자-카르바졸/DBT/DBF JP2008074939
    폴리머들(예를 들어, PVK) Appl. Phys. Lett. 77, 2280 (2000)
    스피로플루오렌 화합물들 WO2004093207
    금속 펜옥시벤조옥사졸 화합물들 WO2005089025
    WO2006132173
    JP200511610
    스피로플루오렌-카르바졸 화합물들 JP2007254297
    JP2007254297
    인돌로카르바졸들 WO2007063796
    WO2007063754
    5-멤버 고리 전자 결핍 헤테로사이클들 (예를 들어, 트리아졸, 옥사디아졸) J. Appl. Phys. 90, 5048 (2001)
    WO2004107822
    테트라페닐렌 착염들 US20050112407
    금속 펜옥시피리딘 화합물들 WO2005030900
    금속 배위 착염들(예를 들어, N^N 리간드들을 가지는 Zn, Al) US20040137268, US20040137267
    청색 호스트들
    아릴카르바졸들 Appl. Phys. Lett, 82, 2422 (2003)
    US20070190359
    디벤조티오펜/디벤조푸란-카르바졸 화합물들 WO2006114966, US20090167162
    US20090167162
    WO2009086028
    US20090030202, US20090017330
    실리콘 아릴 화합물들 US20050238919
    WO2009003898
    실리콘/게르마늄 아릴 화합물들 EP2034538A
    아릴 벤조일 에스테르 WO2006100298
    고 삼중항 금속 유기 금속 착염 US7154114
    인광성 도펀트들
    적색 도펀트들
    중금속 포르피린들
    (예를 들어, PtOEP)
    Nature 395, 151 (1998)
    이리듐(III) 유기 금속 착염들 Appl. Phys. Lett. 78, 1622 (2001)
    US2006835469
    US2006835469
    US20060202194
    US20060202194
    US20070087321
    US20070087321
    Adv. Mater. 19, 739 (2007)
    WO2009100991
    WO2008101842
    백금(II) 유기 금속 착염들 WO2003040257
    오스뮴(III) 착염들 Chem. Mater. 17, 3532 (2005)
    루테늄(II) 착염들 Adv. Mater. 17, 1059 (2005)
    레늄 (I), (II), 및 (III) 착염들 US20050244673
    녹색 도펀트들
    이리듐(III) 유기 금속 착염들
    및 이의 유도체들
    Inorg. Chem. 40, 1704 (2001)
    US20020034656
    US7332232
    US20090108737
    US20090039776
    US6921915
    US6687266
    Chem. Mater. 16, 2480 (2004)
    US20070190359
    US 20060008670
    JP2007123392
    Adv. Mater. 16, 2003 (2004)
    Angew. Chem. Int. Ed. 2006, 45, 7800
    WO2009050290
    US20090165846
    US20080015355
    폴리머 금속 유기 금속 화합물들을 위한 모노머 US7250226, US7396598
    다좌 리간드들(polydentated ligands)을 포함하는, Pt(II) 유기 금속 착염들 Appl. Phys. Lett. 86, 153505 (2005)
    Appl. Phys. Lett. 86, 153505 (2005)
    Chem. Lett. 34, 592 (2005)
    WO2002015645
    US20060263635
    Cu 착염들 WO2009000673
    금 착염들 Chem. Commun. 2906 (2005)
    레늄(III) 착염들 Inorg. Chem. 42, 1248 (2003)
    중수소화 유기 금속 착염들 US20030138657
    2개 이상의 금속 중심들을 가지는 유기 금속 착염들 US20030152802
    US7090928
    청색 도펀트들
    이리듐(III) 유기 금속
    착염들
    WO2002002714
    WO2006009024
    US20060251923
    US7393599, WO2006056418, US20050260441, WO2005019373
    US7534505
    US7445855
    US20070190359, US20080297033
    US7338722
    US20020134984
    Angew. Chem. Int. Ed. 47, 1 (2008)
    Chem. Mater. 18, 5119 (2006)
    Inorg. Chem. 46, 4308 (2007)
    WO2005123873
    WO2005123873
    WO2007004380
    WO2006082742
    오스뮴(II) 착염들 US7279704
    Organometallics 23, 3745 (2004)
    금 착염들 Appl. Phys. Lett.74,1361 (1999)
    백금(II) 착염들 WO2006098120, WO2006103874
    여기자/정공 차단 층 재료들
    배소큐프로인 화합물들
    (예를 들어, BCP, BPhen)
    Appl. Phys. Lett. 75, 4 (1999)
    Appl. Phys. Lett. 79, 449 (2001)
    금속 8-히드록시퀴놀레이트들 (예를 들어, BAlq) Appl. Phys. Lett. 81, 162 (2002)
    트리아졸, 옥사디아졸, 이미다졸, 벤조이미다졸과 같은 5-멤버 고리 전자 결핍 헤테로사이클들 Appl. Phys. Lett. 81, 162 (2002)
    트리페닐렌 화합물들 US20050025993
    불화 방향족 화합물들 Appl. Phys. Lett. 79, 156 (2001)
    페노티아진-S-산화물 WO2008132085
    전자 수송 재료들
    안트라센-벤조이미다졸 화합물들 WO2003060956
    US20090179554
    아자 트리페닐렌 유도체들 US20090115316
    안트라센-벤조티아졸 화합물들 Appl. Phys. Lett. 89, 063504 (2006)
    금속 8-히드록시퀴놀레이트들 (예를 들어, Alq 3 , Zrq 4 ) Appl. Phys. Lett. 51, 913 (1987)
    US7230107
    금속 히드록시벤조퀴놀레이트들 Chem. Lett. 5, 905 (1993)
    BCP, BPhen 등과 같은 배소큐프로인 화합물들 Appl. Phys. Lett. 91, 263503 (2007)
    Appl. Phys. Lett. 79, 449 (2001)
    5-멤버 고리 전자 결핍 헤테로사이클들 (예를 들어, 트리아졸, 옥사디아졸, 이미다졸, 벤조이미다졸)
    Appl. Phys. Lett. 74, 865 (1999)
    Appl. Phys. Lett. 55, 1489 (1989)
    Jpn. J. Apply. Phys. 32, L917 (1993)
    실올 화합물들 Org. Electron. 4, 113 (2003)
    아릴보란 화합물들 J. Am. Chem. Soc. 120, 9714 (1998)
    불화 방향족 화합물들 J. Am. Chem. Soc. 122, 1832 (2000)
    플러렌 (예를 들어, C60) US20090101870
    트리아진 착염들 US20040036077
    Zn (N^N) 착염들 US6528187

