活化的β沸石催化剂及其所用于的异构化方法

申请号 CN92100954.2 申请日 1992-01-10 公开(公告)号 CN1041061C 公开(公告)日 1998-12-09
申请人 美国环球油品公司; 发明人 G·W·施基尔基; E·M·弗拉尼根;
摘要 采用一种为增强其催化性能而对其活化处理的新的β沸石催化剂,正烷 烃 可异构 化成 含非正烷烃的产物。活化在可有效地基本上降低强酸物种即 水 合氢离子浓度,但基本上不降低弱酸物种即羟 铝 阳离子浓度的活化 温度 下进行,强酸和弱酸物种都是活化前开始就存在于催化剂上的。异构化步骤最好在活化后,在至少低于活化温度300℃的温度下进行。
权利要求

1.一种活化的β沸石催化剂组合物,该组合物是用以下方法制成的:在与原料进行任何接触之前,先在空气或一惰性气氛中,在一起始温度下加热初始的β沸石催化剂,形成具有弱酸物种和强酸物种起始浓度的焙烧的催化剂,对该焙烧的催化剂进行铵交换,并在625-675℃的活化温度下加热该经交换的催化剂,以降低或消除强酸物种浓度但不降低弱酸物种浓度,形成活化的β沸石催化剂。
2.一种正烷烃异构化成非正烷烃的方法,包括下述步骤:(a)在空气或一惰性气氛中,在一起始温度下加热初始的β沸石催化剂,形成具有弱酸物种和强酸物种起始浓度的焙烧的催化剂,对该焙烧的催化剂进行铵交换,并在625-675℃的活化温度下加热该经交换的催化剂,以降低或消除强酸物种浓度但不降低弱酸物种浓度,形成活化的β沸石催化剂;(b)在比所述活化温度至少低300℃的异构化温度下,向装有所述活化催化剂的异构化区通入含有所述正烷烃和氢气的原料,以转化至少部分所述正烷烃为所述非正烷烃;(c)排出含有所述非正烷烃的产物流。

说明书全文

活化的β沸石催化剂及其所用于的异构化方法

发明是关于正烷异构化方法及增强用于该法的一种具有β沸石结构和组成的微孔性三维结晶固体催化剂的至少一种催化性能的方法的。

石油炼制业中的各种各样的烃转化方法都是催化方法,且其中的许多方法都用结晶酸盐沸石作催化剂。这些方法的例子包括,例如脱蜡,加氢脱蜡,裂化,加氢裂化,烷基化,异构化,芳构化,歧化等等。这些烃转化方法的产品或其各馏份常被混合用作机动车燃料汽油的调和组份。

低分子量正烷烃异构化成非正烷烃的方法是-公知的烃转化方法,且在各种专利,如US4210771和US3150205中已作介绍。该反应在石油工业中之所以重要,是因异构烷烃的辛烷值较其正烷烃辛烷值高。由于汽油调和料需要一定沸点范围的物料,所以C4-C7馏份中的异构烷烃是很有价值的调和组份,它们的辛烷值高于由正烷烃构成的相应的汽油馏份。已制备出各种催化该异构化反应的催化剂。例如,已知Friedel-Crafts催化剂如氯化铝就是异构化催化剂。卤化的催化剂如负载于卤化的化铝载体上的铂也已用于烃类的异构化。此外,烷烃异构化中也用到结晶硅铝酸盐沸石。天然及合成的结晶硅铝酸盐都已用到。典型地,上述沸石包括一种贵金属如铂或钯。这些沸石中包括X型和Y型沸石,ZSM-5型和ZSM-20型沸石,丝光沸石以及β沸石。

US3308069公开了一种制备β沸石的方法。该专利公开的β沸石是从含有作为的氢氧化四乙基铵的反应混合物制备的,具体而言,是通过在75-200℃加热一混合氧化物或其化学组成可完全用混合氧化物表示的混合物料Na2O,Al2O3,〔(C2H5)4N〕2O,SiO2和H2O的溶液,直到出现结晶而制备的。从热的反应混合物得到的结晶产物经过分离,适宜的分离方法是离心分离或过滤,用水洗涤和干燥。上述干燥的产物可在约400-1700°F或更高温度(只要该温度不足以破坏结晶度即可)下,在空气或惰气氛中加热焙烧

US4642226涉及一种新的改性的带β沸石结构的结晶硅酸盐,一种新的十分有用的改进的合成该结晶硅酸盐的方法及将该结晶硅酸盐作为催化剂用于有机化合物如烃化合物的转化。该专利公开了用二苄基二甲基铵作定向剂,即模板剂,代替上述的氢氧化四乙基铵。此外,该专利还提出可利用常规技术,使β沸石与—盐水溶液进行离子交换。与所要求的取代的阳离子的盐水溶液交换后,最好用水洗涤该沸石,并在65-约315℃的温度下干燥,之后,可在约200-约600℃,最好约200-约550℃,在空气或其它惰性气体中焙烧1-48hr。或更长时间,使之成为具有催化活性的热分解产物。该专利公开了如向β沸石提供一加氢成份如铂,即可用于正烷烃的加氢异构化。

