船舶液化ガス処理方法

申请号 JP2015535579 申请日 2013-10-24 公开(公告)号 JP6002330B2 公开(公告)日 2016-10-05
申请人 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド; 发明人 リー ジュン チェ; クウォン スン ビン; チョイ ドン キュ; ムン ヨン シク; キム ドン チャン; ジョン チェオン; キム ナム ス;
摘要
权利要求

LNGを貯蔵している貯蔵タンクと、前記貯蔵タンクに貯蔵されているLNGを燃料として使用する主エンジン及び副エンジンとを備えた船舶液化ガス処理システムによって液化ガスを処理する方法であって、 前記液化ガス処理システムは、前記貯蔵タンクで発生したBOGを圧縮して前記主エンジン及び前記副エンジンに燃料として供給する圧縮機ラインと、前記貯蔵タンクに貯蔵されたLNGを圧縮して前記主エンジン及び前記副エンジンに燃料として供給するポンプラインと、を含み、 前記圧縮機ラインは、前記貯蔵タンクから発生するBOGを150〜400baraに圧縮する高圧圧縮機を含み、前記ポンプラインは、前記貯蔵タンクに貯蔵されたLNGを150〜400baraに圧縮する高圧ポンプを含んで前記高圧圧縮機と前記高圧ポンプとを前記主エンジンと貯蔵タンクとの間に並列に配置し、 前記高圧圧縮機によって150〜400baraに圧縮されることで超臨界状態となったBOGのうち前記主エンジンに燃料として供給されていないBOGを、前記貯蔵タンクから排出されて前記圧縮機に移送される前のBOGと熱交換させた後、減圧して液化させることを特徴とする船舶の液化ガス処理方法。前記高圧圧縮機は、複数個の圧縮シリンダを含み、 前記貯蔵タンクで発生するBOGは複数個の前記圧縮シリンダのうち一部の圧縮シリンダによって圧縮された後、前記副エンジンに燃料として供給されることを特徴とする請求項1に記載の船舶の液化ガス処理方法。前記貯蔵タンクで発生するBOG及び強制気化されたLNGを前記高圧圧縮機に供給して圧縮させた後、前記主エンジン及び前記副エンジンのうち少なくとも1つに燃料として供給することを特徴とする請求項1に記載の船舶の液化ガス処理方法。前記貯蔵タンクに貯蔵されたLNGを前記副エンジンに供給する時、LNGのメタン価を前記副エンジンで要求する値に合わせるためにLNGから重炭化素成分を分離することを特徴とする請求項1に記載の船舶の液化ガス処理方法。前記熱交換させた後のBOGの減圧を膨張バルブまたは膨脹機により行うことを特徴とする請求項1に記載の船舶の液化ガス処理方法。前記液化されたBOGを気液分離器に供給して気体成分と液体成分とに分離し、 前記気体成分を前記貯蔵タンクから排出されて前記高圧圧縮機に移送されるBOGに合流させることを特徴とする請求項1に記載の船舶の液化ガス処理方法。前記気液分離器に供給される液化されたBOGを、冷却器により前記気体成分と熱交換させて冷却することを特徴とする請求項6に記載の船舶の液化ガス処理方法。前記高圧圧縮機は、複数個の圧縮シリンダを含み、 前記高圧圧縮機に含まれる複数個の前記圧縮シリンダを全部通過して圧縮されたボイルオフガスをオイルフィルタを経て移送することを特徴とする請求項1に記載の船舶の液化ガス処理方法。前記高圧圧縮機は、複数個の圧縮シリンダと1つ以上の中間冷却機とを含み、 前記中間冷却機により、前記圧縮シリンダで圧縮されることで温度上昇したボイルオフガスを冷却することを特徴とする請求項1に記載の船舶の液化ガス処理方法。前記超臨界状態となったBOGのうち前記主エンジンに供給されていないBOGは、熱交換及び減圧されたことで、別途の冷媒を使用する再液化装置を使わないで液化されることを特徴とする請求項1に記載の船舶の液化ガス処理方法。