    예들

    예 1 : 화합물 H-1

    1. 디벤조셀레노펜의 합성

    10 g(21.5 mmol)의 1,2-디(비페닐-2-일)디셀란(J. Am. Chem. Soc. 1950, 72, 5753-5754에 따라 합성됨), 3.45 g(21.5 mmol)의 브롬 및 30 mL의 니트로벤젠의 혼합물이 3.5시간 동안 100℃로 가열되었다. 그 다음에 반응 혼합물은 냉각되었으며 니트로벤젠이 진공 증류에 의해 제거되었다. 잔류물은 용리제로서 헥산에서 10% 염화 메틸렌을 사용하여 실리카 겔 칼럼 크로마토그래피법에 의해 정제되었다. 9.8 g의 흰색 고형물들이 MS에 의해 확인된 생성물로서 획득되었다.

    2. 디벤조셀레노펜-4-일보론 산(dibenzoselenophen-4-ylboronic acid)

    4.0 g(17.3 mmol)의 디벤조셀레노펜 및 150 mL의 건조 에테르가 질소 하에 250 mL의 3구 플라스크에 첨가되었다. 혼합물에, 11.5 mL의 BuLi(헥산에 1.6 M)가 실온에서 천천히 첨가되었다. 반응 혼합물은 그 다음에 5시간 동안 환류시키기 위해 가열되었다. 반응 혼합물은 -78 ℃까지 냉각되었으며 5 mL의 트리메틸 보레이트가 첨가되었다. 이것은 그 다음에 하룻밤 동안 실온에서 교반되었다. 약 50 mL의 1 M HCL이 반응 혼합물에 첨가되었다. 유기 상은 에틸 아세테이트로 추출되었으며 황산 나트륨으로 건조되었다. 결합된 유기 상은 증발 건조되었으며 헥산 중 100 mL의 30% 에틸 아세테이트가 8시간 동안 실온에서 교반하면서 고형물에 첨가되었다. 현탁액은 여과되었으며, 고형물들은 헥산으로 세척되고 건조되었으며, NMR에 의해 확인된 2의 흰색 고형물들을 생성물로 산출하였다.