从上述现有技术公开的内容可了解到,已经制备了β沸石,用作正烷烃异构化的催化剂。因此,研究的是增强β沸石用于正烷烃异构化的至少一种催化性能,最好是催化活性和选择性的方法。

本发明涉及正烷烃异构化方法,该法中采用了具有β沸石结构和组成的一种微孔性三维结晶固体催化剂且该催化剂的至少一种催化性能,即催化活性或选择性得到提高。根据本发明,采用一已被活化的β沸石催化剂完成该异构化反应,活化是在空气或一种惰性气氛中,在可有效地基本上降低,最好消除强酸物种的浓度但基本上不降低弱酸物种浓度的温度下进行加热,上述强酸和弱酸物种两者都是开始就存在于催化剂上的。

本发明的一个方面是提供了一种与烃原料组成的活化的β沸石催化剂组合物,即在与烃原料进行任何接触之前,在空气或-惰性气氛中,在可有效形成弱酸和强酸物种起始浓度的起始温度下加热-最初的β沸石催化剂,然后在可有效地基本上降低或基本上消除强酸物种的浓度,但基本上不降低弱酸物种浓度的活化温度下继续进行加热,以制成活化的β沸石催化剂。

本发明的另一方面是提供一种在活化的β沸石催化剂存在下,使正烷烃异构成非正烷烃的异构化方法,该法包括下列步骤:(a)在空气或一惰性气氛中,在可有效形成弱酸和强酸物种初始浓度的起始温度下,加热一起始的β沸石催化剂,然后在可有效地基本上降低或基本上消除强酸物种浓度,但基本上不降低弱酸物种浓度的活化温度下继续进行加热,制成活化的β沸石催化剂;(b)在低于活化温度至少300℃且可有效地将至少一部分正烷烃转化为非正烷烃的异构化温度下,向装有活化催化剂的异构化反应区通入包括正烷烃和氢气的原料;(c)分离含有非正烷烃的产物流。

图1示出了采用经过焙烧的,铵交换的,铂交换和活化的β沸石催化剂的烃转化方法中,戊烷的异构化和收率之间的关系。

图2示出了采用经过焙烧的、铵交换的、铂交换的和活化的β沸石催化剂的烃转化方法中,己烷的异构化和收率之间的关系。

图3示出了弱酸物种,强酸物种和β沸石活化温度之间的关系。

可用于本发明催化剂组合物的具有β沸石结构和组成的微孔性三维结晶固体(下面亦称作“β沸石”)是常规原料,且在如上述参考文献US3308069中作过介绍,在此可参考用于本发明所述烃转化方法的催化剂组合物包括通常与至少一种无机氧化物基体成份结合的β沸石,如下所详述。

合成形式的β沸石的组成可用下式表示:〔XNa+(1.0±0.1-X)TEA〕∶AlO2∶YSiO2式中X小于1,最好小于0.75;TEA表示来自模板剂的四乙基铵离子;Y大于5小于100。在其合成形式中,亦可含有一定量的水合水。

可从用于制备β沸石的合成混合物中产生钠。该合成混合物通常含有混合氧化物(或其化学组成可完全用混合氧化物表示的混合物料)Na2O,Al2O3,〔(C2H5)4N〕2O,SiO2和H2O。最好将该混合物保持在75-200℃直到出现结晶。用摩尔比表示的反应混合物的组成最好落入下列范围:SiO2/Al2O3-10-200;Na2O/氢氧化四乙基铵(TEAOH)-0.0-0.1;TEAOH/SiO2-0.1-1.0;H2O/TEAOH-20-75最好用离心分离或过滤,分离出上述热的反应混合物中的结晶产物,用水洗涤并干燥。

干燥产物应在通常200-1000℃或更高,较好550-750℃,更好75-675℃,最好600-650℃温度下,最好在空气或-惰性气氛中加热焙烧最好超过0.25hr.,更好超过0.50hr.的时间。焙烧应最好不造成β沸石上任何催化位的降解。这种焙烧使至少大部分的催化剂模板剂,如来自该模板剂的四乙基铵离子或用以代替或另加的二苄基二甲基铵离子氧化和/或分解成氢离子,且可脱除水分,制成基本上不含模板剂的β沸石。焙烧的β沸石亦称作H型β沸石。这里所用的术语“至少大部分”和“基本上不含”指合成形式的β沸石中催化剂模板剂的至少50wt%,较好至少75wt%,最好100wt%被氧化和/或分解。

对催化剂模板剂100wt%氧化和/或分解的情况,β沸石的通式可用下式表示:〔XNa+(1.0±0.1-X)H〕∶AlO2∶YSiO2式中X和Y如上限定,焙烧后的水合度视为零。

