异质结纳米颗粒、其制备方法以及包含该纳米颗粒的制品

申请号 CN201410098085.1 申请日 2014-03-17 公开(公告)号 CN104046359B 公开(公告)日 2017-05-17
申请人 伊利诺斯大学科技管理办公室; 罗门哈斯电子材料有限公司; 陶氏环球技术有限公司; 发明人 M·沈; N·吴; Y·翟; S·南; K·德什潘德; J·朱;
摘要 本 发明 公开了一种 半导体 纳米颗粒,其包括具有第一端部和第二端部的一维半导体纳米颗粒、包含第一半导体的第一结点、以及包含第二半导体的第二结点;其中,所述第二端部与所述第一端部相反;其中所述第一结点与所述一维半导体纳米颗粒的径向表面相 接触 ,在接触的位点处形成第一 异质结 ;其中所述第二结点与所述一维半导体纳米颗粒的径向表面相接触,在接触的位点处形成第二异质结;其中所述第一异质结组成上不同于所述第二异质结。
权利要求

1.一种半导体纳米颗粒,其包括:
具有第一端部和第二端部的一维纳米颗粒,其中所述第二端部与所述第一端部相反;
位于所述第一端部和所述第二端部中各端部的第一端盖,其中所述第一端盖包含第一半导体;
位于所述第一端部和所述第二端部中各端部的第二端盖,其中所述第二端盖包含第二半导体,并且部分地或完全地包围所述第一端部和所述第二端部中各端部的第一端盖;
其中所述第一端盖各自在所述第一端部和所述第二端部接触所述一维纳米颗粒的表面,在各接触的位点处形成第一异质结
其中所述第一端部的第二端盖在所述第一端部接触所述第一端盖的表面,在接触的位点处形成第二异质结,并且所述第二端部的第二端盖在所述第二端部接触所述第一端盖的表面,在接触的位点处形成第二异质结;
其中所述第一异质结组成上不同于所述第二异质结。
2.一种制品,其包括:
第一电极
第二电极;以及
设置在所述第一电极和所述第二电极之间的包含权利要求1所述的半导体纳米颗粒的层。
3.如权利要求2所述的制品,其特征在于,当对所述制品施加电压电流时,所述制品发出可见光。

说明书全文

异质结纳米颗粒、其制备方法以及包含该纳米颗粒的制品

背景技术

[0001] 本发明涉及双异质结纳米颗粒,其制备方法以及包含该纳米颗粒的制品。
[0002] 半导体纳米晶体的一个优势在于其潜在地能够用于改善光电器件的效率。球形纳米晶体异质结构,有时也称作芯-壳量子点,被广泛用于量子点发光二极管(LED)。在这些主要由I型(跨立型)能带偏移构成的芯-壳异质结构中,异质结仅起到钝化层的作用,从而改善光致发光效率。由于其独特的光学和电子性质,半导体纳米晶体在各光电应用领域已受到人们的广泛关注,这些应用领域包括光伏(PV)、LED、固态照明和显示器。这些小晶体具有一个或多个维度,长度为几纳米,使得能够调节其电子带隙。带隙和电子能级的变化使人们能够控制所观察到的半导体的光学和电学性质。
[0003] 此外,当两种或更多种半导体材料放在一起时,人们可以根据其相关的能带偏移和能带排列预期新的、改进的光学和电子性质。在不同半导体的界面处形成的异质结会有助于引导电子和空穴,并且能够成为各种器件(包括PV、LED和晶体管)的活性组件。通过选择不同的材料用于芯和壳,可改变谱带边缘位置。但是,对于材料的某些组合而言,有效的带隙和能带偏移会很大,可能会阻碍载流子注入过程。因此,人们希望能够制备具有多个异质结的半导体纳米颗粒。具有多个异质结的颗粒能够在不同界面处通过使超过两种半导体材料选择性地彼此接触来调节带隙和能带偏移。
[0004] 多个异质结的优点包括通过中心“芯”的表面钝化(即通过形成具有I型和II型能带偏移的组合的多个异质结)促进载流子注入和/或封闭,同时提供改进的光致发光产率。除了表面钝化优点(相当于I型芯/壳)之外,多个异质结有助于为一种类型的载流子实现了良好的势垒(barrier),同时能够促进其他载流子类型注入。

发明内容

[0005] 本发明公开了一种半导体纳米颗粒,其包括具有第一端部和第二端部的一维半导体纳米颗粒、包含第一半导体的第一结点、以及包含第二半导体的第二结点;其中,所述第二端部与所述第一端部相反;其中所述第一结点与所述一维半导体纳米颗粒的径向表面相接触,在接触的位点处形成第一异质结;其中所述第二结点与所述一维半导体纳米颗粒的径向表面相接触,在接触的位点处形成第二异质结;其中所述第一异质结组成上不同于所述第二异质结。