说明书全文

本発明は、船舶液化ガス処理方法に関する。

近年、LNG(Liquefied Natural Gas)やLPG(Liquefied Petroleum Gas)などの液化ガスの消費量が全世界的に急増している傾向にある。液化ガスは、陸上又は海上のガス配管を介してガス状態で運搬されるか、又は、液化した状態で液化ガス運搬船に貯蔵されたまま遠距離にある使用先に運搬される。LNGやLPGなどの液化ガスは、天然ガス又は石油ガスを極低温(LNGの場合は約−163℃)に冷却して得られるもので、ガス状態の時よりその体積が大幅に減少するので海上を通じた遠距離運搬に非常に適している。

LNG運搬船などの液化ガス運搬船は、液化ガスを積み、海を運航して陸上の需要先にこの液化ガスの荷役するためのもので、そのため、液化ガスの極低温に耐えることができる貯蔵タンク(通常、「貨物倉」という)を含む。

このように極低温状態の液化ガスを貯蔵できる貯蔵タンクが設けられた海上構造物の例としては、液化ガス運搬船の他、LNG RV(Regasification Vessel)のような船舶やLNG FSRU(Floating Storage and Regasification Unit)、LNG FPSO(Floating,Production,Storage and Off−loading)、BMPP(Barge Mounted Power Plant)のような構造物などを挙げることができる。

LNG RVは、自航行及び浮遊が可能な液化ガス運搬船にLNG再気化設備を設置したもので、LNG FSRUは、陸上から遠く離れた海上でLNG輸送船から荷役される液化天然ガスを貯蔵タンクに貯蔵した後、必要に応じて液化天然ガスを気化させて陸上の需要先に供給する海上構造物であって、LNG FPSOは、採掘された天然ガスを海上で精製した後、直接液化させて貯蔵タンク内に貯蔵し、必要な場合、この貯蔵タンク内に貯蔵されたLNGをLNG輸送船に積み替えるために使用される海上構造物である。また、BMPPはバージ船に発電設備を搭載し海上で電気を生産するために使用される構造物である。

本明細書における船舶とは、LNG運搬船のような液化ガス運搬船、LNG RVなどをはじめ、LNG FPSO、LNG FSRU、BMPPなどの構造物まですべてを含む概念である。

天然ガスの液化温度は、常圧で約−163℃の極低温であるため、LNGはその温度が常圧で−163℃より少し高いだけで蒸発される。従来のLNG運搬船の場合を例にあげて説明すれば、LNG運搬船のLNG貯蔵タンクは断熱処理が施されてはいるが、外部の熱がLNGに持続的に伝達されるため、LNG運搬船によってLNGを輸送する途中にLNGがLNG貯蔵タンク内で持続的に自然気化してLNG貯蔵タンク内にボイルオフガス(BOG;Boil−Off Gas)が発生する。

発生したボイルオフガスは、貯蔵タンク内の圧力を増加させ、船舶の揺動によって液化ガスの流動を加速させて構造的な問題を招きかねないため、ボイルオフガスの発生を抑制する必要がある。

従来、液化ガス運搬船の貯蔵タンク内でのボイルオフガスを抑制するために、ボイルオフガスを貯蔵タンクの外部に排出させて焼却してしまう方法、ボイルオフガスを貯蔵タンクの外部に排出させて再液化装置を介して再液化させてから、再度貯蔵タンクに戻す方法、船舶の推進機関で使用される燃料としてボイルオフガスを使用する方法、貯蔵タンクの内部圧力を高く維持することでボイルオフガスの発生を抑制する方法などが単独又は複合的に使用されていた。

ボイルオフガス再液化装置が搭載された従来の船舶の場合、貯蔵タンクの適正圧力を維持するために、貯蔵タンク内部のボイルオフガスを貯蔵タンクの外部に排出させて再液化装置を介して再液化させるようになる。この時、排出されたボイルオフガスは冷凍サイクルを含む再液化装置で超低温に冷却された冷媒、例えば、窒素、混合冷媒などとの熱交換を介して再液化された後、貯蔵タンクに戻される。

従来のDFDE推進システムを搭載したLNG運搬船の場合、再液化設備を設置せず、ボイルオフガス圧縮機及び加熱のみによってボイルオフガスを処理した後、DFDEに燃料として供給しボイルオフガスを消費していたため、エンジンの燃料必要量がボイルオフガスの発生量より少ない時はボイルオフガスをガス燃焼器(GCU;Gas Combustion Unit)で燃焼させてしまう、又は大気中に捨てる(venting)しかない問題があった。

