发动机附连支柱包括形成次级气流的内半径定界的结构壳体的用于飞行器的发动机组件

申请号 CN201080033387.0 申请日 2010-07-29 公开(公告)号 CN102481981A 公开(公告)日 2012-05-30
申请人 空中客车营运有限公司; 发明人 劳伦特·拉丰;
摘要 本 发明 涉及一种用于 飞行器 的 发动机 组件(1),包括双流 涡轮 发动机(2)和附连支柱(4),其中,所述涡轮发动机包括在中间罩的 轮毂 (20)的下游延伸的结构壳体(40),其中,所述壳体(40)有助于涡轮发动机的次级气流(36)的通道(38)的内半径定界。此外,主结构(46)包括结构壳体(50),该结构壳体(50)安装在结构壳体(40)上且 定位 在结构壳体(40)的下游,从而使得其还有助于用于次级气流的通道(38)的内半径定界,主结构还包括偏移结构(52),该偏移结构(52)定位在通道(38)中,且用于将壳体(50)连接于飞行器的元件(6)。此外,结构壳体(50)结合了推 力 反向系统(75)。
权利要求

1.一种用于飞行器发动机组件(1),所述发动机组件(1)包括双流涡轮发动机(2)和支柱(4),所述支柱(4)用于安装用于连接于所述飞行器的元件(6)的所述涡轮发动机,其中,所述涡轮发动机包括扇罩(12)以及中间罩(14),所述中间罩(14)定位在所述风扇罩的下游且包括支承结构臂(22)的轮毂(20),并且其中所述附连支柱包括用于传递的主结构(46),
其特征在于,所述涡轮发动机包括第一结构壳体(40),所述第一结构壳体(40)在所述中间罩的所述轮毂(20)的下游延伸,其中,所述壳体(40)有助于用于所述涡轮发动机的次级气流(36)的通道(38)的内半径定界,
所述附连支柱的所述主结构(46)包括第二结构壳体(50),所述第二结构壳体(50)组装在所述第一结构壳体(40)上,且直接定位在所述第一结构壳体(40)的下游,以便所述第二结构壳体还有助于用于次级气流的通道(38)的内半径定界,其中,所述附连支柱的主结构还包括偏移结构(52),所述偏移结构(52)定位在用于次级气流的所述通道中,并且用于将所述第二结构壳体(50)连接于所述飞行器元件,
以及,所述第二结构壳体(50)包括推力反向系统(75)。
2.根据权利要求1所述发动机组件,其特征在于,所述第一结构壳体(40)和所述第二结构壳体(50)之间的接合部定位在所述涡轮发动机的燃烧室(42)的下游。
3.根据权利要求1或权利要求2所述的发动机组件,其特征在于,所述第二壳体的下游端部(50b)定位成靠近所述涡轮发动机的气体发生器罩(16)和所述涡轮发动机的气体喷射罩(18)之间的接合部。
4.根据前述权利要求中的任一项所述的发动机组件,其特征在于,使用相对于所述气体发生器罩周向地分布且大体上切向地定位的多个连接杆(72)将所述第一结构壳体和/或所述第二结构壳体连接于所述涡轮发动机的气体发生器罩(16)。
5.根据前述权利要求中的任一项所述的发动机组件,其特征在于,由周向分布的多个预加载弹簧系统(74)将所述第二结构壳体(50)连接于所述涡轮发动机的所述气体发生器罩(16)和/或所述涡轮发动机的所述气体喷射罩(18)。
6.根据前述权利要求中的任一项所述的发动机组件,其特征在于,所述第一结构壳体(40)由被一个或更多个关闭件(68)覆盖的检修口(66)穿孔。
7.一种包括根据前述权利要求中的任一项所述的至少一个发动机组件(1)的飞行器。
8.根据权利要求7所述飞行器,在所述飞行器中,所述发动机组件的附连支柱所连接的所述元件是其机翼(6)中的一个或其机身的后部部分。
9.一种根据权利要求1-6中任一项所述的用于飞行器的发动机组件(1)的组装方法,其中,所述方法包括如下步骤:
-以可移除的方式将导向装置(91)安装在所述第二结构壳体(50)上;
-在所述第二结构壳体(50)的方向上,沿其轴线(8)的方向移动所述双流涡轮发动机(2),从而使得其第一壳体(40)由所述导向装置(91)导向;以及
-从所述第二结构壳体(50)上移除所述导向装置(91)。

