由陶瓷材料制成的物体

申请号 CN201180017241.1 申请日 2011-03-11 公开(公告)号 CN103037830A 公开(公告)日 2013-04-10
申请人 斯特劳曼控股公司; 发明人 M·斯蒂芬;
摘要 本 发明 涉及由稳定剂稳定的陶瓷材料制成的物体,其特征在于所述物体包括由物体表面延伸至预定深度的表层区,稳定剂富集在所述表层区中。
权利要求

1.由稳定剂稳定的陶瓷材料制成的物体,其特征在于所述物体包括由物体表面延伸至预定深度的表层区,所述稳定剂富集在所述表层区中。
2.根据权利要求1的物体,其特征在于在表层区中,陶瓷材料的稳定剂比例高于所述物体其余部分中的。
3.根据权利要求1或2的物体,其特征在于在表层区中,稳定剂的比例从预定深度到表面持续增加。
4.根据任一项前述权利要求的物体,其特征在于所述稳定剂选自钇、铈及其各自的化物。
5.根据任一项前述权利要求的物体,其特征在于表层区从物体表面延伸的深度为至少
20nm,更优选至少50nm,最优选至少100nm。
6.根据任一项前述权利要求的物体,其特征在于所述物体的至少一部分表面具有表面粗糙度。
7.根据任一项前述权利要求的物体,其特征在于所述物体由包括氧化锆的陶瓷材料制成。
8.根据权利要求7的物体,其特征在于所述氧化锆为氧化钇稳定的。
9.根据任一项前述权利要求的物体,其特征在于在表层区中的陶瓷材料晶体结构使得单斜晶相的比例至多与所述物体其它部分中的一样高。
10.根据权利要求9的物体,其特征在于在表层区中的陶瓷材料晶体结构使得单斜晶相的比例小于20%。
11.根据任一项前述权利要求的物体的制造方法,所述方法包括以下的步骤:将稳定剂施用到由陶瓷材料制成的本体表面,并在一定温度下加热具有施用在其上的稳定剂的本体,使得至少一部分稳定剂扩散进入到陶瓷材料中。
12.根据权利要求11的方法,进一步包括在施用稳定剂之前,通过消减处理使本体的至少一部分表面变粗糙的步骤。
13.根据权利要求12的方法,其特征在于所述消减处理包括蚀刻步骤。
14.根据权利要求13的方法,其特征在于所述消减处理进一步包括在蚀刻步骤之前的喷砂步骤。
15.根据权利要求11至14中任一项的方法,其特征在于通过溶胶-凝胶法特别是浸渍涂层法、通过化学蒸气沉积、通过物理气相沉积和/或通过离子注入将稳定剂施用到本体表面。
16.通过根据权利要求11至15中任一项的方法可获得的物体。
17.权利要求1至10和16中任一项的物体作为植入物,特别是牙齿植入物的用途。
18.由稳定剂稳定的陶瓷材料制成的物体,其特征在于所述物体包括由物体表面延伸至预定深度的表层区,所述陶瓷材料晶体结构的单斜晶相含量在所述表层区中降低。

说明书全文

由陶瓷材料制成的物体

[0001] 本发明涉及由稳定剂稳定的陶瓷材料制成的物体(body)(根据权利要求1的序言),涉及所述物体的制造方法(根据权利要求10的序言),以及所述物体作为植入物、特别是牙齿植入物的用途。
[0002] 目前使用的牙齿植入物通常由金属例如或陶瓷例如化锆基陶瓷制成。
[0003] 与颜色深并且因而与天然牙齿颜色错配的金属植入物不同,陶瓷材料具有其颜色可以与天然牙齿颜色接近匹配的优点。因而,努提供其中在插入之后可见的至少部分由陶瓷材料制成的牙齿植入物。
[0004] 尽管在颜色方面其具有有利的性质,使用陶瓷材料用于牙齿植入物在许多情况下受到其稳定性差的限制,其稳定性通常相当低。
[0005] 一种具有高机械强度的陶瓷材料公开在US-B-6,165,925中,该文件涉及用于生产烧结的半成品的氧化钇-稳定的氧化锆,其主要为四方晶形(氧化钇-稳定的四方晶氧化锆;Y-TZP)。
[0006] 尽管其具有有利的机械性质,特别是其高的强度、韧性和耐磨性,然而,在分存在下,氧化钇-稳定的四方晶氧化锆(Y-TZP)具有低温降解(LTD)的倾向,如例如由Chevalier等人在J.Am.Ceram.Soc,92(9),1901-1920(2009)中描述的。