そして、従来の再液化設備及び低速ディーゼルエンジンを搭載したLNG運搬船は、再液化設備を介してBOGを処理できたにもかかわらず、窒素ガスを用いた再液化装置の運転の複雑性のため、全体システムの制御が複雑で相当量の動力が消耗される問題があった。

結局、貯蔵タンクから自然的に発生するボイルオフガスをはじめ、液化ガスを效率的に処理するためのシステム及び方法に対する研究開発が持続的に行われる必要がある。

本発明は、上記の従来の問題点を解決するためのもので、液化天然ガスを貯蔵している貯蔵タンクと、前記貯蔵タンクに貯蔵された液化天然ガスを供給されて燃料として使用するエンジンとを備えた船舶の液化ガス処理システムであって、貯蔵タンクで発生したボイルオフガスと貯蔵タンクに貯蔵された液化天然ガスとをエンジンで燃料として使用することによって、液化ガスを效率的に使用できるようにする船舶の液化ガス処理システム及び方法を提供することを目的とする。

上記目的を達成するための本発明の一側面によれば、LNGを貯蔵している貯蔵タンクと、前記貯蔵タンクに貯蔵されているLNGを燃料として使用する主エンジン及び副エンジンとを備えた船舶の液化ガス処理システムによって液化ガスを処理する方法であって、前記液化ガス処理システムは、前記貯蔵タンクで発生したBOGを圧縮機によって圧縮して前記主エンジン及び前記副エンジンに燃料として供給する圧縮機ラインと、前記貯蔵タンクに貯蔵されたLNGをポンプによって圧縮して前記主エンジン及び前記副エンジンに燃料として供給するポンプラインと、を含み、バラスト状態に比べて前記貯蔵タンクに貯蔵されたLNGの量が多いレイドン状態で、前記貯蔵タンクで発生するBOGは前記圧縮機ラインを介して前記主エンジン及び前記副エンジンのうち少なくとも1つに燃料として供給されることを特徴とする船舶の液化ガス処理方法が提供される。

前記バラスト状態で、前記貯蔵タンクに貯蔵されたLNGは前記ポンプラインを介して前記主エンジン及び前記副エンジンに燃料として供給されることができる。

前記バラスト状態で、前記貯蔵タンクで発生するBOGは前記圧縮機ラインを介して前記主エンジン及び前記副エンジンのうちいずれか1つに燃料として供給されることができる。

前記バラスト状態で、前記貯蔵タンクで発生するBOGは前記圧縮機ラインを介して前記副エンジンに燃料として供給され、前記貯蔵タンクに貯蔵されたLNGは前記ポンプラインを介して前記主エンジンに燃料として供給されることができる。

前記バラスト状態で、前記貯蔵タンクで発生するBOGは前記圧縮機ラインを介して間歇的に前記主エンジン及び前記副エンジンのうち少なくとも1つに燃料として供給され、前記主エンジン及び前記副エンジンのうち少なくとも1つにBOGが供給されない時、前記貯蔵タンクに貯蔵されたLNGは前記ポンプラインを介して前記主エンジン及び前記副エンジンのうち少なくとも1つに燃料として供給されることができる。

前記バラスト状態で、前記貯蔵タンクで発生するBOG及び前記貯蔵タンクに貯蔵されたLNGは同時に前記主エンジン及び前記副エンジンに燃料として供給されることができる。

前記圧縮機は、複数個の圧縮シリンダを含み、前記貯蔵タンクで発生するBOGは複数個の前記圧縮シリンダのうち一部の圧縮シリンダによって圧縮された後、前記副エンジンに燃料として供給されることができる。

前記貯蔵タンクで発生するBOG及び強制気化されたLNGを前記圧縮機に供給して圧縮させた後、前記主エンジン及び前記副エンジンのうち少なくとも1つに燃料として供給できる。

前記貯蔵タンクに貯蔵されたLNGを前記副エンジンに供給する時、LNGのメタン価を前記副エンジンで要求する値に合わせるためにLNGから重炭化素成分を分離できる。

前記圧縮機によって圧縮されたBOGのうち前記主エンジン及び前記副エンジンに燃料として供給されていないBOGを、前記貯蔵タンクから排出されて前記圧縮機に移送されているBOGと熱交換させて液化させることができる。