说明书全文

发动机附连支柱包括形成次级气流的内半径定界的结构

壳体的用于飞行器的发动机组件

技术领域

[0001] 本发明总体涉及用于飞行器的——特别是用于双流涡轮喷气发动机(turbojet)——的双流式涡轮发动机附连支柱领域。

背景技术

[0002] 从现有技术中,特别是从文献EP-A-1 883 578中已知双喷气式涡轮喷气发动机附连支柱的各种设计。
[0003] 在此文献中,所述支柱的主传递结构由中央箱体形成,该中央箱体的每一侧延伸出两个侧部箱体,其中,整个组件大体形成直接定位扇罩的下游且以发动机的轴线定中心的半壳体。此外,该半壳体的内表面有助于用于涡轮喷气发动机的次级气流的通道的外半径定界。相应地,所述支柱的主结构从发动机的轴线沿径向向外延伸相当大的距离,这使得其设计相对较重且体积大并且因此较贵。
[0004] 此外,其关于风扇罩朝向外部以及上部沿径向突出相当大的径向长度。相应地,保持足够大的地面间隙可能导致支柱定位成部分超出由其所附连的机翼限定的脊线。这样导致不可忽视的空气动力损失,并且因此降低了总体性能。

发明内容

[0005] 因此,本发明的目的是提供与现有技术的实施方式相比至少部分地克服上述缺点的解决方案。
[0006] 为此,本发明的第一目的因此是一种包括双流涡轮发动机和支柱的用于飞行器的发动机,该支柱用于安装预定用以连接于飞行器的元件的所述涡轮发动机,其中,该涡轮发动机包括风扇罩以及定位在风扇罩的下游且包括用于支承结构臂的轮毂的中间罩,并且其中,所述附连支柱包括用于传递力的主结构。
[0007] 根据本发明,所述涡轮发动机包括第一结构壳体,该第一结构壳体在所述中间罩的轮毂的下游延伸,其中,该壳体有助于用于涡轮发动机的次级气流的通道的内半径定界。
[0008] 此外,所述附连支柱的所述主结构包括第二结构壳体,该第二结构壳体组装在所述第一结构壳体上,且直接定位在第一结构壳体的下游,使得其还可以有助于用于次级气流的通道的内半径定界,其中,所述附连支柱的所述主结构还包括偏移结构,该偏移结构定位在用于次级气流的通道中且用于将所述第二结构壳体连接于所述飞行器元件。此外,所述第二结构壳体包括推力反向系统。
[0009] 本发明值得注意的地方在于,其提供了主附连支柱结构,该主附连支柱结构包括定位成非常靠近发动机轴线的结构壳体。其总体尺寸以及其总质量相应地有利地降低了。此外,由于两个结构壳体之间的附连,每个都始终围绕发动机轴线延伸,施加在涡轮发动机的横向方向上的动量能够被相当令人满意地传递,由此,大大降低了涡轮发动机在该方向上的弯曲。
[0010] 此外,如果涡轮发动机用于被组装在飞行器的机翼下面,另一优点在于:能够将支柱安装在机翼上,而不使支柱到达由机翼限定的脊线,并且保持涡轮发动机下面充足的地面间隙,这又是由于第二结构壳体安装成非常靠近发动机轴线造成的。
[0011] 最后,将推力反向系统集成于第二结构壳体中使得能够获得紧凑的且有效的发动机组件。
[0012] 第一结构壳体和第二结构壳体之间的接合部优选地定位在涡轮发动机的燃烧室的下游。这表示与现有实施方式的相比,支柱的主结构的位置更加靠后。此外,该布置意味着可以不阻碍定位在燃烧室上游——称为为“芯部”区域——的设备通常所需的入口。最后,由于主结构不定位成与燃烧室对齐,不存在其被可能从该室释放出的任何火焰损坏的危险。
[0013] 所述第二壳体的下游端部优选地定位成靠近涡轮发动机的气体发生器罩与涡轮发动机的气体喷射罩之间的接合部。
[0014] 这样导致了附连支柱的第二壳体的非常短的轴向长度,从而造成较小的尺寸。
[0015] 所述第一结构壳体和/或第二结构壳体优选地使用相对于所述气体发生器罩大致切向地定位且沿周向分布的多个连接杆连接于涡轮发动机的气体发生器罩。
[0016] 还优选地,先前解决方案的替代解决方案或可以与先前解决方案相结合的解决方案涉及通过沿周向定位的多个预加载弹簧系统将第二结构壳体连接于涡轮发动机的气体发生器罩和/或其气体喷射罩。
[0017] 所述第一结构壳体优选地被检修口穿孔,该检修口被一个或更多个关闭件遮盖。
[0018] 本发明的另一目的是一种包括如上所述的至少一个发动机组件的飞行器,其中,发动机组件的附连支柱所连接的所述元件优选地是其机翼中的一个或其机身的后部部分。
[0019] 最后,本发明还涉及用于组装上述发动机组件的方法,其中,所述方法包括下列项的步骤:
[0020] -将导向装置以可移除的方式安装在第二结构壳体上;
[0021] -在第二结构壳体的方向上沿其轴线方向移动双流涡轮发动机,从而使得其第一壳体由所述导向装置导向;以及
[0022] -从所述第二结构壳体上移除所述导向装置。
[0023] 因此此处的特点在于,支柱的第二壳体上的可移除的导向装置的定位,使得涡轮发动机能够相对于该第二壳体定中心,该涡轮发动机用于穿过该第二壳体。
[0024] 本发明的另外的优点和特征示出于下文中的非限制性的详细的公开内容中。附图说明
[0025] 将参考附图进行此说明,其中:
[0026] -图1示出悬挂于飞行器的机翼下面的根据本发明的优选实施方式的用于飞行器的发动机组件的纵向半剖视图;
[0027] -图2a和图2b示出从两个不同的视观察得到的,属于图1所示的发动机组件的附连支柱的主力传递结构的两个立体图;
[0028] -图3a和图3b示出从两个不同的视角观察得到的,装配至属于图1所述的发动机组件的涡轮发动机的第一结构壳体的两个立体图;
[0029] -图4和图5分别示出沿图1的线IV-IV和V-V示出的剖面示意图;
[0030] -图6示出类似于图2b的视图,但是更加详细地示出特别是装配于主力传递结构的推力反向系统;
[0031] -图7示出类似于图1的视图,但是更加详细地示出特别是装于主力传递结构的推力反向系统;
[0032] -图8示出允许涡轮发动机组装在附连支柱上的工具的示意图;
[0033] -图9示出剖视图,其左侧部分是沿图8的线IXa-IXa观察得到的,其右侧部分是沿图8的线IXb-IXb观察得到的;
[0034] -图10示出沿图8的线X-X的剖视图。