[0007] 低温降解是一种动力学现象,其中在相当窄但重要的温度范围内,通常为室温至约400℃,多晶的四方晶氧化锆转变成单斜晶氧化锆。
[0008] 降解过程是从材料表面到其内部,并伴随有微观和宏观裂缝,因而导致材料的断裂强度降低。
[0009] 该问题,也称为“热液稳定性低”,对于使用氧化锆用于牙齿植入物特别相关,因为如此,材料被长期暴露于湿润并且温暖的环境中,需要满足相对严格的安全要求。
[0010] 另外,牙齿植入物通常接受消减处理(subtractive treatment),以便改善其骨整合(osteointegrative)性质。在这点上,例如,EP-A-1 982 670涉及一种为由陶瓷材料制成的牙齿植入物的表面提供形貌(topography)的方法,其中至少一部分表面被包括氢氟酸蚀刻溶液所蚀刻。然而,发现蚀刻陶瓷材料通常伴有其热液稳定性的进一步下降。
[0011] 为了改善其热液稳定性,已经提议给氧化钇-稳定的氧化锆中掺杂适量的二氧化铈。在这点上,参考Huang等人,Journal of the European Ceramic Society 25(2005),第3109-3115页和Settu等人,Journal of the European Ceramic Society 16(1996),第1309至1318页,两篇文献都是关于氧化钇-二氧化铈-稳定的氧化锆。
[0012] 然而,氧化钇-二氧化铈-稳定的氧化锆具有颜色比氧化钇-稳定的氧化锆更深的缺点。如果将该材料用于牙齿植入物,这点特别不利,牙齿植入物优选地具有与天然牙齿颜色匹配的浅颜色。此外,氧化钇-二氧化铈-稳定的氧化锆具有在烧结之后不适于接受热-等静压处理(HIP)的缺点。因此,氧化钇-二氧化铈-稳定的氧化锆可获得的强度比氧化钇-稳定的氧化锆要低。
[0013] 做为选择,已经报道Al2O3晶粒的均质分散体进入四方晶氧化钇-稳定的氧化锆基质中增加了四方晶相的热液稳定性,如例如上述提及的Huang等人的论文中阐述的。然而,掺杂氧化对于氧化钇-稳定的氧化锆的半透明性还具有不利的影响。
[0014] 考虑到已知稳定的陶瓷材料、特别是氧化钇-稳定的氧化锆的缺点,本发明因而要解决的问题是提供由陶瓷材料制成的物体,通过保持陶瓷材料的机械性质和视觉性质,所述物体具有改善的热液稳定性,即在温暖并且湿润的条件下改善的长期稳定性,所述物体基于该陶瓷材料。
[0015] 该目的通过根据权利要求1的物体实现。优选的实施方案在从属权利要求中给出。
[0016] 因此,本发明涉及一种由稳定剂稳定的陶瓷材料制成的物体。根据本发明,所述物体包括由物体表面延伸至预定深度的表层区,稳定剂富集在所述表层区中。
[0017] 因而,表层区从表面向下到达一定深度,该深度可以根据物体的特定目的而变化。
[0018] 在一方面,当在本发明的上下文中使用时,术语“富集的”指其中在表层区中,陶瓷材料的稳定剂比例高于物体其它部分中的情形。因为稳定剂也可从比物体的其它部分具有更低比例的稳定剂的表层区开始富集,术语“富集的”也可以指其中在表层区中,稳定剂的比例与物体的其它部分中一样高的情形。
[0019] 当在本发明的上下文中使用时,术语“比例”指分别相对于陶瓷材料的原子或分子总量计,分别为原子形式或氧化形式的稳定剂的原子百分数或摩尔百分数。
[0020] 因为只有表层区富集稳定剂,陶瓷材料的其它机械性质-除了热液稳定性之外-可以基本上保持不变。特别地,可以保持例如氧化钇-稳定的四方晶氧化锆的强度、韧性和耐磨性。而且,物体的外观可以保持基本上不变。