    3. 화합물 H-1의 합성

    10 g(3.6 mmol)의 디벤조셀레노펜-4-일보론 산, 1.51 g(3.3 mmol)의 트리페닐렌페닐 트리플레이트(아래의 예 3에 개시된 방법에 따라 합성됨), 0.15 g(0.16 mmol)의 Pd 2 (dba) 3 , 0.27 g(0.66 mmol)의 디사이클로헥실포스피노-2',6'-디메톡시비페닐, 4.2 g의 K 3 PO 4 , 90 mL의 톨루엔 및 10 mL의 물이 250 mL 3구 플라스크에 첨가되었다. 반응 혼합물은 20분 동안 질소로 버블링되었으며 질소 하에 하룻밤 동안 환류시키기 위해 가열되었다. 반응 혼합물은 건조되었으며 용리제로서 헥산에서 15% 염화 메틸렌으로 실리카 겔 칼럼 크로마토그래피법에 의해 정제되었다. ~ 1.35 g의 흰색 고형물들이 NMR에 의해 확인된 생성물로 획득되었다.

    예 2: 화합물 H-2

    1. 화합물 H-2의 합성

    1.67 g (6.0 mmol)의 디벤조셀레노펜-4-일보론 산, 1.20 g(2.6 mmol)의 비페닐-4,4'-디일 비스(트리플루오로메탄술포네이트), 0.025 g(0.027 mmol)의 Pd 2 (dba) 3 , 0.045 g(0.11 mmol)의 디사이클로헥실포스피노-2',6'-디메톡시비페닐, 1.7 g의 K 3 PO 4 , 90 mL의 톨루엔 및 10 mL의 물이 250 mL 3구 플라스크에 첨가되었다. 반응 혼합물은 20분 동안 질소로 버블링되었으며 그 다음에 질소 하에 하룻밤 동안 환류시키기 위해 가열되었다. 반응 혼합물은 건조되었으며 잔류물은 용리제로서 헥산에서 10% 염화 메틸렌으로 실리카 겔 칼럼 크로마토그래피법에 의해 정제되었다. ~ 1.31 g의 흰색 고형물들이 NMR에 의해 확인된 생성물로 획득되었다.

    예 3: 3-(트리페닐렌-2-일)페닐 트리플루오로메탄술포네이트(트리페닐렌페닐 트리플레이트)를 준비하는 방법

    트리페닐렌(19.0 g, 83 mmol)이 600 mL의 니트로벤젠에 첨가되었다. 모든 트리페닐렌이 용해된 후에, 철 분말(0.07 g, 1.25 mmol)이 첨가되었다. 반응 플라스크는 얼음 욕에 넣었다. 50 mL의 니트로벤젠에 있는 브롬(20.0 g 125 mmol)이 추가 깔때기를 통해 천천히 첨가되었다. 그 후에, 반응 플라스크는 5시간 동안 얼음 욕에서 교반되었다. HPLC가 반응을 모니터링하기 위해 수행되었다(TLC는 트리페닐렌과 브로모트리페닐렌들의 분리를 보여주지 않았다). 트리페닐렌:2-브로모트리페닐렌:디브로모트리페닐렌들의 비가 (254 nm에서) 대략 2:7:1에 도달하였을 때, 반응은 Na 2 SO 3 용액을 첨가함으로써 급냉되었다. 혼합물은 그 다음에 CH 2 Cl 2 로 추출되었다. 결합된 유기 추출물은 MgSO 4 를 통해 건조되었으며 CH 2 Cl 2 는 회전 증발기에 의해 제거되었다. 남은 니트로벤젠은 더 정제되지 않고 사용되는 가공되지 않은 브로모트리페닐렌 생성물을 산출하기 위해 진공 증류에 의해 제거되었다.

    미반응 트리페닐렌, 모노브로모 및 디브로모 트리페닐렌의 2:7:1 혼합물을 함유하는 12g (39 mmol) 브로모트리페닐렌 혼합물, 13g (86mmol) 3-페닐보론 산, 0.6g (1.56 mmol) 2-디사이클로헥실포스피노-2',6'-디메톡시비페닐 및 25 g (117 mmol) 제3인산 칼륨(K 3 PO 4 )은 무게를 달아서 둥근 바닥 플라스크에 가해진다. 150 mL 톨루엔 및 80 mL 물이 용매로 이 플라스크에 첨가되었다. 이 용액은 질소로 퍼징되었으며 0.4g (0.39 mmol)의 트리스(디벤질리덴아세톤)디팔라듐(0)[Pd 2 (dba) 3 ]이 첨가되었다. 용액은 12시간 동안 환류시키기 위해 가열되었다. 냉각으로, 유기 층이 분리되었으며, MgSO 4 로 건조되었다. 생성물은 용리제로 헥산/디클로로메탄을 사용하여 트리페닐렌 및 디-(3-메톡시페닐) 치환 트리페닐렌으로부터 칼럼 크로마토그래피법에 의해 손쉽게 분리되었다(1/0 구배 내지 3/2). 용매는 회전 증발에 의해 제거되었으며, 생성물인, 2-(3-메톡시페닐)트리페닐렌은, 진공 하에 하룻밤 건조되었다.