H型β沸石再最好与含除水合氢离子外至少一种可形成氢的阳离子如NH4+或季铵的盐溶液进行离子交换,用可形成氢的阳离子取代钠,得到通式如下的β沸石(用NH4+交换的无水基):〔(XNH4+)+(1±0.1-X)H 〕∶AlO2∶YSiO2式中X和Y定义如上。

根据本发明,可形成氢的阳离子交换的β沸石可选择性地与金属阳离子交换,得到通式如下的物质(无水基):[XnM+(1±0.1-X)H]:AlO2:YSiO2]]>式中X和Y定义如上,n是金属M的化合价,其中M可以是任何金属。

根据本发明,可形成氢的阳离子交换的β沸石或金属阳离子交换的β沸石可最好与至少一种无机氧化物基体结合后,通过在空气或一种惰性气氛中加热活化,加热的温度和时间要足以增强催化剂在下述烃异构化方法中的至少一种催化性能。用于本发明的β沸石产品的SiO2/Al2O3摩尔比一般为15∶1-45∶1,最好20∶1-30∶1,更好22∶1-26∶1。

由于制备过程中使用了如氢氧化四乙基铵这样的模板剂,β沸石的孔中可含有包藏的如以氢氧化物或硅酸盐形式存在的四乙基铵离子,这种包藏的离子不包括因电中性所要求的并在计量式中标出的那些离子。

通式是用晶格四面体配位中每-铝原子-当量阳离子进行计算的。

β沸石除了上述以其组成限定外,还可用其X-射线衍射数据表征,这些数据列在US3308069中。

焙烧后的β沸石最好进行离子交换,以脱除有机模板剂。交换时,使β沸石(在有或没有无机氧化物基体成份存在下)与至少一种可生成氢的阳离子如NH4+或季铵的盐溶液接触。与可生成氢的阳离子交换后,可随意地,与金属阳离子交换。适宜的阳离子包括选自由第IIA族,IIIA族,IIIB-VIIB族阳离子构成的一组阳离子,如镍,钴,,锰,,铂,钯,铑等及它们的混合物,选自铈,镧,镨,钕,钷,钐,铕,钆,铽,镝,钬,铒,铥,镱,镥及它们的混合物的稀土阳离子。当然,经过金属阳离子交换而存在的金属阳离子应对所要求的烃转化过程无明显的不利影响。作为这种离子交换的结果,β沸石可带有至少一种阳离子,如可生成氢的阳离子和/或金属阳离子,这种离子与作为合成的结果,一开始就与β沸石结合在一起的阳离子不同。作为离子交换而存在的阳离子,最好以0.1wt%-20wt%(以起始的β沸石的重量为基准)的有效含量存在,典型的该有效含量为0.5wt%-10wt%。

进行离子交换时,通常是先配制β沸石催化剂的浆液,配制时每体积催化剂加5-15体积水,再加入一选定阳离子的溶液。一般在室温下进行离子交换,再将得到的溶液加热到50℃以上,在该温度下搅拌0.5-3hr.。然后过滤该混合物,水洗除掉由阳离子盐溶液带入的过量阴离子。

β沸石通常与至少一种无机氧化物基体成份共用,两者最好在离子交换后,活化前进行组合。β沸石虽然可与一种或一种以上的各种各样的无机氧化物基体成份共用,但重要的是β沸石的孔结构要保持敞开,且易于为原料所接近,以提供有效的催化活性。可用于配制催化剂的无机氧化物基体成份的例子包括:无定形催化无机氧化物如具有催化活性的氧化硅/氧化铝,粘土,氧化硅,氧化铝,氧化硅-氧化铝,氧化硅-氧化锆,氧化硅-氧化镁,氧化硅-氧化钍,氧化硅-氧化铍,氧化硅-氧化铝-氧化钍,氧化硅-氧化铝-氧化锆,氧化铝-氧化,氧化铝-氧化,等等及它们的混合物。基体可以是溶胶,水凝胶,或凝胶,且通常是氧化铝,氧化硅,或氧化硅-氧化铝成份,如一种常规的氧化硅-氧化铝催化剂,可购到几种类型。基体本身可具有一定的催化作用,如已知的具有催化活性的氧化硅/氧化铝,也可是基本上惰性的。在某些情况下,基体可起到“粘合剂”作用,尽管有些场合,成品催化剂可经过喷雾干燥或在不需粘合剂情况下成型。

可将这些基体材料制成氧化硅和氧化铝的共凝胶,或将氧化铝沉积到预制和预老化的水凝胶上。氧化硅可作为主要的基体成份,以固体形式存在于基体中,如其含量可在5-40wt%,最好10-30wt%之间。氧化硅亦可以共凝胶形式使用,该共凝胶包括75wt%氧化硅和25wt%氧化铝,或包括87wt%氧化硅和13wt%氧化铝。在成品催化剂中无机氧化物基体成份的量通常在0-99wt%,最好5-90wt%(以整个催化剂计)之间。在成品催化剂中将其它材料包括粘土,一氧化氧化促进剂等与β沸石共用,也在本发明范围内。