[0006] 本发明还公开了一种方法,该方法包括使半导体的第一前体与半导体的第二前体反应以形成一维半导体纳米颗粒;其中,所述第一一维半导体纳米颗粒具有第一端部和第二端部,所述第二端部与所述第一端部相反;使半导体的第三前体与所述一维纳米颗粒反应以形成所述第一结点,所述第一结点在径向表面处与所述一维纳米颗粒相接触以形成第一异质结;以及,使其上设置有所述第一结点的一维纳米颗粒与半导体的第四前体反应以形成第二结点,所述第二结点设置在所述一维半导体纳米颗粒的径向表面处并形成第二异质结;其中所述第二异质结与所述第一异质结组成上不同。
[0007] 本发明还公开了一种制品,该制品包括第一电极、第二电极,以及设置在所述第一电极和所述第二电极之间的包含半导体纳米颗粒的层;其中,所述半导体纳米颗粒包括具有第一端部和第二端部的一维半导体纳米颗粒、包含第一半导体的第一结点、以及包含第二半导体的第二结点;其中,所述第二端部与所述第一端部相反;其中所述第一结点与所述一维半导体纳米颗粒的径向表面相接触,在接触的位点处形成第一异质结;其中所述第二结点与所述一维半导体纳米颗粒的径向表面相接触,在接触的位点处形成第二异质结;其中所述第一异质结组成上不同于所述第二异质结。附图说明
[0008] 图1(A)显示了本发明所述的钝化的纳米晶体半导体纳米颗粒;
[0009] 图1(B)显示了本发明所述的钝化的纳米晶体半导体纳米颗粒的另一视图;
[0010] 图2显示了如何通过改变纳米颗粒的组成来改变(即空间调制)带隙。在图2中,纳米颗粒包括硫化镉(CdS)一维纳米颗粒;其中所述第一端盖为硒化镉(CdSe),第二端盖为硒化锌(ZnSe);
[0011] 图3也显示了如何通过改变纳米颗粒的组成来改变(即空间调制)带隙。在图3中,所述一维纳米颗粒包含硫化镉,所述第一端盖包含碲化镉,所述第二端盖包含硒化锌;
[0012] 图4是一种示例性电致发光(EL)器件的示意图;
[0013] 图5(A)是显示芯-壳(CdSe/ZnS)量子点的EL光谱的图;
[0014] 图5(B)是显示本发明所述的纳米颗粒(CdS纳米棒,其被包含CdSe的第一端盖和包含ZnSe的第二端盖钝化)的EL光谱的图;以及
[0015] 图6是显示量子点和本发明纳米颗粒的积分EL-电压图。
[0016] 发明详述
[0017] 本发明公开了钝化的纳米晶体半导体纳米颗粒(下文称作“纳米颗粒”),该纳米颗粒包括多个异质结,所述异质结有利于电荷载流子注入过程,从而在将该纳米颗粒用于器件中时能够增强发光。所述纳米晶体半导体纳米颗粒仅在某些位置发生钝化,而在其他位置并未钝化。这些多异质结钝化的纳米颗粒可在易于制造的高性能光电器件(包括发光二极管(LED))中用作活性元件。所述纳米颗粒包括一维纳米颗粒,所述一维纳米颗粒在各端部设置一个或多个与所述一维纳米颗粒接触的端盖。所述端盖也彼此接触。所述端盖用来使所述一维纳米颗粒钝化。所述纳米颗粒可至少围绕一个轴对称或不对称。所述纳米颗粒可以在组成、几何结构和电子结构上不对称,或者在组成和结构上都不对称。
[0018] 在一个实施方式中,所述纳米颗粒包括一维纳米颗粒,所述一维纳米颗粒沿着其纵轴方向在各相反得端部处包括端盖。各端盖具有不同的组成,从而为纳米颗粒提供多个异质结。在另一个实施方式中,所述纳米颗粒包括一维纳米颗粒,所述一维纳米颗粒沿着其纵轴方向在各相反端部处包括端盖,所述纳米颗粒还包括结点,所述结点设置在一维纳米颗粒的径向表面上或在端盖上。所述径向表面也称作棒的侧表面。所述端盖可具有彼此相似或不同的组成,并且/或者所述结点可具有彼此相似或不同的组成,只要满足端盖中的一个端盖的组成与其他端盖或结点中的至少一个结点的组成不同即可。
[0019] 在一个实施方式中,所述多个端盖包括第一端盖和第二端盖,所述第二端盖部分地或完全地包围所述第一端盖。所述端盖是三维纳米颗粒,所述端盖中的至少一个端盖与所述一维纳米颗粒直接接触。各端盖可以与所述一维纳米颗粒接触,或者不与所述一维纳米颗粒接触。所述第一端盖和所述第二端盖可以具有彼此不同的组成。所述结点也是三维纳米颗粒,其尺寸可以比所述端盖的尺寸更小或更大。
[0020] 术语“异质结”表示具有一种半导体材料生长在另一种半导体材料的晶格中的结构。术语“一维纳米颗粒”包括具有以下特征的物体,其中所述纳米颗粒的质量与该纳米颗粒的特征尺寸(例如,长度)呈一次方的关系。如以下式(1)所示:
[0021] MαLd  (1)
[0022] 其中,M是颗粒的质量,L是颗粒的长度,d是决定颗粒维度的指数。例如,当d=1时,颗粒的质量与颗粒的长度成正比,该颗粒称作一维纳米颗粒。当d=2时,颗粒是二维物体,例如板;而当d=3时,颗粒是三维物体,例如圆柱体或球体。所述一维纳米颗粒(d=1时的颗粒)包括纳米棒、纳米管纳米线、纳米须、纳米带等。在一个实施方式中,所述一维纳米颗粒可以是弯曲的或波浪形的(如蜿蜒形状),也就是说,所述一维纳米颗粒的d值可以介于1和1.5之间。
