有源光纤和有源光纤的制造方法

申请号 CN200880119087.7 申请日 2008-09-29 公开(公告)号 CN101884146B 公开(公告)日 2012-06-27
申请人 坦佩雷科技大学光电子研究中心; 发明人 Y·沙莫罗夫斯基; O·鄂霍汀考夫; M·派萨; V·菲立波夫;
摘要 一种有源光纤的一部分(11),包括:有源芯(1)、内包层(2),以及外包层(3)。所述芯(1)的直径和所述内包层(2)的厚度沿着有源光纤的所述部分(11)的长度逐渐变化。这形成锥形纵向曲线,其能够这使得沿着光纤的该部分(11)的长度进行连续模式转换过程成为可能。一种锥形有源光纤的一部分的制造方法,包含以下步骤:制造预制件,以便从所述预制件 拉拔 有源光纤;将所述预制件安装到 拉丝 塔;在所述拉丝塔中拉拔光纤;以及在拉拔光纤期间改变包括放线预制件速度和 收线 光纤速度的两个参数中的至少一个。
权利要求

1.一种有源光纤的一部分(11),其包括:
芯(1),其具有第一折射率,所述芯(1)是有源的,
内包层(2),其具有第二折射率,其用于传播辐射,所述第二折射率小于所述第一折射率;以及
围绕所述内包层(2)的外包层(3),所述外包层具有第三折射率,所述第三折射率小于所述第二折射率,
其特征在于,所述芯(1)的直径和所述内包层(2)的厚度沿着有源光纤的所述部分(11)的长度逐渐改变形成锥形纵向曲线,这使得沿着光纤的该部分(11)的长度进行连续模式转换过程成为可能,以及锥形芯(1)在光纤的该部分(11)的粗端支持多模工作;其中所述有源光纤的所述部分(11)的所述锥形纵向曲线是从包括幂定律曲线、指数曲线、以及这些曲线的组合的组中选择的。
2.根据权利要求1所述的有源光纤的所述部分(11),其特征在于,所述有源光纤的所述部分(11)的所述芯(1)在光纤的所述部分(11)的细端支持单模工作。
3.根据权利要求1-2中任一项所述的有源光纤的所述部分(11),其特征在于,所述内包层(2)的外边界具有非圆形截面。
4.根据权利要求2中任一项所述的有源光纤的所述部分(11),其特征在于,所述有源光纤的所述部分(11)的所述芯(1)从所述光纤的中心偏移。
5.根据权利要求2中任一项所述的有源光纤的该部分,其特征在于,所述有源光纤的所述部分(11)包括围绕所述外包层(3)的具有第四折射率的第三包层(5),所述第四折射率小于所述第三折射率。
6.根据权利要求2中任一项所述的有源光纤的所述部分(11),其特征在于,所述有源光纤的所述部分的所述芯(1)是强烈双折射的,所述芯(1)在常规偏振和非常规偏振之间-5
具有大于5×10 的折射率差。
7.根据权利要求2中任一项所述的有源光纤的所述部分(11),其特征在于,泵浦光以低于由光纤的数值孔径规定的最大的角耦合到光纤的所述部分(11)。
8.一种制造有源光纤的一部分的方法,其特征在于,所述方法包括以下步骤:
制造预制件,以便在拉丝塔中从所述预制件拉拔有源光纤;
将所述预制件安装到拉丝塔;
在所述拉丝塔中拉拔光纤;以及
在拉拔所述光纤期间改变包括放线预制件速度和收线光纤速度的两个参数中的至少一个以合成所述有源光纤的芯的直径和内包层的厚度沿着有源光纤的所述部分的长度形成的锥形曲线;其中所述有源光纤的所述部分(11)的所述锥形纵向曲线是从包括幂定律曲线、指数曲线、以及这些曲线的组合的组中选择的。
9.根据权利要求8所述的方法,其特征在于,所述方法包括以下步骤:
聚合物涂敷所述光纤。
10.根据权利要求8-9中任一项所述的方法,其特征在于,所述方法包括以下步骤:
改变所述预制件的温度以合成所述有源光纤的所述部分的锥形曲线。
11.根据权利要求8-9中任一项所述的方法,其特征在于,所述方法包括以下步骤:
在拉拔所述有源光纤之前预拉拔所述预制件。