可用于本发明的基体体系的代表例公开在作为本文参考的GB1315553,US3446727和4086187中。

本发明催化剂可与一基体成份共用,该基体成份可是氧化硅或氧化铝成份。氧化铝成份可包括各种氧化铝,如假勃姆石的分散的颗粒。氧化铝成份可作成分散的颗粒,颗粒的总表面积大于20m2/g,最好大于145m2/g,如145-300m2/g(用Brunauer,Emmett和Teller(BET)法测定)。氧化铝成份的孔体积通常大于0.35cc/g,平均粒径通常小于10微米,最好小于3微米。可单独用氧化铝作基体,或将其与其它基体成份组合使用。

氧化铝成份可是任何氧化铝,且最好已经过预制并制成其表面积和孔结构都稳定化的一种物理形状,使得当将该氧化铝加到-含大量残留可溶盐的不纯的,无机凝胶中时,这些盐不会明显改变其表面和孔的特征,也不会促进可能使预制的多孔氧化铝发生改变的化学破坏作用。例如,该氧化铝通常是由适宜的化学反应制成的,再经过淤浆老化,过滤,干燥,洗净残留盐并加热脱除其易挥发物至小于15wt%的一种氧化铝。成品催化剂中该氧化铝成份含量可为5-95wt%,最好10-30wt%(基于整个催化剂)。此外,制备催化剂过程中,也可用氧化铝水溶胶或水凝胶,或含水氧化铝淤浆。

可用标准的催化剂成型技术,包括喷雾干燥,造粒,挤条和其它适宜的常规手段,将β沸石与一种或几种无机氧化物基体成份的混合物制成最后的催化剂形状。

可用任何常规方法制备含β沸石的催化剂。用氧化硅-氧化铝和多孔氧化铝制备这类催化剂的一种方法是:使硅酸钠与硫酸铝溶液反应,生成氧化硅/氧化铝水凝胶浆液,将该浆液老化使形成所需的孔特征,过滤分离大量多余且不需要的钠和硫酸根离子,再用水重新制浆。氧化铝的制备可以是:使铝酸钠和硫酸铝溶液在适宜条件下反应,进行淤浆老化使形成带所需孔特征的氧化铝,过滤,干燥,用水重新制浆以脱除钠和硫酸根离子,干燥以减少易挥发物含量至小于15wt%。可将该氧化铝用水重新制浆,然后按适宜用量与一不纯的氧化硅-氧化铝水凝胶混合。再将β沸石加到该混合物中。用足量的每一成份制成要求的成品组合物。制成的混合物再经过滤以脱除一部分余留的过量的可溶盐。滤后的混合物再干燥成干燥固体。再用水将该干燥固体重新制浆并洗除不需要的可溶盐。该催化剂通过加热或不加热干燥成残留水含量小于15wt%。经下述活化后,该催化剂即可使用。

为实现本发明目的,β沸石催化剂必须经过活化。活化时,在空气或-惰性气氛中,在可有效形成弱酸和强酸物种初始浓度的起始温度下进行加热,然后在可有效地基本上降低强酸物种浓度,但基本上不降低弱酸物种浓度的活化温度下继续加热,上述弱酸和强酸物种都是活化前就存在于催化剂上的。强酸物种的代表是水合氢离子,即H3O+,弱酸物种的代表是羟铝阳离子,即

。如何确定各自酸物种的浓度这点,对本发明并不十分重要。有一种适宜的方法可见下列参考文献:D.W.Breck和G.W.Skeels,ZEOLITE  CHEMISTRYI,THE ROLE OFALUMINUM IN THE THERMAL TREATMENT OFAMMONIUM EXCHANGED ZEOLITE Y,Proceedingsof the Sixth International Congress onCalalysis,Vol.2,pp645-659,TheChemical Society,London,(1977)。该方法一般包括在-氯化钠溶液中处理沸石样品,再用氢氧化钠滴定该样品以得到两个终点,一点在PH较低处,即强酸,一点在PH较高处,即弱酸。可得到用每克沸石所用氢氧化钠的毫当量表示的每种酸物,再转换成酸浓度。

最好,活化温度可有效地降低水合氢离子浓度,使其在活化后,达到相当于小于每克β沸石0.2毫当量NaOH的水平。更优选的是活化温度要可有效地基本上消除水合氢阳离子。进一步优选的是,活化后羟铝阳离子的浓度相当于每克β沸石至少0.8毫当量NaOH。