[0023] 所述一维纳米颗粒具有横截面区,其直径方向的特征厚度尺寸(例如圆形横截面区的直径或者正方形或长方形横截面区的对线)为1-1000纳米(nm),优选2-50纳米,更优选5-20纳米(例如,约6,7,8,9,10,11,12,13,14,15,16,17,18,19或20纳米)。纳米棒是刚性棒,其具有圆形横截面区,该横截面区的特征尺寸在上述范围内。纳米线或纳米须是曲线的,并具有不同的蜿蜒形状或蠕虫形状。纳米带具有被4条或5条线性边缘界定的横截面区。此类横截面区的例子是正方形、长方形、平行六面体、菱形等。纳米管具有基本同轴的空穴,其跨越纳米棒的整个长度,使其呈管状。这些一维纳米颗粒的纵横比大于或等于2,优选大于或等于5,更优选大于或等于10。
[0024] 所述一维纳米颗粒包括半导体,所述半导体包括含有以下材料的半导体:II-VI族(ZnS,ZnSe,ZnTe,CdS,CdSe,CdTe,HgS,HgSe,HgTe等)材料、III-V族(GaN,GaP,GaAs,GaSb,InN,InP,InAs,InSb,AlAs,AlP,AlSb等)材料、IV族(Ge,Si,Pb等)材料、以及这些材料的合金,或它们的混合物。
[0025] 所述一维纳米颗粒、所述第一端盖和所述第二端盖各自包含半导体。所述纳米棒和所述第一端盖之间的界面提供第一异质结,而所述第一端盖和所述第二端盖之间的界面提供第二异质结。以这样的方式,所述纳米颗粒可包括多个异质结。
[0026] 现参考图1A,纳米颗粒100包括具有第一端部104和第二端部106的一维纳米颗粒102。所述第一端盖108设置在该一维纳米颗粒的第一端部104和第二端部106处,并与所述一维纳米颗粒102直接接触。所述第一端盖108和一维纳米颗粒的第一端部104之间的界面形成第一异质结103。在一个实施方式中,第一端盖108与一维纳米颗粒102的端部接触,并且不与一维纳米颗粒102的纵向部分接触。较好的是,所述第一端盖108不包围整个一维纳米颗粒102。
[0027] 所述第二端盖110与所述第一端盖108接触,并且第二端盖110在一维纳米颗粒102的一个端部或两个端部将所述第一端盖108包围。所述第二端盖110可将第一端盖108部分地或完全地包围。较好的是,所述第二端盖110不包围整个一维纳米颗粒102。
[0028] 第二端盖110和第一端盖108之间的界面形成第二异质结109。因此,图1中的纳米颗粒100是双异质结纳米颗粒。在第二端盖110上设置有个更多个端盖的情况下,纳米颗粒100将具有大于2个异质结。在一个示例性实施方式中,纳米颗粒100可具有等于或大于3个异质结,优选等于或大于4个异质结,更优选等于或大于5个异质结。
[0029] 在一个实施方式中,在一维纳米颗粒与第一端盖相接触处的异质结具有I型或准II型能带排列。在另一个实施方式中,在第二端盖与第一端盖相接触处的点具有I型或准II型能带排列。
[0030] 所述一维纳米颗粒可包括纳米棒、纳米线、纳米管、纳米须等。在一个示例性实施方式中,所述纳米颗粒是纳米棒。其被称作“一维”纳米颗粒是因为其长度大于其直径,并且其质量与其长度呈一次方的变化关系,如上述公式(1)所示。
[0031] 所述一维纳米颗粒的长度可以为10-100纳米,优选12-50纳米,更优选14-30纳米。所述一维纳米颗粒的直径可以为2-10纳米,优选3-7纳米。所述一维纳米颗粒的纵横比约大于或等于3,优选约大于或等于7,更优选约大于或等于12。所述一维纳米颗粒是纳米晶体,其包含二元、三元或四元半导体。如果需要的话,所述半导体可包括5种或更多种元素。
[0032] 所述一维纳米颗粒中使用的半导体是II-VI族化合物、II-V族化合物、III-VI族化合物、III-V族化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物、或II-IV-V族化合物。更好的是,所述一维纳米颗粒可选自下组:Si,Ge,Pb,SiGe,ZnS,ZnSe,ZnTe,CdS,CdSe,CdTe,HgS,HgSe,HgTe,AlN,AlP,AlAs,AlSb,GaN,GaP,GaAs,GaSb,GaSe,InN,InP,InAs,InSb,TlN,TlP,TlAs,TlSb,PbS,PbSe,PbTe等,或包含上述半导体中的至少一种半导体的组合。在一个示例性实施方式中,所述一维纳米颗粒包含CdS。