具体实施方式

[0035] 参考图1,可以观察到根据本发明的优选实施方式的用于飞行器的发动机组件1.[0036] 该组件1总体包括双流涡轮发动机——此处优选地是涡轮喷气发动机2——和使得涡轮喷气发动机能够悬挂于飞行器机翼6下面的附连支柱4。
[0037] 贯穿下面的说明,按照惯例,平行于涡轮喷气发动机的纵向轴线8且也被称为发动机轴线的涡轮喷气发动机的纵向方向称为X。此外,垂直于涡轮喷气发动机的定向的方向称为Y,并且竖直方向或高度方向称为Z,并且这三个方向X、Y和Z相互垂直。
[0038] 此外,术语“上游”和“下游”应被认为是相对于涡轮喷气发动机内的气体的主要流动方向,其中,箭头10示意性地示出该方向。
[0039] 在图1中,可以看出,涡轮喷气发动机2包括以牢固的方式相互附连的多个罩,即,从上游至下游依次为风扇罩12、中间罩14、也称为气体发生器罩的中央罩16以及最后气体喷射罩。关于中间罩,其具有定中心于轴线8的轮毂20,支承该罩14的外部套圈24的臂22从该轮毂20径向地延伸。套圈24直接定位在其所附连的风扇罩12的下游,并且涡轮喷气发动机的短舱26包围这些元件12、24。
[0040] 轮毂20定位在气流分离管嘴30的下游,该气流分离管嘴30用于将进入风扇的气流分成主气流34和次级气流36,其中,主气流34横向于气体发生器,并且次级气流36用于穿过为此目的而安装的环形通道38,也称作次级环形通道。
[0041] 除了上文中所提及的不同的罩之外,它们中的一些能够由单个件一起制成,涡轮喷气发动机包括第一结构壳体40,该第一结构壳体40在轮毂的20的下游延伸,大体上在方向X上且以轴线8上定中心。其下游端部40b优选地恰好定位在涡轮喷气发动机的燃烧室42的下游的位置处,在横向平面中。其上游端部40a——该上游端部40a也是环形的——通过螺栓附连于轮毂上,所述多个螺栓(未绘出)沿周向分布。当涡轮喷气发动机运行时,上游端部40a上的相对彼此间隔的大量螺栓使得能够最佳地阻止壳体40的有害的椭圆效果。
[0042] 关于附连支柱4,其具有主力传递结构46,也称为刚性结构,以及次级机构48,该次级结构48基本上用于容纳设备和用于构成在机翼6和涡轮喷气发动机2之间形成接合部的空气动力结构。此处可以看出,主结构46包括第二结构壳体50,该第二结构壳体50也在轴线8上定中心且以牢固的方式附连于第一壳体40的下游端部40b。因此,如上所述,第一壳体40和第二壳体50之间的接合部定位在燃烧室42的下游,并且,如所示出的,优选地处于恰好定位在燃烧室42的出口的横向平面中。此外,主结构46包括偏移结构52,如图1中示意性地示出的,该偏移结构52从壳体50开始在方向Z上且还在方向X上朝向后部延伸。当然,能够看出,该结构52在其后部部分具有允许主结构46安装在机翼6的结构部分6a上的装置54。
[0043] 在该发动机组件1中,次级气流36的通道38在外半径方向上由发动机机舱26的内表面58定界。此外,该通道38的内半径定界首先由中间罩14的轮毂20提供,并且然后由包围气体发生器罩16的一部分的结构壳体40的外表面提供,并且最后由直接定位在第一壳体40的下游的结构壳体50的外表面提供。因此,如附连支柱4的次级结构48那样,偏移结构52竖直地穿过次级气流的通道38延伸。
[0044] 如图1中所能观察到的,结构壳体50的下游端部50b定位成靠近气体发生器罩16和喷射罩18之间的接合部。因此,附连支柱的第二结构壳体50仅在燃烧室和气体喷射罩18之间延伸相对有限的轴向部分。由于与壳体50上的涡轮发动机的组有关的原因,壳体