本発明によれば、LNG運搬船の貨物(すなわち、LNG)の運搬の際に発生する全てのボイルオフガスを、エンジンの燃料として使用または再液化させて再度貯蔵タンクに戻して貯蔵することができるため、GCUなどで消耗して捨てられるボイルオフガスの量を減少させることができ、窒素など別途の冷媒を使用することなくボイルオフガスを再液化して処理できる船舶の液化ガス処理システム及び方法が提供され得る。

したがって、本発明の液化ガス処理システム及び方法によれば、エネルギー消耗量が多く初期設置コストが過度にかかる再液化装置を設置することなく貯蔵タンクで発生するボイルオフガスを再液化させることができ、再液化装置で消耗されるエネルギーを低減できるようになる。

また、本発明の液化ガス処理システム及び方法によれば、貯蔵タンクで排出されたボイルオフガスを加圧した後、圧縮されたボイルオフガスのうち一部は船舶の高圧天然ガス噴射エンジン、すなわち推進システムに燃料として供給し、圧縮されたボイルオフガスのうち残りは貯蔵タンクから新しく排出されて圧縮される前のボイルオフガスの冷熱で液化させて貯蔵タンクに戻すことができるようになる。

また、本発明の液化ガス処理システム及び方法によれば、別途の冷媒を使用する再液化装置(すなわち、窒素冷媒冷凍サイクルや混合冷媒冷凍サイクル等)が設置される必要がないので、冷媒を供給及び貯蔵するための設備を追加的に設置する必要がなく、全体システムを構成するための初期設置コスト及び運用コストを節減できる。

また、本発明の液化ガス処理システム及び方法によれば、圧縮された後、熱交換器で冷却及び液化されたボイルオフガスを膨脹機(Expander)によって減圧させる場合、膨脹時にエネルギーを生成することができ、捨てられるエネルギーをリサイクルできる。

本発明の好ましい第1実施形態による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第2実施形態による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第2実施形態の変形例による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第2実施形態の変形例による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第3実施形態による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第4実施形態による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第4実施形態の変形例による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第4実施形態の変形例による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第5実施形態による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第5実施形態の変形例による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第5実施形態の変形例による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第5実施形態の変形例による船舶の液化ガス処理システムを示す概略構成図である。

本発明の好ましい第6実施形態による液化ガス処理システムを示す概略構成図である。

一般に、船舶から排出される排気ガスのうち、国際海事機関(International Maritime Organization)の規制を受けているものは、窒素酸化物(NOx)及び硫黄酸化物(SOx)であり、二酸化炭素(CO2)の排出も規制しようとする動きがある。特に、窒素酸化物(NOx)及び硫黄酸化物(SOx)の場合、1997年の海洋汚染防止協約(MARPOL;The Prevention of Marine Pollution from Ships)議定書によって提起され、8年もの長期間を費やした後、2005年5月に発効要件を満たし、現在、強制規定として履行している。

よって、このような規定を満たすために、窒素酸化物(NOx)の排出量を低減するための様々な方法が紹介されているが、このような方法のうち、LNG運搬船のような船舶のための高圧天然ガス噴射エンジン、例えばME−GIエンジンが開発されて使用されている。ME−GIエンジンは、同級出力のディーゼルエンジンに比べ、汚染物質排出量を二酸化炭素は23%、窒素化合物は80%、硫黄化合物は95%以上低減できる次世代の環境にやさしいエンジンとして脚光を浴びている。

このようなME−GIエンジンは、LNGを極低温に耐える貯蔵タンクに貯蔵して運搬させるLNG運搬船などのような海上構造物(本明細書における船舶とは、LNG運搬船、LNG RVなどをはじめ、LNG FPSO、LNG FSRUなどの海上プラントまですべてを含む概念である。)に設置されることができ、この場合、天然ガスを燃料として使用するようになり、その負荷に応じて約150〜400bara(絶対圧)程度の高圧のガス供給圧力が要求される。

MEGIエンジンは、推進のためにプロペラに直結されて使用されることができ、そのため、MEGIエンジンは低速で回転する2行程エンジンからなる。すなわち、MEGIエンジンは、低速2行程高圧天然ガス噴射エンジンである。