[0033] 现在再次参考图1(A),所述一维纳米颗粒102包括第一端部104和第二端部106,所述第一端部和第二端部彼此相反。所述第一端盖108与所述一维纳米颗粒的第一端部104和第二端部106接触。在一个实施方式中,所述第一端盖108可完全覆盖所述一维纳米颗粒102的第一端部104和第二端部106。在另一个实施方式中,所述第一端盖108可与第一端部104和第二端部106切向接触。所述第一端盖108的形状通常是球形或椭圆体,并且其横截面区是圆形或椭圆形的。在一个实施方式中,所述第一和第二端盖可以是圆柱体的,但所述第一和第二端盖的纵横比短于一维纳米颗粒的纵横比。
[0034] 所述第一端盖108的直径为所述一维纳米颗直径的约0.5-1.5倍,优选约0.7-1.2倍。在一个实施方式中,所述第一端盖的直径为1-15纳米,优选2-12纳米。
[0035] 在一个实施方式中,如上所述,所述纳米颗粒可以是组成上不对称,而结构上对称的。换言之,与所述一维纳米颗粒102的相反端部接触的第一端盖108和/或第二端盖110在相反端部处可以具有不同的组成,但同时尺寸和几何形状是相同的。以下图1(B)中进行了进一步详细描述。
[0036] 在另一个实施方式(图中未显示)中,所述第一端盖108和/或第二端盖110可以是组成上相同的,但具有不同的尺寸或不同的几何形状。这种纳米颗粒被称作组成上对称但尺寸和几何形状不对称。
[0037] 所述第二端盖110除了与所述第一端盖108接触之外,还与一维纳米颗粒102接触。在一个实施方式中,所述第二端盖与所述第一端盖接触,但同时不与所述一维纳米颗粒102接触。在一个实施方式中,所述第二端盖110将第一端盖108部分地或完全包封。所述第二端盖110的形状通常是球形或椭圆体,并且其横截面区是圆形或椭圆形的。尽管所述第一端盖
108和第二端盖110的横截面区是圆形或椭圆形的,但是这些端盖还可以具有正方形、长方形、三角形或多边形的横截面区。正方形、长方形、三角形或多边形的横截面区可以使用模板合成,其中在合成过程中将所述一维纳米颗粒置于模板中。所述第一端盖108和第二端盖
110可以仅与一维纳米颗粒的一个端部(104或106)接触,或者与该纳米颗粒的两个端部104和106接触。在一个实施方式中,所述第二端盖110是任选的,即,所述一维纳米颗粒仅具有第一端盖108,该第一端盖设置在所述一维纳米颗粒的各端部。但是,各个第一端盖108在组成上彼此不同。在图1(B)中进行了进一步详细讨论。
[0038] 在一个实施方式中,所述第一端盖108和第二端盖110以同轴的形式安装在所述一维纳米颗粒上,即它们围绕着轴AA'(编号120),以该轴AA'为中心设置。尽管图1(A)显示所示一维纳米颗粒102、第一端盖108和第二端盖110同轴地围绕着轴120,但是可以围绕着一维纳米颗粒102以偏心的方式(eccentrically)安装第一端盖108和/或第二端盖110。
[0039] 所述第二端盖110的直径为所述一维纳米颗直径的约1.0-3.0倍,优选约1.5-2.7倍。在一个实施方式中,所述第二端盖110的直径为2-30纳米,优选3-15纳米。
[0040] 所述第一端盖和第二端盖是化学上彼此不同的,并且它们可选自下组:Si,Ge,Pb,SiGe,ZnO,TiO2,ZnS,ZnSe,ZnTe,CdO,CdS,CdSe,CdTe,MgO,MgS,MgSe,MgTe,HgO,HgS,HgSe,HgTe,AlN,AlP,AlAs,AlSb,GaN,GaP,GaAs,GaSb,InN,InP,InAs,InSb,TlN,TlP,TlAs,TlSb,TlSb,PbS,PbSe,PbTe等,或包含上述半导体中的至少一种半导体的组合。在一个示例性实施方式中,所述第一端盖是CdTe或CdSe,而第二端盖是ZnSe。
[0041] 可以在纳米棒异质结构的表面上设置诸如烷基膦、烷基膦化物、胺、羧酸等之类的钝化分子,从而使得溶解度和聚结发生变化。通过表面钝化分子和/或无机端盖可以改变光致发光的量子效率
[0042] 图1(B)显示了仅具有两个第一端盖108A和108B的一维纳米颗粒,所述第一端盖108A和108B设置在所述一维纳米颗粒的相反端部处。所述两个第一端盖108A和108B具有彼此不相同的组成,从而为所述一维纳米颗粒提供了两个异质结。在一个实施方式中,所述一维纳米颗粒可具有结点,即设置在其径向表面上的第一结点122A和第二结点122B。所述结点122A和122B包含半导体(例如以上关于第一端盖和第二端盖所列的那些半导体),并且所述结点122A和122B沿着所述一维纳米颗粒的径向表面随机分布。在合成所述一维纳米颗粒的过程中,所述结点成核并在所述一维纳米颗粒的表面上随机生长。所述结点与所述一维纳米颗粒的径向表面相接触的点是异质结。