12.一种有源光纤的一系列部分(12),其特征在于,所述有源光纤的所述系列部分(12)包括超过一个根据权利要求1-7中任一项所述的有源光纤的所述部分(11),其按顺序存在以形成光纤的一部分。
13.根据权利要求12所述的有源光纤的所述系列部分(12),其特征在于,泵浦光被从所述系列部分(12)的两端耦合到所述有源光纤的所述系列部分(12)。

说明书全文

有源光纤和有源光纤的制造方法

技术领域

[0001] 本发明涉及有源光纤、光纤放大器、以及光纤激光器

背景技术

[0002] 双包层有源光纤被广泛应用于光纤激光器和放大器。具有数千瓦的CW输出功率的光纤激光器和放大器已经被演示。除了明显优点之外,已知的双包层有源光纤具有严重的缺陷
[0003] 首先,对能够发射到双包层光纤的浦功率的级别有限制。这因此限制光纤激光器和放大器的功率缩放能。此外,在单模光纤中,基模传播要求对最大芯直径施加限制。该要求规定即使具有小数值孔径(NA<0.07)的光纤,对1μm的工作波长,芯直径不应超过12μm。同时,由于双包层光纤中的泵浦吸收取决于芯/包层直径比,双包层光纤的外直径应不超过300-400μm。考虑到可用的泵浦源的有限的亮度,光纤直径的限制自动地导致对有源部件的输出功率的限制。
[0004] 其次,每个包层传播模式的泵浦吸收系数由芯中的模式场分布与掺杂物(例如稀土离子)分布之间的交叠确定。因此,由于各个模式的模式场分布中的差异,每个模式将被以不同的效率吸收。因此,基本上能够将全部包层传播模式划分为两组:“可吸收”和“不可吸收”模式。
[0005] 第一组模式具有轴向对称模式场分布。这些是在掺杂芯(即,在光纤的中心)具有最大密度的模式。因此,这些模式被良好地吸收以及对光放大贡献很大。第二组模式仍然包含泵浦功率的必要部分,与芯和掺杂物具有小的重叠(overlap integral)。因此在该组中的模式在光纤的芯不被有效地吸收,并且不对光放大有显著贡献。
[0006] 就射线光学而言,“可吸收”模式能够被理解为沿着光纤传播的子午射线跨过光纤的光轴,即掺杂芯。“不可吸收”模式能够被理解为斜 射射线。这些斜射射线具有螺旋轨迹,并且仍被双包层光纤的内包层引导,但不跨过掺杂芯传播。
[0007] 通常的泵浦吸收根据以下情景发生。第一组模式,子午射线随着其在光纤的长度方向上传播而被迅速吸收。大部分地集中到斜射射线的其余的泵浦辐射实践上没有任何吸收地传播。图1示出通过双包层光纤传播之前和之后的泵浦辐射的模态光谱。由于不同模式具有显著不同的吸收,所以模态光谱随着光沿着光纤传播显著地改变;光谱“孔”被烧入光谱。在“可吸收”模式经历显著吸收之后模态光谱开始稳定。
[0008] 沿着光纤长度方向的粒子数反转的非均匀分布主要是泵浦辐射随着传播距离发生的模态内容的变化的结果。有源光纤具有不充分反转的部分作为吸收器工作。这造成激光器和放大器的泵浦转换效率的退化。
[0009] 存在三个主要途径来提高双包层光纤中受限制的泵浦吸收。第一种使用具有特殊形状包层的光纤。包层的截面能够是例如截断型(truncated)、双截断型、矩形、六边形、或十边形并且光纤能够具有从光纤的中心偏移的芯(图2)。由于射线的传播轨迹变得更杂乱,所以包层或偏移芯的特殊形状使模态光谱丰富。这造成光纤的模态光谱更连续。因此,相比于圆形对称光纤,更大部分的总泵浦功率被集中到模态光谱的“可吸收”模式。泵浦功率到有源芯的低吸收是因为光纤的规则性,即模态光谱对于光纤的全部部分相同。从现有技术已知包层的特殊几何形状导致泵浦功率吸收的增加,但不能完全地消除吸收饱和的问题。