上面引述的许多参考文献公开的是β沸石催化剂应在540℃的温度下活化。根据本发明,与在540℃下活化后余留的强酸物种浓度相比较,最好活化温度可有效降低强酸物种浓度至少50%。此外,与在540℃下活化后余留的弱酸物种浓度相比,本发明优选活化温度可有效地提高弱酸物种浓度。更好的是将弱酸物种浓度提高至少20%。通常,相当于在其间可基本上降低强酸位浓度,但基本上不降弱酸位浓度的温度区间的活化温度是至少600℃到低于700℃,最好625-675℃。

对活化时间范围无严格限制,一般长于0.25hr.,最好超过0.50hr.,只要该时间不足以破坏β沸石的结晶度即可。将β沸石催化剂活化1hr.或更长时间,属于本发明的优选方案。

用于含β沸石催化剂的本发明的活化方法,可在除该催化剂合成步骤外的任何存在步骤中予以实施,说明这点十分重要。即,本发明方法可用于合成形式的,焙烧形式的或离子交换形式的β沸石。此外,还应理解,本发明方法也可用于处理再生的催化剂,如已经过氧化再生处理除碳的那些催化剂。

因此,作为本发明的一个方面,焙烧步骤可与上述的离子交换及活化步骤一起包括在该方法中。这样,通过将焙烧步骤包括在该方法中,本发明可实施于含模板剂的合成形式的β沸石。

作为本发明的另一方面,不需要进行焙烧步骤。例如,催化剂供应商可以提供已先焙烧过的β沸石。此时,本法包括如上所述的离子交换步骤和活化步骤。

作为本发明的另一方面,不需要进行离子交换步骤。当β沸石已进行过上述的离子交换且可能已干燥如当催化剂已准备装入反应器时,这也是很合适的。

根据本发明的一个优选方面,在低于活化温度至少300℃,且可有效地转化至少一部分正烷烃为非正烷烃产物的异构化温度下,使正/非正烷烃原料与活化过的β沸石催化剂在反应区接触。

进入反应器的正烷烃原料通常包括C5-C15的正烷烃,且最好主要由5-6个碳原子的各种异构形式的饱和烃组成。这样的原料一般是炼厂蒸馏操作的产物,因此可能含有少量的C7和甚至更高碳数的烃,但即使存在的话,这些烃也都是痕量的。原料中烯烃含量低于约4mol%是有利的。芳烃及环烷烃分子具有相当高的辛烷值,但在异构化过程中,大部分都被裂解和/或转化成辛烷值低得多的分子。因此,优选的原料所含芳烃和环烷烃总量应不超过25mol%。C5和C6非环烷烃占原料的至少75mol%,且至少25mol%是正戊烷和/或正己烷将是有利的。有下列组成的原料是常用的:成份                        wt%C4-                        4.1i-C524.5n-C527.8i-C627.4n-C614.7C7+                        1.5在上述对根据本发明方法适当处理的优选原料的说明中,“各种异构形式的戊烷和己烷”意指这两种化合物的所有支链,环状及直链形式。同样,前面的符号“iso”和“i”意指所示化合物的所有支链和环状形式的通用符号。

正烷烃异构化过程的条件可在较宽范围内变化。异构化反应可在较宽温度范围,但通常90-425℃间进行。最好,异构化温度约240-300℃,更好为250-290℃。优选的空速是每装填体积的活化的β沸石催化剂组合物,每小时约0.25-约5液体体积的可异构化正烷烃,同时反应区压最好在690KPa(100psi)-6900KPa(100psi)之间。特别希望在氢气存在下进行异构化反应,氢气用量为每mol可异构化正烷烃约0.5-约5mol氢气。不需要用纯氢,因为含氢气的气体也是适用的。异构化过程中可能的产物分离,如石脑油的催化转化是富氢气体的适宜来源。这些富氢气体通常含有如C1-C3的轻烷烃,也可含有其它化合物。

正烷烃转化过程可按间歇方式,半连续方式或连续方式进行。可在一个反应区内,或一系列串联或并联的反应区内进行,也可在-加长的管式反应区或一些这样的反应区内间歇或连续进行。采用多个反应区时,用一个或几个这样的β沸石催化剂组合物串联起来,制备所需的产品混合物是十分有利的。由于正烷烃异构化方法的性质,可能希望以活动(如流化或移动)床体系或各种输送床的任何体系,而不是一个固定床体系使用β沸石催化剂组合物,来进行一些过程。这样的体系可在一段时间后,容易地对β沸石催化剂组合物进行任何再生(如果需要的话)。如需要再生,可以移动床形式将β沸石催化剂组合物连续加到再生区,在再生区内再生,例如在含氧气氛中氧化除去含碳物质达到再生。