[0021] 根据本发明一个优选的实施方案,表层区从物体表面延伸至至少20nm的深度,更优选至少50nm,最优选至少100nm,从而提供特别高的热液稳定性。为了不影响物体的机械性质、视觉性质和骨整合性质,表层区从物体表面延伸至小于10μm(微米)的深度,更优选小于5μm(微米),最优选小于1μm(微米)。因此,表层区优选地延伸至范围为20nm至10μm的深度,更优选50nm至5μm,最优选100nm至1μm。
[0022] 如下详细阐述的,稳定剂在物体表层区中的富集可以通过非常直接的方法获得,所述方法包括以下的步骤:将稳定剂施用到本体(basic body)表面,并在一定温度下加热具有施用在其上的稳定剂的本体,使得至少一部分稳定剂扩散进入到其被整合至其中的陶瓷材料中。在得到的物体内,陶瓷材料的稳定剂比例典型地从表面的预定深度开时持续增加。
[0023] 稳定剂的富集可以通过与本体的稳定剂相同的稳定剂或不同的稳定剂来获得。优选,施用的稳定剂与本体的相同,因而不再引入其它组分。
[0024] 本体通常是通过烧结法制备的。用于获得陶瓷体、特别是陶瓷牙齿植入物的烧结法是本领域技术人员已知的。
[0025] 为了向所述物体提供骨整合性质,如果该物体用作牙齿植入物,该性质会特别相关,至少一部分物体表面具有表面粗糙度。如上所述,用于提供表面粗糙度的方法通常包括蚀刻表面,其可导致物体的热液稳定性降低。在这方面,可参考Journal of the American Ceramic Society,69[7]583-84(1986),根据该文献,在酸性溶液中,钇组分的选择性溶解加速,因为钇离子比锆离子的性更强。根据本发明,可以通过将稳定剂富集在表层区中来逆转热液稳定性的降低;所述物体因而被再稳定。
[0026] 鉴于稳定剂扩散到陶瓷材料中并因而整合到所述材料中的事实,不存在不连续的涂层,因而在施用的稳定剂和本体之间没有不连续的边界。因此,施用的稳定剂没有如当将另一种材料的单独涂层施用到陶瓷体上时典型地可见的分裂出来。
[0027] 原则上,本发明涉及稳定剂稳定的任何陶瓷材料。特别地,稳定剂优选选自钇、铈及其各自的氧化物。
[0028] 更特别地,本发明的物体优选由包括氧化钇-稳定的氧化锆的陶瓷材料制成。通常,使用的氧化钇-稳定的氧化锆是四方晶相的。如上所述,氧化钇-稳定的四方晶氧化锆具有非常高的强度、高韧性和良好的耐磨性。另外,该材料具有可以接近适合天然牙齿颜色的浅颜色。
[0029] 本发明还涉及的其它稳定的陶瓷材料,比如氧化铝基陶瓷材料,都是本领域技术人员已知的。在这点上,本领域技术人员也意识到除上述提及那些以外的稳定剂。例如,根据使用的陶瓷材料和要获得的目的,可以使用、铟、镧和/或钪及其相应氧化物作为稳定剂。在这点上,还参考上述提及的Chevalier的论文,其中指出例如镁作为其它稳定剂。除3+
了镁或氧化镁之外,也可以使用例如钙或氧化钙作为稳定剂。其它稳定剂包括例如Ga ,其也在Chevalier的论文中提及。所有这些稳定剂都被在本发明上下文中使用的术语“稳定剂”所涵盖。
[0030] 如下详细显示的,在根据本发明物体的表层区中,陶瓷材料的晶体结构通常使得单斜晶相的比例至多与物体其它部分中的一样高。更特别地,单斜晶相的比例优选小于20%。这与不具有稳定剂富集的表层区的已知陶瓷体形成对照,因为从四方晶转化到单斜晶相通常在物体表面开始,如例如上述Chevalier等人的论文所解释的。一种用于测定单斜晶相比例的合适的方法在以下给出实施例的上下文中具体描述。
[0031] 除了上述定义的物体之外,本发明还涉及一种用于制备物体的方法,所述方法包括以下的步骤:将稳定剂施用到由陶瓷材料制成的本体表面,并在一定温度下加热具有施用在其上的稳定剂的本体,使得至少一部分稳定剂扩散进入到陶瓷材料中。
[0032] 如上所述,所述本体优选由包括氧化钇-稳定的氧化锆的陶瓷材料制成,但决不限于此。所述本体通常由本领域技术人员已知的烧结法制备。