[0043] 人们需要所述结点和所述端盖具有彼此不同的组成,从而制得多异质结纳米颗粒。根据所需的异质结的数量,结点122A和122B可以具有相同的组成或者彼此不同的组成。当所述纳米颗粒仅具有两个组成相同的端盖108时,为了获得多异质结纳米颗粒,则结点
122A和/或122B具有与端盖108组成不同的组成。如果各个端盖108A和108B的组成彼此不同,则所述结点可具有彼此类似的组成,并且所述结点的组成可以与端盖中的一种端盖的组成相同。在一个实施方式中,所述结点的组成可以与所述端盖中任一种端盖的组成都不相同。所述第一结点122A与所述一维纳米颗粒的径向表面接触处产生的异质结与所述第二结点122B与该径向表面的接触处产生的异质结不同。通过使具有不同半导体组成的不同结点与所述一维纳米颗粒的径向表面接触,所述纳米颗粒可具有多个异质结。
[0044] 纳米颗粒中存在双异质结是有益的,这是因为双异质结可以用来控制或改变纳米颗粒的发射中心。这可用于影响发光性质,并且还可以用来促进电荷迁移率的变化。所述异质结提供了选择性势垒(根据载流子类型,即电子或空穴),同时能够实现芯发射中心的良好钝化(即该异质结作为一种类型的载流子的良好势垒),同时除了提供表面钝化的优点(相当于I型芯/壳)之外,还有利于另一种类型的载流子的注入。
[0045] 形成异质结的材料的组成可以用来影响带隙和能带偏移。所述带隙,也称作能隙或能带隙,是固体中无电子状态能存在的能量范围。在固体的电子能带结构图中,带隙通常表示绝缘体和半导体中价带的顶部和导带的底部之间的能量差(以电子伏特计)。
[0046] 这相当于将一个外层电子从其围绕原子核的轨道上释放使其变成能够在固体材料中自由移动的可移动电荷载流子所需的能量。因此,带隙是一个决定固体导电性的重要因素。具有大带隙的物质通常是绝缘体,具有较小带隙的物质是半导体,而导体由于价带和导带重叠因而具有非常小的带隙或者没有带隙。能带偏移也可用于电荷载流子处理。所述带隙和能带偏移可以用来决定光学性质,例如相应材料的特征吸收/发射峰位置。
[0047] 通过改变所述一维纳米颗粒、第一端盖和/或第二端盖的组成和尺寸(直径或长度),可以改变带隙和能带偏移。可以通过改变能带隙来改变纳米颗粒中产生的光的波长、效率和强度。在一个实施方式中,所述第一端盖和一维纳米颗粒之间的导带偏移大大高于所述第一端盖和第二端盖之间的导带偏移,并且其中所述第一端盖和一维纳米颗粒之间的价带偏移远低于述第一端盖和第二端盖之间的价带偏移。在另一个实施方式中,所述第一端盖和一维纳米颗粒之间的导带偏移远低于所述第一端盖和第二端盖之间的导带偏移,并且其中所述第一端盖和一维纳米颗粒之间的价带偏移远低于述第一端盖和第二端盖之间的价带偏移。在另一个实施方式中,由第一端盖形成的两个异质结中的一个异质结具有比另一个异质结小的导带偏移以及比另一个异质结大的价带偏移,而另一个异质结具有较大的导带偏移和较小的价带偏移。
[0048] 图2和图3显示了如何通过改变纳米颗粒的组成来改变(空间调制)带隙。在图2中,纳米颗粒包括硫化镉(CdS)一维纳米颗粒;其中所述第一端盖为硒化镉(CdSe),第二端盖为硒化锌(ZnSe)。在图2中,硫化镉一维纳米颗粒和硒化镉第一端盖之间的界面是第一异质结,硒化锌第二端盖和硒化镉第一端盖之间的界面是第二异质结。
[0049] 从图2可以看出,硫化镉的导带和价带之间的带隙大于2.4电子伏特,而硒化镉的导带和价带之间的带隙大于1.7电子伏特,硒化锌的导带和价带之间的带隙大于2.7电子伏特。
[0050] 通过用硒化镉端盖对硫化镉一维纳米颗粒进行封端处理,电荷载流子将被限制在硒化镉区域,并且有效带隙(即激子能级)可以由2.4电子伏特(eV)降低至1.7eV,同时纳米颗粒发生钝化。该能带隙差(即激子能级)会影响纳米颗粒的发光特性,还会影响任意使用该纳米材料的器件的发光特性。本文所述的带隙能仅为基于单个材料的体性质的一个例子,与块体材料相比,纳米材料由于量子限制效应可具有不同的带隙。
[0051] 通过改变第一和第二端盖的组成,可以改变导带和价带之间的带隙。例如,在图3中,可以看出可以通过使用包含碲化镉的第一端盖来降低导带和价带之间的带隙。在图3中,可以看出,所述一维纳米颗粒包含硫化镉,所述第一端盖包含碲化镉,所述第二端盖包含硒化锌。通过用碲化镉第一端盖对硫化镉一维纳米颗粒进行封端处理,电荷载流子在施加偏压的条件下有可能可以被限制在碲化镉区域中,并且带宽降低至1.75eV,同时被封端的组分被钝化。