实例1向玻璃烧杯内55.6g的40%氢氧化四乙基铵(TEAOH)加入5.8g(干重)铝酸钠,室温下搅拌5min。生成的混合物搅拌下加热回流并保持2min,以溶解铝酸钠。生成的溶液为浅黄色,铝酸钠未完全溶解。将玻璃烧杯移到-冷搅拌热板上,搅拌下冷至室温。随着溶液冷却,从溶液中析出细小固体,附着在玻璃烧杯底和四壁。用聚四氟乙烯刮刀刮下玻璃烧杯四壁的白色固体,同时进行搅动。一旦铝酸钠/TEAOH溶液冷却,逐渐加入145.4gLudox LS氧化硅。制成的浆液非常稠,需要辅以聚四氟乙烯刮刀的手工搅动,以保持对稠化凝胶进行混合。待全部Ludox LS氧化硅添加完毕,将凝胶在电磁搅拌器上再混合10min。将凝胶分成两半,放入不同的特氟隆套管内,每个分别为93g和105g。将每一特氟隆套管置于不锈反应器,在炉内150℃温度下老化。6天后,将2个反应器取出炉,冷却过夜。将两管里的物料混合,再用200ml去离子水制浆并过滤。用去离子水将固体产物洗至pH<10。在室温下干燥该产物,用X-射线粉末衍射法测定得到β沸石的特征X-射线粉末图型。β沸石产品的收率约50g。该产品的各种分析特性如下:Na2O,wt.%                  0.47(TEA)2O,wt.%              18.27(NH4)2O,wt.%                -Al2O3,wt.%                6.38SiO2,wt.%                 75.27(TEA)2O/Al2O31.18(NH4)2O/Al2O3-SiO2/Al2O320.01接着在600℃,流动空气中对β沸石产品焙烧2hr.,使四乙基铵阳离子分解。冷却后,使焙烧的β沸石产品与NH4NO3溶液(每克焙烧的β沸石产品用5g NH4NO3)在回流下交换(3次),用蒸馏水洗涤并在室温下干燥。焙烧后铵交换的β沸石产品的分析特性如下:

Na2O,wt.%                 <0.03(TEA)2O ,wt.%                 -(NH4)2O,wt.%               2.69Al2O3,wt.%                 6.56SiO2,wt.%                  89.46(TEA)2O/Al2O3-(NH4)2O/Al2O30.81SiO2/Al2O323.15实例2-11用圆筒形石英管反应器(长254mm,内径10.3mm)评价例1制备的焙烧后铵交换的β沸石产品的正丁烷裂化活性。正丁烷裂化活性是可用于筛选催化活性的实验且可指示出异构化活性。评价了该焙烧后铵交换的β沸石产品的不同样品的正丁烷裂化活性。反应器内装入0.42-0.84mm大小的该β沸石产品的颗粒(20-40目),装填量从0.5-5g。在反应器内,或流动氦气或流动空气中,下表A所示活化温度下,活化该焙烧后铵交换的β沸石产品1hr.。反应原料是含2mol%正丁烷的氦-正丁烷混合物,β沸石产品活化后,将该原料在50cm3/min流速下通入反应器,同时保持反应温度500℃。用常规气相色谱技术分析原料和反应器流出物。操作运转10min后分析反应器流出物。根据分析数据,计算出假一级速度常数(KA)。结果示于表A。KA值越小,催化活性越低。

表A实例  活化温度(℃)  消耗的正丁烷    产物中异丁烷  kA编号                百分数(%)      百分数(%)2     500空气        91.3            0.4         1263     500氦气        88.4            1.1         1284     550空气        89.1            0.2         1325     550氦气         -               -           -6     600空气        93.1            0.1         1847     600氦气        93.3            0.1         1708     650空气        98.6            0.0         2459     650氦气        99.7            0.0         30510     700空气        82.2            0.0          6011     700氦气         -               -           -实例12-17为了具体说明根据本发明,从高温活化的β沸石得到的改性的催化结果,用LZ-202作比较,进行了一系列正丁烷裂化实验。LZ-202是一种由无有机物体系合成的ω型沸石,是公知的用于烃转化反应的活性催化剂。按上面例2-11所述方法,评价了铵交换的LZ-202的几种不同样品的正丁烷裂化活性。结果示于下面表B,可看出活性无异常变化。通常,对多数催化材料,550℃于空气中是催化的最佳活化温度。

表B实例  活化温度(℃)   消耗的正丁烷    产物中异丁烷   kA编号                 百分数(%)      百分数(%)12      500空气      76.8             4.1          7113      500氦气      82.1             3.5          5714      550空气      85.5             3.1          10015      550氦气      74.1             4.0          6016      600空气      62.5             4.6          5617      600氦气      56.0             5.0          37实施18将51.74g(干重)铝酸钠加到361.4g的40%氢氧化四乙基铵(TEAOH)中,室温下,在电磁搅拌器上混合5min后,加热至回流。铝酸钠未完全溶解。生成的浆液移入一塑料烧杯,用配备有快速平面混合搅拌器的Heidolph混合器搅拌至冷却止。随着浆液冷却,另外又生成沉淀。冷却后,搅拌下,向铝酸钠/TEAOH浆液中逐渐加入945.1g Ludox LS 氧化硅。形成很稠的凝胶,需辅以手工搅动方可保持对浆液进行混合。待全部Ludox LS 氧化硅加完后,凝胶混合5min而稍微稀薄些。将1295.5g凝胶移到2l反应器,在155℃老化7天。再将反应器冷却过夜。开始过滤很慢,但随着用去离子水洗涤产物后,过滤较容易了。洗涤直到滤液PH<10后,在室温下干燥固体产品并充分进行表征。此次制备收率350g。产品带有β沸石的特征X-射线粉末图型。β沸石产品的分析特性如下:

Na2O,wt.%            0.85(TEA)2O,wt.%        15.63(NH4)2O,wt.%          -Al2O3,wt.%          6.12SiO2,wt.%           77.40(TEA)2O/Al2O30.94(NH4)2O/Al2O3-SiO2/Al2O321.44然后在600℃,流动空气中焙烧该β沸石产品2hr.,以分解四乙基铵阳离子。冷却后,使焙烧的β沸石产品与NH4NO3溶液(每g焙烧的β沸石产品用5g NH4NO3)在回流下交换(3次),用蒸馏水洗涤并在室温下干燥。焙烧后铵交换的β沸石产品的分析特性如下:Na2O,wt.%          <0.03(TEA)2O,wt.%           -(NH4)2O,wt.%        2.78Al2O3,wt.%          6.03SiO2,wt.%           90.26(TEA)2O/Al2O3-(NH4)2O/Al2O30.90SiO2/Al2O325.39实例19-28按上述例2-11的方法,评价例18制备的焙烧后铵交换的β沸石产品的不同样品的正丁烷裂化活性。结果示于下面表C。

表C实例  活化温度(℃)    消耗的正丁烷    产物中异丁烷   kA编号                  百分数(%)       百分数(%)19    500空气         87.6              1.7        13920    500氦气         85.5              1.0        12021    550空气         85.2              0.5        12322    550氦气           -                -          -23    600空气         95.0              0.0        18224    600氦气         95.4              0.1        17325    650空气         98.1              0.0        21026    650氦气         97.6              0.0        23027    700空气         65.1              0.4        7128    700氦气           -                -          -为了具体说明本发明的独特性质,下面实例29-36去掉所需的活化步骤或一个或几个优选处理步骤,即焙烧和/或离子交换。

实例29-32按上述例18所述方法制备β沸石,但没有最后的活化步骤,亦无铵交换步骤。按上面例2-11所述方法评价该β沸石产品的正丁烷裂化活性。结果示于下面表D。结果表明,该β沸石产品的活性比按本发明制备的β沸石产品低的多,且进一步说明所要求的催化剂制备步骤的重要性。

表D实例   焙烧温度(℃)  消耗的正丁烷    产物中异丁烷      kA编号                 的百分数(%)    百分数(%)29      550空气      23.5             6.9             2230      600空气      44.8             2.3             6331      650空气      33.9             3.6             4332      700空气      46.6             1.2             43实例33按上面例18所述方法制备β沸石产品,只是没有氧化催化剂模板剂的初次焙烧步骤。该β沸石产品经铵交换并在550℃,空气中活化。活化后,按上面例2-11所述方法评价正丁烷裂化活性。结果列于下面表E。该结果表明,该β沸石产品的活性比按本发明制备的β沸石产品的低的多,且进一步说明所要求的催化剂制备步骤的重要性。

表E实例号  活化温度(℃)  消耗的正丁烷     产物中异丁烷      kA的百分数(%)       百分数(%)33       550空气       50.2               3.7           67实例34按上面例18所述方法制备β沸石产品,只是没有铵交换步骤。但该β沸石产品在初次焙烧步骤后,与水合氢离子交换。按上面例2-11所述方法评价该β沸石产品的正丁烷裂化活性。结果列于下表F。该结果表明,经水合氢离子交换的β沸石的活性不如经铵交换的β沸石。

表F实例号      活化温度(℃)     消耗的正丁烷     产物中异丁烷    kA百分数(%)       百分数(%)34           550空气           3.5             2.1             4实例35-36按上面例18所述方法制备β沸石产品,只是在铵交换后,在600℃用蒸汽对其进行水热处理。经这种蒸汽处理的产品都是充分结晶的。然后在650℃活化该β沸石产品,并按上面例2-11所述方法评价其正丁烷裂化活性。结果示于下表G。该结果表明,经水热蒸汽焙烧或活化的β沸石产品的活性不如在空气或惰性气氛中加热焙烧或活化的产品的活性。

表G实例号    活化温度(℃)  消耗的正丁烷    产物中异丁烷    kA百分数(%)       百分数(%)35        650氦气        2.8              21.1         236        650氦气        5.1              18.8         3实例37在烧杯内,用1l蒸馏水将按例18制备的100g焙烧后铵交换的β沸石产品制浆。向其中加入溶解有0.60gPt(NH3)4Cl2的500ml蒸馏水的第二种溶液,对β沸石进行铂交换。将制成的浆液过滤,用蒸馏水洗涤,干燥,与胶溶的氧化铝粘合剂一起挤条后,再干燥16hr.。挤出物含0.32wt%铂。将该挤出物分成两份,一份在空气中,最高温度650℃(下面的催化剂A)下焙烧,第二份在空气中,最高温度540℃(下面的催化剂B)下焙烧。