[0010] 第二种途径开拓由于嵌入到光纤涂层中的诸如沙子、金属、陶瓷或塑料颗粒的颗粒状的物质引起的光纤的非规则弯曲。周期性的非规则压力和弯曲产生模耦合,其结果导致光学功率的一部分从斜射射线(“不可吸收”模式)转移到子午射线(“可吸收”模式)(图3a)。尽管,非规则性可以提高泵浦功率的吸收,但是该效果强烈地取决于光纤几何形状。如已知的,模耦合系数D强烈地取决于光纤的外直径:
[0011] D∝d8/b6λ4 (1)
[0012] 其中d是芯直径,b是光纤的外直径,以及λ是工作波长。
[0013] 从(1)可见,具有大直径(300-500μm)的光纤的模耦合系数 非常低。此外,该方法仅仅可应用于具有小于200μm的包层外直径的相对薄的光纤,因为很难以所要求的空间周期弯曲300-600μm直径的光纤。另外,包层的杂乱机械应力和扰动可以导致斜射和泄露射线之间的耦合,结果造成泵浦功率损失的增加。这将导致有源部件的效率的退化。 [0014] 提高双包层光纤中的泵浦吸收的第三种途径已经在美国专利#6,687,445B2中被公开,其中特殊“截断区域”或“细丝”被嵌入到光纤包层(图3b)中。“截断区域”可以由玻璃、空气、陶瓷、金属或其他材料制成。“截断区域”用作散射中心,其增强“不可吸收”斜射射线到“可吸收”子午射线的转换。该方法具有的明显缺点是由于在直接嵌入到包层中的“截断区域”的散射将必然地导致泵浦功率的显著泄露到光纤之外。即该方法将导致泵浦损失。
[0015] 发明目的
[0016] 本发明的目的是通过提供新型有源光纤结构及其制造方法解决现有技术中的上述技术问题。

发明内容

[0017] 根据本发明的一种有源光纤的一部分包括:有源的芯和用于传播泵浦辐射并且折射率小于芯的折射率的内包层。该有源光纤的该部分还包括围绕内包层的外包层。该外包层的折射率小于内包层的折射率。根据本发明,芯的直径和内包层的厚度沿着有源光纤的该部分的长度逐渐改变形成锥形纵向曲线或轮廓并且使沿着光纤的该部分进行连续模式转换处理成为可能。该锥形芯在光线的该部分的粗端支持多模工作。
[0018] 根据本发明制造有源光纤的一部分的方法包含以下步骤:制造预制件,以便在拉丝塔中从所述预制件拉拔有源光纤;将所述预制件安装到拉丝塔;以及在所述拉丝塔中拉拔光纤;在拉拔光纤期间改变包括放线预制件速度和收线光纤速度的两个参数中的至少一个。该方法合成所述有源光纤的一部分的锥形曲线。
[0019] 在根据本发明的方法的一个实施例中,通过在拉拔光纤之前预拉拔预制件来减少预制件的直径。
[0020] 在根据本发明的方法的另一个实施例中,在拉拔光纤期间,预制件和存放预制件的炉子的温度被改变。这将导致稳定状态条件的变化和光纤直径的变化。 [0021] 在根据本发明的制造有源光纤的一部分的方法的又一个实施例中,在从拉丝塔的高温炉中出来之后锥形光纤被涂敷聚合物涂层。
[0022] 泵浦功率可以从光纤的该部分的一端或从光纤的该部分的两端被耦合到光纤的该部分的内包层。
[0023] 根据本发明的一个实施例,不只一个根据本发明的光纤的锥形部分可以按顺序存在以形成光纤的双锥形或多锥形部分。
[0024] 根据本发明的另一个实施例,芯在光纤的该部分的细端上支持单模工作。有源光纤的锥形部分可以被设计为:对于工作波长,芯在细端能够只支持基模,而芯在粗端能够支持多模工作。当光纤的该部分用于例如激光器或放大器的光放大时,输出辐射将是单模。单模工作在例如电信应用中是有益的,其中光脉冲的色散应被最小化。
[0025] 在本发明的另一个实施例中,芯在光纤的该部分的细端支持多模工作。在锥形光纤的该部分的细端具有多模的芯具有例如抑制光纤的锥形部分中的受激布里渊散射,其在当光纤用于高功率应用时特别重要。多模光纤输出的另一优点是大模式场直径(大横截芯面积),这有助于输出到其他部件的耦合。大模式场直径还引起发生受激布里渊散射的更高的阈值光功率。
[0026] 在本发明的又一个实施例中,有源光纤的该部分的锥形纵向曲线或轮廓是线性曲线、幂定律曲线、指数曲线、或这些曲线的组合。