    질소 하에 둥근 바닥 플라스크에서, 1.8 g (5.4 mmol) 2-(3-메톡시페닐)트리페닐렌이 25 mL 무수 디클로로메탄에 용해되었다. 용액은 -78 ℃까지 냉각되었으며 4 g (1.5 mL, 16 mmol) 3브롬화 붕소가 주입기를 통해 천천히 첨가되었다. 용액은 실온까지 가열되었으며 하룻밤 동안 교반되었다. 얼음이 미반응 BBr 3 를 급냉시키기 위해 조심스럽게 첨가되었다. 3-(트리페닐렌-2-일)페놀 중간 생성물이 얼음의 첨가 중에 침전되었으며, 디클로로메탄이 용해시키기 위해 첨가되었다. 유기 층은 분리되었고 MgSO 4 로 건조되었으며, 디클로로메탄은 회전 증발에 의해 제거되었으며 생성물은 진공 하에 건조되었다.

    1.7 g (5.3mmol)의 3-(트리페닐렌-2-일)페놀이 0.84 g (10.5 mmol) 무수 피리딘과 100 mL 무수 디클로로메탄과 함께 질소 하에 플라스크에 첨가되었다. 용액은 얼음 욕에서 냉각되었으며 2.97 g (10.5 mmol) 트리플루오로메탄술폰산 무수물(Tf 2 O)이 주입기를 통해 천천히 첨가되었다. 용액은 실온까지 가열되었으며 하룻밤 동안 교반되었다. 용액은 물로 세정되었고, MgSO 4 로 건조되었으며 용매는 회전 증발에 의해 제거되었다. 생성물인, 3-(트리페닐렌-2-일)페닐 트리플루오로메탄술포네이트는 용리제로 헥산/디클로로메탄을 사용하여 칼럼 크로마토그래피법에 의해 정제되었다(1/0 내지 1/1 구배).

    합성 방법의 설명은 또한 그 전체가 참고로 여기에 포함된, 2008년 7월 8일 출원된, 국제 출원 번호 PCT/US08/72452에 상응하는, 미국 가출원 번호 60/963,944에서 발견될 수 있다.

    예 4: 소자 예들

    모든 예의 소자들은 고 진공(<10 -7 Torr) 열 증발에 의해 제조되었다. 양극 전극은 1200 Å의 인듐 주석 산화물(ITO)이다. 음극은 10 Å의 LiF와 뒤이은 1000 Å의 Al으로 구성되었다. 모든 소자들은 제조 후에 즉시 질소 글러브 박스(<1 ppm의 H 2 O 및 O 2 )에서 에폭시 수지로 밀봉되는 글라스 뚜껑으로 캡슐화되었으며, 수분 제거제가 패키지 내에 포함되었다.

    소자 예들의 유기 적층은, ITO 표면으로부터 순차적으로, 정공 주입 층(HIL)으로서 100 Å의 화합물 A, 정공 수송 층(HTL)으로서 300 Å의 4,4'-비스[N-(1-나프틸)-N-페닐아미노]비페닐(α-NPD), 방출 층(EML)으로서 10 또는 15 wt%의 Ir 인광성 화합물로 도핑된 300 Å의 본 발명의 화합물, ETL2로서 50 Å의 HPT 또는 100 Å의 본 발명의 화합물 및 ETL1로서 450 또는 400 Å의 Alq 3 (트리스-8-히드록시퀴놀린 알루미늄)로 구성되었다.

    비교 예들 1 및 2는 CBP가 호스트로서 사용되는 것을 제외하고 소자 예들과 유사하게 제조되었다.

    소자 구조들 및 데이터는 표 2 및 3에 요약되며 표 2는 소자 구조를 보여주며 표 3은 이 소자들에 대한 상응하는 측정된 결과들을 보여준다. 여기에 사용되는 바와 같이, 화합물들 A 및 B, 및 HPT는, 다음의 구조들을 가진다:

    소자 예 호스트 도펀트 % ETL2 (Å) ETL1 (Å)
    비교 1 CBP B 10% HPT (50) Alq 3 (450)
    비교 2 CBP A 10% HPT (50) Alq 3 (450)
    1 H-1 A 10% HPT (50) Alq 3 (450)
    2 H-1 A 10% H-1 (100) Alq 3 (400)
    3 H-1 A 15% HPT (50) Alq 3 (450)
    4 H-1 A 15% H-1 (100) Alq 3 (400)
    5 H-2 A 10% HPT (50) Alq 3 (450)
    6 H-2 A 10% H-2 (100) Alq 3 (400)
    7 H-2 A 15% HPT (50) Alq 3 (450)
    8 H-2 A 15% H-2 (100) Alq 3 (400)