50的内表面的直径大于涡轮发动机1的定位在气体发生器罩16和喷射罩18之间的接合部的区域中的部分的最大直径。
[0045] 现在参考图2a和图2b,能够观察到附连支柱的主结构46。其能够由单件或者甚至使用彼此牢固地附连的元件制成。不管是哪一种情况,结构壳体50的确形成始终围绕发动机轴线8的连续的且大体上为环形的结构,气体发生器罩16的下游端部用于穿过该结构壳体50。其还装有推力反向系统,其在图1、2a和2b中未示出,仅示出于图6和图7中。
[0046] 在该壳体的前端部50a上,包括附连装置,该附连装置用于与用于附连第一结构壳体的下游端部的附加装置协作。这些附连装置包括例如两个上附连件60a,该两个上附连件60a定位在中间竖直平面(未示出)的两侧,它们中的每一个用于仅传递沿方向X施加的力。它们还能够包括两个中间附连件60b,该两个中间附连件60b定位在上述中间竖直平面的两侧,并且还被该壳体的直径面横穿。此处,它们中的每一个用于仅传递施加在方向Z上的力。最后,这些装置包括下附连件60c,该下附连件60c被中间竖直平面横穿,并且用于传递施加在方向X和方向Y上的力,而不传递方向Z上的力。这样使得能够在第一结构壳体上获得形成均衡组件系统的组件装置。
[0047] 现在参考图3a和图3b,能够观察到第一结构壳体40,该第一结构壳体40优选地由单件制成,或者也是由彼此附连的多个元件获得。在该壳体的下游端部40b处,能够观察到待组装在附连件60a、60b、60c上的分别定位在它们对面的附加附连件62a、62b、62c。
[0048] 此外,能够观察到,结构40被检修口66穿孔,该检修口66用于允许进入涡轮喷气发动机的气体发生器罩,其中,这些板66被连接于相同的结构40的铰接的关闭件68关闭。因此,在如3a所示的关闭位置处,定位在外部的关闭件覆盖板66,并且因此有助于涡轮发动机的次级气流的内半径定界。相反地,当必须对发动机进行维护时,可以按图3b所示的示意性方式枢转关闭件,以释放板66,并且因此允许进入由该结构40定界的内部空间。
[0049] 最后,如图3a和图3b所示意性地示出的,壳体40能够具有在顶后部处敞开的缝70,以允许附连支柱的次级结构48穿过。
[0050] 尽管这未在图1中示出,使用规则地且周向地分布的多个连接杆72——例如图4所示的三个这种连接杆——将第一结构壳体40连接于气体发生器罩16。通常,该布置——其中,连接杆连接于它们的端部中的每一个——使得能够解决罩16和结构40之间的热膨胀差异现象。通过连接杆72的该接合可替代地能够制作成第二结构壳体50中的上游端部50a。
[0051] 可替代地或同时地,结构壳体50的下游端部50b能够通过围绕轴线8规则地且周向地分布的系统74连接于气体喷射罩18或气体发生器罩16、或再次连接于气体喷射罩18和气体发生器罩16之间的接合部。如5所示的这些系统74包括预加载弹簧,该预加载弹簧使得这些元件50、18——预加载弹簧处于这些元件之间——之间的相对移动能够被吸收。
[0052] 现在参考图6,能够更加详细地观察到附连支柱的主结构46。此处基于称作铰接关闭件设计的设计,该结构的确包括推力反向系统。在不超出本发明的范围的情况下,仍然能够设想其它的推力反向系统设计。
[0053] 因此,推力反向系统75包括多个单元76,每个单元包括关闭件78,关闭件78的后端部连接于壳体50。在涡轮喷气发动机的正常运行过程中,关闭件78预定压靠于结构壳体50的外表面,从而由其形成用于次级气流的通道的内半径定界。图7的下部分示出了该位置,其中,可以观察到关闭件78连接在壳体50的下游端部50b的区域中。此外,在涡轮喷气发动机的正常运行的该构造中,每个关闭件78具有优选地遮盖两个结构壳体40、50之间的接合部的前端部。