[0033] 为了获得稳定剂充分地扩散到陶瓷材料中,优选选择低于烧结温度的足够温度。实际温度取决于使用的具体陶瓷材料和稳定剂。开始理解本发明的本领域技术人员懂得如何设定该温度。
[0034] 如上所述,如果所述物体用作牙齿植入物,特别相关的骨整合性质可通过向物体提供表面粗糙度来获得。因而,根据本发明,所述方法优选包括以下的步骤:在施用稳定剂之前,通过消减处理使至少一部分本体表面变粗糙。
[0035] 也如上所述,如果所述消减处理包括蚀刻步骤,则获得具有特别高的骨整合性质的物体。因此,特别优选用包括氢氟酸的蚀刻溶液,在至少70℃的温度下,进行蚀刻步骤。通过该处理,从大批陶瓷材料中除去离散的晶粒或晶粒凝聚物,由此形成具有凹口和空腔的表面,从而得到“微观的”表面粗糙度。该蚀刻步骤的详细描述在EP-A-1982670中给出,特别是第[0024]至[0030]段、[0060]至[0064]段和[0079]至[0081]段,其内容通过引用结合至本文中。
[0036] 进一步优选的是所述消减处理进一步包括在蚀刻步骤之前的喷砂步骤。因此,获得“宏观”表面粗糙度,其与上述提及的“微观”表面粗糙度结合进一步有助于物体的高骨整合性质。
[0037] 根据本发明方法的另一个优选的实施方案,通过溶胶-凝胶法特别是浸渍涂层法、通过化学蒸气沉积、通过物理气相沉积和/或通过离子注入将稳定剂施用到本体表面。
[0038] 关于通过溶胶-凝胶法施用稳定剂,在此参考Makishima等人,J.Am.Ceram.Soc,69(6),1989,C-127-C-129,其描述了通过溶胶-凝胶浸渍涂层方法进行CeO2-TiO2涂层的制备。该方法适合其它稳定剂,比如氧化钇。
[0039] 类似地,进一步参考上述指出的Settu等人的论文,其中描述了通过在室温下,向金属盐的混合溶液中加入草酸制备Y2O3-ZrO2和Y2O3-CeO2-ZrO2粉末的溶胶-凝胶法,和参考Bourell等人的J.Am.Ceram.Soc,76(3),1993,第705-711页,其中描述了使用四氯化锆和水合的氯化钇前体进行纳米相氧化钇-稳定的四方晶氧化锆的溶胶-凝胶合成。
[0040] 此外,Miyazawa等人,J.Am.Ceram.Soc,78(2),1995,第347-55页描述了氧化锆溶胶在基材上的浸渍涂层。
[0041] 关于通过化学汽相淀积(CVD)施用氧化形式的稳定剂,特别是氧化钇,在此参考Zhang等人的Chem.Mater.1999,11,148-153,其中描述了通过使用氧气作为载气的催化剂-增强的化学汽相淀积制备钇-氧化物薄膜
[0042] 所提及的Miyazawa等人、Bourell等人、Settu等人、Makishima等人和Zhang等人的论文的内容通过引用而结合至本文中。
[0043] 鉴于如上所述方法,本发明还涉及通过所述方法可获得的物体。
[0044] 根据再一个方面,本发明还涉及一种由稳定剂稳定的陶瓷材料制成的物体,其特征在于所述物体包括从物体表面延伸至预定深度的表层区,陶瓷材料的晶体结构单斜晶相的含量在所述表层区中降低。
[0045] 特别地,根据该方面,本发明涉及一种物体,其中在表层区中,晶体结构的单斜晶相比例至多与物体其它部分中的一样高。
[0046] 如上所述,本发明所获得的目的特别地用于植入学领域,特别是口腔植入学领域。因此,本发明进一步涉及所述物体作为植入物,特别是牙齿植入物的用途。
[0047] 本发明通过下述实施例来进一步阐述:实施例
[0048] 圆片(discs)的制备
[0049] 通过切开由所述材料制成的棒,制备具有厚度为约1mm和直径为约5mm的氧化钇-稳定的氧化锆的圆片(CeramTec AG的ZIOLOX MZ111 HIP;AZP2009-0315)。然后,将所述圆片在95℃下,在包括氢氟酸(40%)的蚀刻溶液中蚀刻10分钟。