[0027] 与现有技术的有源光纤相比,根据本发明的有源锥形光纤的该部分的重要特征是具有显著更高的泵浦光吸收。除了已知的增加有效光学长度的效果之外,根据本发明的锥形光纤的该部分还利用模耦合(或模混合),其显著地提高了泵浦光吸收。就射线光学而言,这能够被理解为穿过光纤的有源锥形部分传播的泵浦光的每条射线的反射在每次从光纤的内包层和外层之间的边界反射之后增大。
[0028] 相比于现有技术的具有单模输出的有源光纤,根据本发明的光纤 的该部分的粗端的粗芯和所述芯的锥形曲线导致更大体积的有源芯,在其中泵浦光能够被吸收。这还有助于泵浦光吸收增加以及根据本发明的有源光纤的该部分的效率的显著增加。 [0029] 根据本发明的有源光纤的该部分的结构的实质益处是该结构对输入的泵浦光具有大的接受孔径,以及如上所解释地同时显著地提高泵浦光到芯的吸收。这些属性减轻或消除现有技术的有源光纤的受限功率输出的问题。有源光纤的该部分的粗端的大直径允许将泵浦辐射从高功率低强度的泵浦源以高效率发射到锥形光纤中。例如,具有100-200mm*mrad的光束产品参数(BPP)的泵浦源可以被使用。这使得能够使用千瓦级别半导体二极管作为根据本发明的有源光纤的该部分的泵浦源。
[0030] 在本发明的一个实施例中,内包层的外边界在垂直于有源光纤的纵向方向的平面上具有非圆形截面。有源光纤的该部分的芯还可以从光纤的中心偏移。这些属性为光纤结构带来非对称性,随着射线的传播轨迹变得更杂乱,使模态光谱丰富。这使得光纤的模态光谱更连续。因此,相比于圆形对称光纤,更大部分的总泵浦功率被集中到模态光谱的“可吸收”模式。
[0031] 在本发明的另一个实施例中,有源光纤的该部分包括围绕外包层的具有第四折射率的第三包层。在此例中,第四折射率小于第三折射率。
[0032] 在本发明的又一个实施例中,有源光纤的该部分的芯是双折射的。该芯优选地在-5常规偏振和非常规偏振之间具有大于5×10 的折射率差。强烈的双折射帮助保持光纤输出的稳定偏振态。
[0033] 具有从多模芯到支持较少的或仅仅单模的芯的逐渐变化的锥形光纤用作光谱选择性光学设备。该固有的光谱选择性导致有源设备的效率的显著增加,因为仅仅被锥形芯的细端支持的模式(即从锥形部分输出的模式)被放大以及能够贯穿该芯被保持。因此,在光纤的该部分的粗端的更大体积的芯被更有效地使用以放大希望的输出模式。 [0034] 根据本发明的光纤的有源锥形部分还减少高功率光纤激光器和放大器中的非线性变形。通常非线性变形是由于受激布里渊散射(SBS)、自相位调制(SPM)或受激拉曼散射(SRS)造成的。使用具有可变芯 半径的光纤能够显著地增加SBS的阈值。此外,具有大模式直径(在锥形部分的粗端的光纤)具有低级别的光功率密度,因此固有地免受SPM和SRS。
[0035] 按照以上讨论,根据本发明的有源光纤的锥形部分具有多个特征,其全部有助于克服现有技术的有源光纤和光纤设备的受限泵浦效率和受限功率缩放能力的问题。这些问题在具有单模输出的有源光纤和设备中更显著。本发明的最重要的有益特征包括光纤的锥形部分的长光学路径,连续模式转换过程、大的芯/包层直径比、大体积的有源芯、对输入的泵浦光的大接受孔径、以及固有的光谱选择性。这些特征一起显著增加有源光纤设备的效率和功率缩放能力。例如,本发明的一种应用是受限的泵浦光效率和受限的输出功率的问题更明显的具有单模输出的有源光学设备。附图说明
[0036] 下面将结合所附的示意图详细描述本发明,其中
[0037] 图1(现有技术)示出在经过双包层光纤之前(虚线)和之后(实线)的作为传播常数的函数的泵浦辐射光谱;
[0038] 图2a到2f(现有技术)示出具有芯和内包层光纤的横截面区域,该横截面区域具有偏移芯(c)以及具有标准圆形(a)、矩形(b)、八边形(d)、截断(e)、和双截断(f)的内包层;