[0054] 为了展开关闭件78,每个组件76包括横穿由在折叠位置的关闭件78遮盖的孔82的千斤顶形式的致动装置80。因此,当千斤顶80遵从指令展开而致动推力反向系统时,关闭件78在其旋转轴线上枢转并且在次级气流的通道38中逐步地展开。自然地,围绕轴线8周向地分布的所有关闭件78同时地展开。
[0055] 如图7的上部分所示,当所有关闭件78被展开时,循环通过通道38的次级气流36撞击由所有展开的关闭件78形成的该径向挡板,并且因此——如箭头84示意性地示出的——克服径向向外的流返回。在示出的构造中,空气穿过机翼6的前沿和短舱26的后端部之间,其中短舱26使风扇罩12和中间罩14的外部套圈呈流线型。
[0056] 对此,短舱26的该下游端部具有有助于通道38的外半径定界的环形管嘴90的形状,其目的是根据其位置能够改进环形通道38的出口横截面的面积。因此可以在如图7的下部分所示的通道38的出口横截面较大的位置和如图7的上部分所示的通道38的出口截面较小的位置之间移动管嘴。在所示出的示例中,该管嘴90能够制造成分成多个扇区,即,由在周向方向上一个紧接一个地放置的几个扇区形成。
[0057] 由于所述构造,如图7的上部分所示的,可以在涡轮喷气发动机在关闭件78展开的情况下的反向推力模式下运行时,预定将管嘴90移动至最有利的位置。
[0058] 参考图8至图10,示出了将涡轮喷气发动机2安装在附连支柱4上的优选方式。为了实现这些,首先将附连支柱4放在机翼6上的适当位置,从而使得所述附连支柱从机翼下面突出。其次,将几个导轨91临时安装在第二结构壳体50上,例如两个导轨90放置在对应于4点和8点的角位置处。这些导轨91定位成呈现为大体上与方向X对齐的通路。此外,装有其短舱26的涡轮喷气发动机2以悬挂的方式组装在台车92上。为此,预定使用两个缆索94悬挂中间罩14的外部套圈24,并且用两个缆索96悬挂喷射罩18。这些悬挂件连接于装配在台车92上的驱动机构98,从而使得能够相对于该台车92在方向X、Y、Z中的每一个方向上调节涡轮喷气发动机2的位置。此外,两个支承系统100也在对应于4点和
8点的角度位置处临时地连接于第一壳体40的下游端部40b,从而使得它们能够与装配于该端部的两个导轨90协作。
[0059] 因此,通过移动组装在轮子102上的台车92,相对于保持固定的附连支柱4在方向X上移动悬挂于台车92的涡轮喷气发动机2。每个支承件100能够装有向前突出的机械视距系统104,从而使得其能够确定每个支承件100定位在其相关的导轨91的轴线中,从而使得其能够在导轨91上滚动。当满足该条件时,手推车有助于在方向X上移动,从而建立支承件100和它们相关的导轨91之间的协作,并且然后能够继续该移动,直至喷射罩18进入由第二结构壳体50限定的内部空间内。当涡轮喷气发动机2和安装支柱4之间的相对位置被建立之后,壳体50的上游端部50a和壳体40的下游端部40b之间实现机械连接,其优选地构成安装支柱的刚性结构46和涡轮喷气发动机2之间的唯一的机械连接。此后,通过安装支柱4牢固地附连在机翼6下面的涡轮喷气发动机2能够与夹具的框架92脱开联接,并且能够从第二壳体50移除导轨91。
[0060] 自然地,本领域的技术人员能够对刚刚已经描述的只作为非限制性示例的本发明进行各种改进。
QQ群二维码
意见反馈