[0050] 圆片的涂层
[0051] 然后,使用气流溅射,分别用铈、二氧化铈、钇和氧化钇涂覆所述圆片。气流溅射是在具有80升体积且装有气流溅射源的真空室中进行的,所述气流溅射源分别包括金属铈或钇靶(纯度>99.9%)。
[0052] 基材座(substrate holder)在水平方向是可活动的,因而允许基材即所述圆片在调整溅散源时保持未暴露状态,并且进一步允许在喷溅期间进行振荡运动,以便以均匀的方式涂覆所述圆片的相对大面积。基材座进一步装有陶瓷辐射加热器,因而允许设置所述圆片至预定温度。使用散射电子显微镜检查领域中通常使用的导电垫(conductive pads),将所述圆片排列在基材座上。
[0053] 使用下述市售可获得的装置:
[0054] 源发生器:ENI DC-发生器DCG100,max.10Kw
[0055] 热发生器:电子测量电源部件
[0056] 运动控制器:ISEL CNC-控制器C10C-E/A
[0057] 气流控制器:MKS Multi-Gas控制器647B
[0058] 温度控制器:KS 90-1温度控制器
[0059] 工艺参数典型地设定如下:
[0060] 溅射目标铈:纯度>99.9%
[0061] 溅射目标钇:纯度>99.9%
[0062] 目标尺寸:空心圆筒状物(长度:60mm;内径:40mm)
[0063] 通常,溅射步骤可以分成四个步骤,即预热、调节所述源、施用涂层和冷却。
[0064] 在这点上,表1中给出了分别用铈和钇喷溅所述圆片(金属涂层)和分别用二氧化铈(二氧化铈)和氧化钇(氧化钇)喷溅所述圆片(氧化涂层)所使用的具体工艺参数。
[0065] 表1
[0066]
[0067] 使用小于50nm/s的相对低的涂覆速率制备具有厚度5nm、25nm和125nm的涂层。表2中给出了相应的样品。
[0068] 表2
[0069]样品编号 涂层 施用涂层的持续时间 涂层厚度(nm)
23 Ce 150 125
24 Ce 30 25
25 Ce 6 5
27 CeO 6 5
28 CeO 30 25
29 CeO 150 125
34 Y 200 125
35 Y 40 25
36 Y 6 5
38 Y2O3 200 125
39 Y2O3 40 25
40 Y2O3 6 5
[0070] 所有的氧化涂层都是完全透明的。对于这些样品,没有检测到薄层干涉。
[0071] 在非氧化溅射条件下获得的金属涂层的外观主要取决于在空气中的后氧化(post-oxidation),并且根据施用的金属和涂层的厚度有所不同。所有铈涂层的样品在空气中变得完全透明,而钇涂层的样品的吸光度取决于涂层的厚度。
[0072] 使用XPS(X射线光电子光谱法)分别测定样品表面中锆、钇和铈原子的比例。使用非涂层的圆片作为参照实施例(Ref.)。结果在表3中给出。
[0073] 表3
[0074]
[0075]
[0076] 单斜晶相比例的测定
[0077] 为了测定单斜晶相的晶体结构的比例,通过X射线衍射(XRD)进一步分析涂层。使用Bruker D8GADDS型衍射计,其具有10°的固定入射,并且装有Co-阳极(30kV/30mA)和石墨初级单色器(primary monochromator)。使用具有300μm孔径的500μm单毛细光学镜片(monocapillary optics)将X射线束聚焦于样品上。
[0078] 根据Toraya等人,单斜四方晶ZrO2系统通过X射线衍射进行定量分析的校准曲线(Calibration curve for quantitative analysis of the monoclinic tetragonal ZrO2system by X-rays diffraction),J.Am.Ceram.Soc,1984,67:119-21的方法,与DIN VENV 14273一致进行衍射图分析。