[0039] 图3a(现有技术)示出具有嵌入到外包层的“截断区域”的光纤的纵向截面; [0040] 图3b(现有技术)示出具有“截断区域”和直接嵌入到内包层中的“细丝”的光纤的纵向截面;
[0041] 图4示出根据本发明的一个实施例的有源双包层锥形光纤的一部分的纵向截面、折射率曲线和锥形曲线的示例;
[0042] 图5示出在根据本发明的一个实施例的光纤的锥形部分纵向截面中的射线的传播;
[0043] 图6示出根据本发明的一个实施例的光纤的双锥形部分的纵向截面中的泵浦方案;以及
[0044] 图7示出根据本发明的一个实施例的有源光纤的锥形部分的制造方法的流程图。 具体实施方式
[0045] 图4示出根据本发明的一个实施例的双包层有源光纤的锥形部分11的纵向截面。光纤的该部分包括有源芯1、内包层2、以及外包层3。图中还示出光纤的该部分的锥形曲线或轮廓6。光纤的外包层3的锥形曲线6以光纤的该部分11的直径作为光纤的该部分11上的位置的函数呈现。在图4的示例中,上述全部三个层的锥形曲线遵循线性函数关系,尽管其他曲线也可以被利用。考虑制造方法,能够考虑这样一个示例,其中光纤的该部分中的所有层具有纵向曲线的相同函数依赖性。然而根据本发明,仅仅在其内传播泵浦功率的芯
1和内包层2需要被制成锥形以使得发生所讨论的技术效果。
[0046] 根据本发明的光纤的该部分11的直径沿着光纤的长度改变使得在光纤的该部分的一端(粗端)芯1具有更大的直径,且内包层2更厚,具有非常大的接收孔径以便耦合和传播泵浦功率。光纤的该部分11的直径在该粗端可以是例如达到2mm(当前这仍然是技术上可制造的光纤的直径的上限),但也可以考虑更大的直径。在光纤的锥形部分11的另一端(细端),光纤的芯1具有更小的直径,并且用于传播泵浦功率的内包层2更细。由于锥形,用于传播泵浦功率的内包层2在细端更细,使得光纤的锥形曲线使能泵浦功率的连续模式转换过程。
[0047] 根据本发明的光纤的该部分11的芯1是有源的,其中芯1中的有源元素在被泵浦光激励之后以其特征波长发射光。芯1的有源元素可以是例如稀土元素的离子,但也可以考虑芯1中发射光的其他元素和方法。
[0048] 图4中的光纤的折射率曲线在细端8和在粗端7分别在光纤的该部分11的细端和粗端示出。光纤的折射率曲线是阶梯折射率曲线,芯1具有最大折射率。内包层2的折射率小于芯1的折射率,外包层3的折射率小于内包层2的折射率。如从折射率曲线可见,阶梯函数的顶端在光纤的粗端9处比在光纤的细端10处更宽。这指示出光纤的该部分11在粗端支持多模式工作,而在光纤的细端支持更少的模式或仅 仅单个模式。 [0049] 根据本发明的实施例,在光纤的该部分的细端的芯1支持单模工作。这总体上对应于阶梯折射率光纤中的归一化频率V的V<2.405的值。有源光纤的锥形部分11能够被设计为使得芯1在细端能够只支持工作波长的基模,而芯1在粗端能够支持工作波长的多模工作。因此,有源光纤的该部分11的单模部分用作空间滤波器,引导基模并且对更高阶模式提供显著损失。因此,当光纤的该部分11在激光器或放大器中被用于光放大时,输出辐射将是单模的。
[0050] 根据本发明的另一个实施例,在光纤的该部分的细端的芯1还支持多模工作,但比在粗端支持更少数量的模式。受激布里渊散射用作自调Q的触发过程,其在产生(放大)高功率窄带宽辐射的期间发生。杂乱自调Q可以对以高功率工作的光纤激光器和放大器功率缩放能力产生严重的限制。从自调Q引起的巨大的脉冲现象可以导致光纤芯中的光放电,损坏光纤。为了避免自调Q,需要抑制光纤中的SBS升高。光纤的光发射线的展宽能够被用于抑制SBS。相比于单模情况,使芯1在光纤的锥形部分11的细端处支持超过单个模式导致芯1中的光谱的显著展宽,以及,作为结果,有效地抑制SBS。另外,通过使用具有大横截面积的芯1以及因此在锥形光纤的该部分11的细端的作为多模光纤特征的大的模式场直径,也能够增加使SBS发生的阈值光功率。