[0052] 下面详细描述制备纳米颗粒的反应。以下缩写用于详细描述反应物。用“TOPO,TOP,TBP,HDA,HPA,ODPA,OA,ODE,TDPA和TOA”分别表示三辛基氧化膦、三辛基膦、三正丁基膦、十六烷基胺、己基膦酸、十八烷基膦酸、辛基胺、十八烯、十四烷基膦酸和三辛基胺。
[0053] 可以通过各种不同的方法来制备纳米颗粒。在一个实施方式中,在一种制备纳米颗粒的方法中,使半导体的第一前体(例如氧化镉)在第一溶剂(例如三辛基氧化膦)中与第一表面活性剂(例如N-十八烷基膦酸)反应,形成第一络合物(例如Cd-ODPA-镉-N-十八烷基膦酸)。该第一表面活性剂能防止颗粒彼此之间发生接触。所述第一络合物在惰性气氛中,在150-400℃下,优选200-350℃下形成。所述惰性气氛包括氮气、氩气、二氧化等。在一个示例性实施方式中,所述惰性气氛包含氮气或氩气,并且基本不包含氧气和。所述反应可以在间歇式反应器或连续式反应器中进行。在一个示例性实施方式中,所述第一反应在间歇式反应器中进行。
[0054] 向包含所述第一络合物的混合物中加入第二前体(例如溶解在TOP中的硫(S)),以产生一维纳米颗粒。可以通过控制第一和第二前体的量以及第一表面活性剂的量来改变一维纳米颗粒的长度和直径。还可改变反应温度和时间来改变一维纳米颗粒的尺寸。一维纳米颗粒生长过程中的反应温度通常在一维纳米颗粒生长过程中发生降低。在一个实施方式中,在一维纳米颗粒生长过程中,所述反应温度由400℃降低至低于或等于350℃,优选降低至低于或等于330℃。通过将温度降低至低于或等于300℃,优选低于或等于275℃,优选低于或等于250℃来终止一维纳米颗粒的生长。然后将所述一维纳米颗粒进行纯化并存储用于钝化过程,在所述钝化过程中将第一端盖和第二端盖反应到一维纳米颗粒上。所述纯化是任选的,并且可以通过沉淀离心、倾析、过滤等手段来进行纯化。
[0055] 然后通过向包含溶剂和所述一维纳米颗粒的反应混合物中加入第三前体(所述第三前体是第一端盖的前体,例如硒前体)来合成第一端盖。第一端盖的形成终止了一维纳米颗粒沿长度方向的生长。将第三前体与附加溶剂(例如三辛基膦)一起加入反应器中的一维纳米颗粒的混合物中。将反应温度升高至高于或等于100℃,优选高于或等于225℃,更优选高于或等于250℃。一维纳米颗粒和第三前体之间的反应形成一维纳米颗粒上的第一端盖。然后可以将一维纳米颗粒和第一端盖与反应混合物中的其他物质分离,通过上述方法进行纯化。在一个示例性实施方式中,通过将具有第一端盖的一维纳米颗粒溶解在溶剂中然后进行离心来对其进行纯化。
[0056] 然后将第二端盖反应到第一端盖上。该过程通过使得第二端盖在被第一端盖钝化的一维纳米颗粒上生长来完成。所述第一端盖使一维纳米颗粒的端部钝化。将第四前体(所述第四前体是第二端盖的前体,例如乙酸锌)与溶剂和配体一起放入反应器中,或者将所述第四前体与多种溶剂和配体一起放入反应器中。可以对溶剂进行脱气,然后将它们加热至高于或等于150℃的温度。在加热过程中,可任选地形成中间体(例如油酸锌)。然后将反应溶液冷却至等于或低于100℃,优选等于或低于50℃。可以将一维纳米颗粒连同反应在其上的第一端盖与第四前体(例如硒前体)一起加入反应容器中,形成第二端盖。将第五前体缓慢注入反应容器中。在注入第五前体的过程中,将反应容器的温度升高至高于或等于200℃,优选高于或等于约250℃。加入到反应容器中的第四和第五前体的量决定了第二端盖的厚度。根据需要对所得纳米颗粒(所述纳米颗粒现包括被第一端盖和第二端盖封端的一维纳米颗粒)进行分离和纯化。分离和纯化方法如上所述。
[0057] 在上述方法中,第一前体和第四前体包括钡、铟、锌、镉、镁、汞、、镓、铊或铅。第二前体、第三前体和第五前体包括硒,碲,硫,砷,铋,磷或
[0058] 在上述方法中,以第一络合物的总重量为基准计,加入反应混合物中的第一前体的量为10-30重量%。以第一络合物的总重量为基准计,加入反应混合物中的第一表面活性剂的量为70-90重量%。以一维纳米颗粒的总重量为基准计,加入反应混合物中的第二前体的量为20-50重量%。第一前体与第二前体的摩尔比为4:1至1:1。