实例38用包括-不锈钢管(内径16mm)的固定床微反应器单元评价例37制备的催化剂A和B的不同样品的C5/C6异构化活性。将颗粒大小0.25-0.42mm的约8.0-12.0g筛选的催化剂A和B装入微反器,在200℃以上温度及流动氢气中还原16hr.。然后,向微反器通入由60wt%n-C5,35wt%n-C6,5wt%环己烷构成的原料,反应压力1827KPa(250psig),重时空速(WHSV)1.6hr-1,氢/烃原料摩尔比为2,反应温度列入下表H。在选择的操作时间收集产物,并用气相色谱分析。产物的评价分几方面,通过测定:

作为确定戊烷和己烷转化为异构化产物的相对转化程度。结果示于下表H。

表H催化剂  反应温度(℃)    i-C52,2-DMB   C5+收率转化率    转化率A      251.7           62.9      18.1       98.5A      260.0           68.1      19.0       97.3A      265.6           69.2      19.2       95.7A      273.9           69.1      19.0       92.4B      251.7           55.7      13.5       98.9B      260.0           63.1      15.1       97.8B      265.6           66.5      16.1       96.5B      273.9           68.9      18.0       93.7上面表H示出的结果绘图于图1和图2。

图1直观示出用在650℃活化的β沸石催化剂,540℃活化的β沸石催化剂和例39的标准参照催化剂,如例39所述异构化方法表明的C5异构化转化率与C5+收率的关系,具体而言,全部C5烃的i-C5wt%与生成的C5+wt%之间的关系。

图2直观示出用650℃活化的β沸石催化剂,540℃活化的β沸石催化剂和下述的标准参照催化剂,如例39所述异构化方法表明的C6异构化转化率与C5+收率的关系,具体而言,是全部C6烃的2,2-DMB(二甲基丁烷)wt%与生成的C5+wt%之间的关系。

从图1和图2可知,当催化剂在650℃活化时,其催化活性,即转化率和选择性,也即收率都比在540℃活化的有显著提高。δi-C5转化率,δ2,2-DMB转化率和δRON(研究辛烷值)是以标准参照催化剂为基础,用60∶40wt%n-C5∶n-C6原料组成,在96%C5+收率下计算的,表示如下:δi-C5转化率=i-C5转化率-63.00δ2,2-DMB转化率=2,2-DMB转化率-17.00δRON=0.60×0.33(i-C5转化率-63.00)+0.40×0.65(2,2-DMB转化率-17.00)标准参照催化剂是铂/H型丝光沸石催化剂,其i-C5转化率为63%,2,2-DMD转化率为17%。在上式中,0.60和0.40指原料组成中正戊烷和正己烷的重量分数,0.33指被100除的异戊烷(RON=94)与正戊烷(RON=71)之间的RON辛烷值的差额,0.65指被100除的2,2-DMB(RON=94)与正己烷(RON=29)之间的辛烷值的差额。结果示于下面表I:表I催化剂  δi-C5转化率   δ2,2-DMB转化率  δRONA      6.25             2.25             1.82B      4.40            -0.39             0.80HS-10   0.0              0.0              0.0表I结果示出,在C5/C6异构化法中,650℃下活化的β沸石的催化性能比在540℃的典型活化温度下活化的同样催化剂的催化性能优越。

实例39将约1g(干重)按例1制备的铵离子交换的β沸石样品在一浅层床内,流动干燥空气中活化2hr.,取出炉后,置于干燥器内冷却,再放入50ml的3.5M NaCl溶液。用0.1N的NaOH进行电势滴定。滴定结果示出各种活化条件下,沸石上产生的酸量和酸类型。

在45O℃,540℃,650℃和7O0℃活化4个样品,按上述对每一样品进行电势滴定。结果绘于图3。450℃焙烧后,测出两种酸:来自水合质子H3O+的强酸和弱酸物种羟铝阳离子Al(OH)2+。随着活化温度的提高,强酸量减少,弱酸量增加。不受限于任何确定的理论,可观察到,强酸性降低伴随着弱酸性增强,这一点与例38和图1、2所示的异构化活性及例2-11所示的正丁烷裂化活性是一致的。随强酸性(H3O+)降低和弱酸性增加(Al(OH)2+),异构化活性提高了。当滴定中观察不到强酸性且当弱酸性达到最大值时,出现了增强的异构化活性。随着在65O℃以上焙烧,弱酸性降低,也可预计到,基于正丁烷裂化的kA值(参见例2-11)的异构化活性亦会降低。

QQ群二维码
意见反馈