[0051] 具有从多模芯到支持更少模式或仅仅单模的芯的逐渐变化的光纤的锥形部分11用作光谱选择性光学设备。该光谱选择性具有非相互的属性;光谱选择性只出现在从光纤的该部分11的粗端到细端的光传播中。光纤的锥形部分11在相反方向不呈现任何光谱选择性。光谱选择性能够通过结合锥形部分的粗部分中的模式间干扰与光纤的锥形部分11的细部分中的多模散斑图案的空间滤波(见以上)来解释。固有的光谱选择性能够被用于例如单通激光器,其中由于根据本发明的光纤的锥形部分11的固有属性,激光器的线宽变窄发生。由于仅仅被锥形芯1的细端支持的模式(即从锥形部分输出的模式)被放大以及能够贯穿芯1维持,所以固有的光谱选择性引起有源设备的效率的显著增加。因此,在光纤的该部分11的粗端,更大体积的芯1可以更有效地用来放大希望的输出模式。 [0052] 根据本发明的有源锥形光纤的该部分11的重要特征是相比于现有技术的有源光纤,具有显著更高的泵浦吸收。从现有技术已知,锥形光纤的有效光学长度比非锥形光纤的有效光学长度更长。因此,有源锥形光纤中的光和材料之间的互动能够被显著增强,泵浦功率的吸收能够被增加。除了已知的增加有效光学长度的效果之外,根据本发明的锥形光纤的该部分11还利用模耦合(或模混合),其显著地提高泵浦光吸收。就射线光学而言,这能够被理解为穿过光纤的锥形部分传播的泵浦光的每个射线4的反射角在每次从光纤的内包层2和外层之间的边界反射之后增加。
[0053] 图5示出根据本发明的一个实施例的双包层光纤的锥形部分11的纵向截面。该图示出泵浦光的射线4如何在光纤的该部分中从内包层2和外包层3之间的边界反射传播。射线4在光纤上的入射角θi小于由数值孔径NA规定的光纤的最大接受角。射线4在内包层2和外包层3之间的边界上的入射角α与反射角明显相同。由于反射边界以角度Θ成锥形,在边界上的入射角α在每次反射之后增加,如图5中的射线4的轨迹所示。 [0054] 在根据本发明的光纤的锥形部分11中,该连续模式转换过程(即如上所述的反射角的增加)导致泵浦功率从被限制在包层中的“不可吸收”斜射射线到跨过光纤芯1的“可吸收”子午射线的流动。因此,在光纤的锥形部分传播之后,最初在斜射射线(即在“不可吸收”模式)中集中的泵浦功率变为耦合到“可吸收”模式(即到子午射线)。因此,通过此有效的连续模式转换机制,光纤的有源双包层锥形部分11的泵浦光吸收得以提高。 [0055] 在本发明的一个实施例中,泵浦光被以低于由光纤的数值孔径规定的最大角的角耦合到光纤的该部分11。优选的到光纤的入射角θi由以下条件给出:
[0056]
[0057] 其中NA是部分光纤11的数值孔径,以及n是介质的折射率,泵浦光从其进入光纤。该方案确保随着泵浦光的射线从光纤的内包层2和外层之间的边界反射,泵浦光的反射角向锥形部分11的细端不变得过大。 过大的反射角可能导致泵浦功率的一部分从光纤漏出,而这将降低设备的效率。
[0058] 泵浦功率可以被从光纤的该部分的一端或从光纤的该部分的两端耦合到光纤的该部分的内包层2。此外,可以按顺序存在超过一个根据本发明的锥形部分11以形成光纤的双锥形12或多锥形部分。用根据本发明的制造方法,通过改变光纤的锥形的方向,可以实现制造这种双锥形12或多锥形光纤。
[0059] 图6示出根据本发明的一个实施例的有源光纤的双锥形锥形部分12的纵向截面,包括光纤的两个锥形部分11。图6的双锥形光纤的该部分12还包括不是锥形的第三包层5。双锥形部分12能够被从具有大接受孔径的两端泵浦,如泵浦光的入射射线4所示。双锥形部分12的中心部分13的芯比在端部的粗的芯支持更少的模式或仅仅支持单模,因此部分12用作空间滤波器。