[0079] 因此,可以根据下述方程确定单斜晶相的比例:
[0080]
[0081] 其中Im(111)和Im(-111)指单斜晶的主反射,It(101)指四方晶的主反射。表中4给出了单斜晶相在样品表面积中的比例:
[0082] 表4
[0083]样品编号 涂层 涂层厚度(nm) 单斜晶相的比例(%)
Ref. - - 3.6
23 Ce 125 13.0
24 Ce 25 5.8
25 Ce 5 5.8
27 CeO 5 5.9
28 CeO 25 11.0
29 CeO 125 11.5
34 Y 125 4.1
35 Y 25 4.9
36 Y 5 4.9
38 Y2O3 125 9.7
39 Y2O3 25 4.4
40 Y2O3 5 4.2
[0084]
[0085] 对于样品编号23、28、29和38,相对高比例的单斜晶相似乎是假象,这可以通过存在其它相(可能分别是CeO2和Y2O3)来解释。
[0086] 热处理
[0087] 通过将样品加热至约1250℃的温度3小时,对样品进行热处理。加热是在烘箱(Mihm-Vogt GmbH&Co.KG的)中进行的。温度设定为仅仅稍低于原材料的烧结温度(为约1280℃),以便获得与将涂层材料可能扩散到本体材料中一样高的温度。
[0088] 然后,使用上述方法,特别是XPS和XRD来分析样品。
[0089] 关于热处理的样品的XPS分析,在表5中给出结果:
[0090] 表5
[0091]
[0092] 可以通过热诱导的铈、钇及其氧化物分别扩散到本体陶瓷材料中来解释结果。
[0093] 虽然对于铈和二氧化铈涂层的样品,涂层厚度只稍微依赖于Ce在陶瓷材料中的最终比例,但是对于分别用钇和氧化钇涂层的样品,该效果更加显著。
[0094] 使用X射线衍射(XRD)对样品进行进一步分析,以便确定单斜晶相的比例。在表6中给出分析结果。
[0095] 表6
[0096]
[0097] 根据ISO 13356,在高压灭菌器(Systec DE-56)中,在135℃下,模拟样品的热液老化5小时。通过上述X射线衍射(XRD)和场致发射扫描电子显微镜术(FE-SEM)分析根据该加速老化方法处理的样品。
[0098] 在表7中给出XRD分析的结果。
[0099] 表7
[0100]
[0101]
[0102] 如表7中给出的,对于在加热之前具有的涂层厚度为至少25nm的所有样品来讲,它们均获得小于20%的单斜晶相比例。
[0103] 基于表7中给出的结果,将具有分别富集铈或钇的表层区的样品的相变行为进一步显示在附图中,其中:
[0104] 图1以单斜晶相比例的函数,显示在样品23TA至29TA的表面中铈的比例的图示;和
[0105] 图2以单斜晶相比例的函数,显示在样品34TA至40TA的表面中钇的比例的图示。
[0106] 如从图中显而易见的是,相变行为在钇富集的样品和铈富集的样品之间完全不同。虽然对于钇富集的样品而言,钇比例的阈值在约15%至20%范围,从该范围开始,单斜晶相的比例容易下降至低于5%的值,但是铈富集的样品在相对低的铈比例下显示出强的作用,随着铈比例的增加,该作用持续降低。
[0107] 对于铈-或二氧化铈-富集的样品,如果稳定剂的比例高于约5原子%,则获得小于20%的单斜晶相比例,而对于钇-或氧化钇-富集的样品,如果稳定剂的比例高于约20原子%,则获得小于20%的单斜晶相比例。
[0108] 如上所述,如果本体是由氧化钇-稳定的氧化锆制成的,则优选将钇或氧化钇施用到本体上。因此,如在实施例中给出的,表面中钇的比例优选为20至25原子百分数,从而能够获得全稳定的氧化锆陶瓷体。通过在加热之前施用钇或氧化钇涂层,可以获得20至25原子百分数的钇,所述涂层具有的厚度范围为20至30nm。
QQ群二维码
意见反馈