[0059] 以经钝化的纳米颗粒的总重量为基准计,加入反应混合物中的第三前体的量为20-50重量%。以经钝化的纳米颗粒的总重量为基准计,加入反应混合物中的第四前体的量为5-20重量%。以经钝化的纳米颗粒的总重量为基准计,加入反应混合物中的第五前体的量为5-20重量%。第四前体与第五前体的摩尔比为4:1至1:1。异质结是局部化的,即它们存在于一维纳米颗粒的端部、第一端盖和第二端盖之间,或者在一维纳米颗粒的结点处。
[0060] 具有多个异质结的纳米颗粒可用于各种不同的应用中。这些纳米颗粒可用于激光器、晶体管、双极型晶体管、太阳能电池等。它们可以容易地在溶液中进行加工。
[0061] 在一个实施方式中,所述纳米颗粒包括两种类型的异质结,其中II型交错的能带偏移能够允许电子和空穴的有效注入,而I型能带偏移限定了用于高效发光的复合中心。此外,这些纳米颗粒的各向异性的棒形状改善了纳米晶体性能。各向异性的形状使得具有合适的电荷层的半导体组件能够在器件中排列。
[0062] 所述纳米颗粒可用于EL器件。一个示例性EL器件如图4所示。图4显示了包含具有双异质结的纳米颗粒的EL器件300。所述器件300包括基材302、第一电极304、空穴注入层306、空穴传输层308、纳米颗粒层310(其包含本文所述的经钝化的纳米颗粒)、电子传输层
312和第二电极314。所述基材302通常包括光学透明、电绝缘的玻璃或者光学透明、电绝缘的聚合物。所述第一电极304可包括光学透明的导电聚合物或金属氧化物。第一电极304的例子是氧化锡铟、氧化锡、聚吡咯的薄膜、聚苯胺的薄膜、聚噻吩的薄膜等。用于空穴注入层
306的合适的空穴注入材料是PEDOT:PSS(聚(3,4-亚乙基二氧噻吩)/聚(苯乙烯磺酸盐/酯),其是两种离聚物的聚合物混合物。
[0063] 空穴传输层308包含聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)(TFB),聚(N,N’-二(4-丁基苯基)-N,N’-二(苯基)联苯胺)(聚-TPD),聚-N-乙烯基咔唑(PVK),四氟乙烯-全氟-3,6-二氧杂-4-甲基-7-辛烯磺酸共聚物(PFI),或氧化镍(NiO)。纳米颗粒层310包括上述纳米颗粒,而电子传输层312包括氧化锌纳米颗粒或氧化纳米颗粒。第二电极314(其用作阴极)包括金属膜,其一个例子是铝膜。可将其他材料用于第一电极304、空穴注入层306、空穴传输层308、电子传输层312和第二电极314中。
[0064] 本发明所述的经钝化的纳米颗粒的优点在于,当用相同强度的光照射本发明的组合物以及比较组合物时,本发明的经钝化的纳米颗粒能产生优于比较组合物的光致发光强度,所述比较组合物具有相同的成分但是没有以钝化的纳米棒的形式存在。经钝化的纳米颗粒产生的光在550-700纳米的波长区域,峰值强度位于约630纳米处。通过改变端盖的尺寸,纳米棒发出的光的颜色也会发生变化。
[0065] 在一个实施方式中,当将经钝化的纳米颗粒放置在表面上时,该纳米颗粒会发生自组装,变成相互平行。一维纳米颗粒的高纵横比使得它们能够发生这种自组装。所述自组装能够提高光致发光效率,并且当用光照射时还可用来产生各种光。
[0066] 通过以下非限制性实施例来阐述本文所述的组成和方法。实施例
[0067] 实施例1
[0068] 该实施例说明了制备钝化的纳米颗粒。反应在N2气氛下在标准希莱克(Schlenk)线装置中进行。技术级三辛基氧化膦(TOPO)(90%)、技术级三辛基膦(TOP)(90%)、技术级辛基胺(OA)(90%)、技术级十八碳烯(ODE)(90%)、CdO(99.5%)、乙酸锌(99.99%)、S粉末(99.998%)和Se粉末(99.99%)购自西格玛-奥德里奇公司(Sigma Aldrich)。N-十八烷基膦酸(ODPA)购自PCI合成公司(PCISynthesis)。ACS级氯仿和甲醇购自菲彻科学公司(Fischer Scientific)。材料未经处理直接使用。
[0069] 一维纳米颗粒-CdS纳米棒的制备
[0070] 首先,将2.0克(g)(5.2毫摩尔(mmol))的TOPO、0.67克(2.0毫摩尔)的ODPA和0.13克(2.0毫摩尔)的CdO准备在50毫升三颈圆底烧瓶中。在150℃和真空条件下将混合物脱气30分钟(min),然后在搅拌下加热至350℃。在350℃下形成Cd-ODPA络合物,约1小时后烧瓶内的棕色溶液变得光学透明且变为无色。然后,在150℃下将溶液脱气10分钟以除去络合反应的副产物(包括O2和H2O)。脱气后,将溶液在N2气氛下加热至350℃。将溶解在1.5毫升(ml)的TOP中的包含16毫克(mg)(0.5毫摩尔)S的硫(S)前体用注射器快速注入烧瓶中。其结果是,反应混合物猝冷到330℃,在此温度下发生CdS的生长。15分钟后,通过将温度冷却至250℃来终止CdS纳米棒的生长,在此温度下发生CdSe在CdS纳米棒上的生长。量取一等份样CdS纳米棒,通过用甲醇和丁醇进行沉淀来对其进行清洁,用于分析。通过向该反应烧瓶(该反应烧瓶如下文所述保持在N2气氛中)中加入Se前体来形成CdS/CdSe异质结构。