[0060] 在本发明的一个实施例中,有源光纤的该部分11包括围绕外包层3的具有第四折射率的第三包层5。在此情况下,第四折射率小于第三折射率。该附加包层能够提供附加的光学限制以及使内层避免环境影响的机械保护。
[0061] 如图7所示,根据本发明的一个实施例的锥形有源光纤的制造开始于制造例如掺杂例如稀土离子的或玻璃预制件。预制件包括掺杂芯和所要求的包层结构。包层结构能够是例如具有外二氧化硅包层的双包层结构,其折射率低于芯和第一包层区域的折射率。预制件还能够具有多包层结构,该多包层结构具有围绕芯的多个包层。预制件的横截面的形状可以是圆形或诸如截断或双截断的特殊形状,这取决于被拉拔的光纤的横截面的需求形状。有源光纤的预制件能够用诸如MCVD、OVD、VAD、DND等已知的制造方法中的一种制成。
[0062] 根据图7的示例性实施例,该制造方法的下一步骤是在拉拔光纤之前减小预制件的直径以在拉拔期间减少预制件的熔化量。这使得更短的锥形光纤的部分能够被拉拔。预制件的直径的减小能够通过在拉拔光纤之前预拉拔预制件来实现。在预拉拔步骤之后,预制件被插入拉丝塔,拉丝塔包括适用于熔化例如二氧化硅或玻璃的高温炉、用于将预制件移动到炉子的热区的放线或输出(take off)机构、用于拉拔 光纤的收线或牵拉(take up)机构、以及优选地用于在拉拔过程中对光纤进行涂敷的聚合物涂敷施加器。 [0063] 在将预制件安装到拉丝塔之后,开始拉拔光纤。预制件的放线速度Vp和光纤的收线速度Vf之间存在简单的关系。为了稳定状态光纤拉拔体系,
[0064]
[0065] 其中Dp和Df分别是预制件和光纤的直径。该关系能够从预制件放线的量的速率必须等于光纤收线的量的速率的假设导出。
[0066] 图7的制造方法的下一步骤是改变稳定状态条件。为了制造锥形光纤,关系(2)必须以某种方式被破坏。最方便的方式是同时或单独改变速度Vp和速度Vf之一或两者。例如,如果光纤拉拔的速度Vf增大而Vp保持恒定,光纤的获得直径将被改变以满足根据等式(2)的新的条件。两个拉拔稳定状态条件之间的光纤的中间部分将具有锥形形状。在增大Vf的情况下,光纤的直径将减小。使用相同逻辑,本领域技术人员能够直接推出在改变等式(2)中的变量的其他情形下光纤的直径的行为。例如,制造光纤的锥形部分的另一可能方式是在相反方向上改变速度Vp和Vf。
[0067] 光纤的锥形部分的长度主要由两个参数确定:炉子的热惯性和在炉子中熔化的例如二氧化硅或玻璃的预制件的量。通过加速从一个稳定状态条件(如等式(2)中呈现)到另一个的转换以使光纤的锥形部分更短,期望使得预制件在炉子的热区中的熔化量尽量小。在光纤的拉拔期间,保留预制件的炉子的温度还能够逐渐改变。这将导致稳定状态条件的变化,以及光纤直径的变化。通过改变炉子的温度,从一个稳定状态条件到另一个的转换的动力也能够被改变以使控制光纤的锥形部分的长度成为可能。
[0068] 在稳定状态条件被改变之后,光纤的锥形部分在从拉丝塔的高温炉出来之后可以经历聚合物涂敷步骤,如在图7的实施例所示。锥形光纤通过特殊施加器,因而聚合物涂层被沉积在光纤上。在拉拔过程中光纤被涂敷聚合物以保护光纤的内层和芯。涂层可以具有比光纤的包层的折射率低的折射率,因而在此情况下涂层还用作附加的低折射率包层。涂层还可以具有比包层的折射率高的折射率,因而在此情况 下涂层仅仅用作机械保持涂层。涂层可以应用于任何种类的形状预制件。相比于规则光纤,锥形光纤的涂层厚度也可以进行一定程度的改变,但这不影响锥形光纤的光学或机械性能。最后,在施加聚合物涂层之后,可以停止拉拔光纤。对于本领域技术人员明显的是,本发明不限于以上描述的示例,而是上述实施例可以在权利要求的范围内自由变化。
QQ群二维码
意见反馈