    소자 예 CIE L=1000 cd/m 2 에서 J=40 mA/cm 2 에서
    X Y V (V) LE (cd/A) EQE (%) PE (lm/W) L 0 (cd/m 2 ) LT 80% (hr)
    비교 1 0.331 0.627 6.1 61.0 17 31.4 16,935 87
    비교 2 0.346 0.613 6.2 57.0 16 28.9 13,304 105
    1 0.357 0.605 6.1 62.6 17.3 32.2 15,561 140
    2 0.358 0.605 6.7 56.9 15.7 26.7 15,421 150
    3 0.362 0.604 5.8 63.3 17.4 34.3 17,977 130
    4 0.363 0.603 6.3 55.8 15.4 27.8 16,436 175
    5 0.352 0.611 6.2 61.1 16.8 30.9 16,102 126
    6 0.351 0.610 7.3 45.6 12.6 19.6 14,384 148
    7 0.354 0.610 6.3 59.2 16.3 29.5 16,255 73
    8 0.354 0.610 7.5 36.5 10 15.3 11,882 185

    소자 예들 1내지 8로부터, 녹색 인광성 OLED들에서 호스트들로서 화합물들 H-1 및 H-2는 비페닐들 또는 트리페닐렌들과 같은 아릴 구성 블록들과 연결되는 디엔조셀레노펜이 효율적인 녹색 전계인광성을 위해 충분히 높은 삼중항 에너지를 가진다는 것을 나타내는, 높은 소자 효율(1000 cd/m 2 에서 LE>40 cd/A)을 가지는 것을 볼 수 있다. 호스트로서 화합물들 H-1 및 H-2를 포함하는 소자들의 높은 안정성은 주목할 만하다. 소자 예 1 및 비교 예 2는 단지 호스트만이 상이하다. 소자 예 1은 호스트로서 화합물 H-1을 사용하지만 비교 예 2는 통상적으로 사용되는 호스트 CBP를 사용한다. 수명, T 80% (실온에서 40 mA/cm 2 의 일정한 전류 밀도에서 휘도 값의 80%로 열화시키기 위해, 초기 휘도(L 0 )에 대해 요구되는 시간으로 정의됨)은 각각 140시간과 105시간이며, 소자 예 1이 약간 더 높은 L 0 를 가진다. 유사하게, 호스트로서 화합물 H-2를 사용하는 소자 예 5가 비교 예 2보다 더 안정적이다. 화합물들은 강화 층 재료(ETL2)로서 잘 기능을 할 수 있다는 것이 또한 주목할 만하다. 예를 들어, 소자 예 4 및 소자 예 8은 각각 화합물 H-1과 H-2을 호스트와 ETL2 층으로서 가진다. 이들은 강화 층 재료로서 화합물들 H-1 및 H-2의 양호한 성능을 나타내는, 185 및 175시간의 T 0.8 을 각각 가진다.

    데이터는 디벤조셀레노펜들을 함유하는 호스트들이 호스트로서 통상적으로 사용되는 CBP와 비교하여 적어도 동일한 효율 및 안정성의 개선을 제공하는, 인광성 OLED들을 위한 우수한 호스트 및 강화 층 재료들이라는 것을 암시한다. 벤조셀레노펜들을 함유하는 트리페닐렌의 보다 콘주게이트 버전들, 예를 들어 (4,4'-비페닐과 같은) p-페닐렌을 통해 연결되는 트리페닐렌 및 디벤조셀레노펜 유닛들이 더 낮은 에너지(황색 내지 적색)의 인광성 OLED들에 매우 적합할 수 있다. 트리페닐렌을 함유하는 기는 벤조셀레노펜들의 어떤 위치에 부착될 수 있다.

    여기에 설명된 다양한 실시예들은 단지 예시를 위한 것이며, 본 발명의 범위를 한정하기 위한 것이 아니라는 것이 이해된다. 예를 들어, 여기에 설명된 많은 재료들 및 구조들은 본 발명의 정신으로부터 벗어나지 않고 다른 재료들 및 구조들로 대체될 수 있다. 그러므로 청구된 바와 같은 본 발명은 본 기술분야의 숙련된 사람에게 명백하게 되는, 여기에 설명된 특정한 예들 및 바람직한 실시예들로부터 나온 변형들을 포함한다. 본 발명이 왜 작용하는지에 대한 다양한 이론들은 한정을 하기 위한 것이 아니라고 이해된다.

    QQ群二维码
    意见反馈