[0071] 用第一端盖钝化纳米棒-CdS/CdSe纳米棒异质结构
[0072] 形成CdS纳米棒后,在250℃下通过注射以4毫升/小时(ml/h)的速率缓慢注入溶解在1.0毫升TOP中的包含20毫克(0.25毫摩尔)Se的Se前体(总注射时间约为15分钟)。在250℃下将反应混合物再老化5分钟,然后,通过空气射流将反应烧瓶快速冷却。量取一等份样CdS/CdSe纳米棒异质结构,通过用甲醇和丁醇进行沉淀来对其进行清洁,用于分析。将最终溶液溶解在氯仿中,在2000转/分钟(rpm)的转速下进行离心。将沉淀物重新溶解于氯仿中,以溶液形式存储。当该溶液被稀释10倍时,CdS带边缘吸收峰对应于0.75。
[0073] 第二端盖的形成-CdS/CdSe/ZnSe双异质结纳米棒
[0074] 通过使ZnSe生长在CdS/CdSe纳米棒异质结构上来合成CdS/CdSe/ZnSe双异质结纳米棒。对于Zn前体,将6毫升ODE、2毫升OA和0.18克(1.0毫摩尔)的乙酸锌在100℃下脱气30分钟。在N2气氛下将混合物加热至250℃,从而在1小时后形成油酸锌。在冷却至50℃后,将2毫升预先制备的CdS/CdSe溶液注入油酸锌溶液中。在真空下使混合物中的氯仿蒸发30分钟。在250℃下通过缓慢注入溶解在1.0毫升TOP中的包含20毫克(0.25毫摩尔)Se的Se前体来引发ZnSe生长。CdS/CdSe纳米棒异质结构上的ZnSe的厚度受所注入的Se的量控制。在注入所需量的Se前体后,通过除去加热套终止ZnSe的生长。清洁步骤与用于CdS纳米棒的清洁步骤相同。
[0075] 形成第二端盖的替代性方法-CdS/CdSe/ZnSe双异质结纳米棒
[0076] TOA之类的配位溶剂可作为替代用于ZnSe生长。将5毫升TOA、1.2毫升OA和0.18克(1.0毫摩尔)的乙酸锌在100℃下脱气30分钟。在N2气氛下将混合物加热至250℃,从而在1小时后形成油酸锌。在冷却至50℃后,将2毫升预先制备的CdS/CdSe溶液注入油酸锌溶液中。在真空下使混合物中的氯仿蒸发30分钟。在250℃下通过缓慢注入溶解在1.0毫升TOP中的包含20毫克(0.25毫摩尔)Se的Se前体来引发ZnSe生长。CdS/CdSe纳米棒异质结构上的ZnSe的厚度受所注入的Se的量控制。在注入所需量的Se前体后,通过除去加热套终止ZnSe生长。清洁步骤与用于CdS纳米棒的清洁步骤相同。
[0077] 实施例2
[0078] 该实施例用来说明所述纳米颗粒在电致发光器件中的用途。使用图4中所示的器件。器件300包括玻璃基材302、包含氧化铟锡的第一电极304、包含PEDOT:PSS的空穴注入层306、包含TFB的空穴传输层308、纳米颗粒层310(其所包含的物质如下文所述)、包含氧化锌纳米颗粒的电子传输层312和包含铝的第二电极314。
[0079] 所述纳米颗粒层310包含本文所述的纳米颗粒(CdS纳米棒,该纳米棒被包含CdSe的第一端盖和包含ZnSe的第二端盖钝化),或者包含比较材料(所述比较材料含有芯-壳量子点,其中所述芯是CdSe,所述壳是ZnSe)。
[0080] 含有各种材料的EL器件的EL性能如图5所示。图5(A)显示了芯-壳(CdSe/ZnS)量子点的EL光谱,图5(B)显示了本发明所述的纳米颗粒(CdS纳米棒,该纳米棒被包含CdSe的第一端盖和包含ZnSe的第二端盖钝化)的EL光谱。
[0081] 从图5(A)和5(B)可以看出,经钝化的纳米棒的EL光谱迁移至较高的波长。芯壳量子点在600纳米处具有峰值强度,而经钝化的纳米棒在630纳米处具有发射峰。具有经钝化的纳米棒的器件对于对应于该EL强度的开机电压约为2.5V,这显著低于具有芯壳量子点的器件的约4V的开机电压。
[0082] 图6显示了芯-壳CdSe/ZnS量子点和所述纳米颗粒(CdS纳米棒,该纳米棒被包含CdSe的第一端盖和包含ZnSe的第二端盖钝化)的积分EL-施加电压的关系图。从图6可以看出,在低压区域,被包含CdSe的第一端盖和包含ZnSe的第二端盖钝化的CdS纳米棒的积分EL大于量子点的积分EL。
QQ群二维码
意见反馈