また、窒素酸化物排出量を低減するために、ディーゼル油と天然ガスとを混合して燃料として使用するDFエンジン(例えば、DFDG;Dual Fuel Diesel Generator)が開発され、推進用や発電用として使用されている。DFエンジンは、オイルと天然ガスとを混合燃焼する、又はオイル、天然ガスのうち選択された1つのみを燃料として使用することができるエンジンであって、オイルのみを燃料として使用する場合に比べ、燃料に含まれた硫黄化合物が少なく排気ガス中の硫黄酸化物の含有量が少ない。

DFエンジンは、MEGIエンジンのような高圧に燃料ガスを供給する必要がなく、約数〜数十bara程度に燃料ガスを圧縮して供給すればよい。DFエンジンは、エンジンの駆動力によって発電機を駆動させて電力を得て、この電力を用いて推進用モータを駆動させたり各種装置や設備を運転したりする。

天然ガスを燃料として供給する際、MEGIエンジンの場合はメタン価を合わせる必要がないが、DFエンジンの場合はメタン価を合わせる必要がある。

LNGが加熱されると、液化温度が相対的に低いメタン成分が優先的に気化されるため、ボイルオフガスの場合は、メタン含有量が高いのでそのままDFエンジンに燃料として供給され得る。しかし、LNGの場合は、メタン含有量が相対的に低くDFエンジンで要求するメタン価より低く、産地によってLNGを構成する炭化水素成分(メタン、エタン、プロパン、ブータン等)の比率が異なるため、そのまま気化させてDFエンジンに燃料として供給するには適していない。

メタン価を調節するためには、液化天然ガスを強制気化させた後、温度を下げてメタンより液化点の高い重炭化水素(HHC;heavy hydrocarbon)成分を液化させて除去できる。メタン価を調節した後、エンジンで要求する温度条件に合わせてメタン価が調節された天然ガスを追加的に加熱することもできる。

以下、添付図面に基づき、本発明の好ましい実施形態に対する構成及び作用を詳細に説明すれば次のとおりである。また、下記実施形態は、様々な他の形態に変形することができ、本発明の範囲が下記実施形態に限定されるものではない。

図1は、本発明の好ましい第1実施形態による船舶の液化ガス処理システムを示す構成図である。本実施形態の液化ガス処理システムは、推進用メインエンジン(すなわち、LNGを燃料として使用する推進手段)であって、例えば、MEGIエンジンが装着されたLNG運搬船などに適用され得る。

図1を参照すると、本実施形態による船舶の液化ガス処理システム100は、貯蔵タンク(cargo tank)1からLNGを推進システムとしてのメインエンジン(main engine)3へ移送させるための経路を提供する燃料供給ライン110と、貯蔵タンク1から発生するBOG(Boil Off Gas)をメインエンジン3へ移送させるための経路を提供するBOGライン140と、を含む。また、本実施形態によるBOGを用いた液化ガス処理システム100は、燃料供給ライン110を介してLNGをLNGポンプ(LNG pump)120及びLNG気化器(LNG vaporizer)130によって燃料としてメインエンジン3に供給し、BOGライン140を介してBOGをBOG圧縮機(BOG compressor)150によって圧縮させて燃料としてメインエンジン3に供給し、BOG圧縮機150から余剰のBOGを統合型IGG/GCUシステム200に供給する。

メインエンジン3として使用され得るMEGIエンジンは、約150〜400bara(絶対圧)程度の高圧に燃料を供給される必要がある。したがって、本実施形態によるLNGポンプ120及びBOG圧縮機150としては、MEGIエンジンで要求する圧力までLNG及びBOGをそれぞれ圧縮させることができる高圧ポンプ及び高圧圧縮機が使用される。

燃料供給ライン110は、例えば、LNGの貯蔵タンク1から移送ポンプ2の駆動によって供給されるLNGを燃料としてメインエンジン3へ移送させるための経路を提供し、LNGポンプ120及びLNG気化器130が設置される。

LNGポンプ120は、燃料供給ライン110にLNGの移送に必要なポンピング力を提供するように設置され、一例として、LNG HPポンプ(LNG High Pressure pump)が使用されることができ、本実施形態のように、複数からなり並列になるように設置されることができる。

LNG気化器130は、燃料供給ライン110でLNGポンプ120の後段に設置されることで、LNGポンプ120によって移送されるLNGを気化させるが、LNGの気化のために、一例として、LNGが熱媒循環ライン131を介して循環供給される熱媒との熱交換によって気化されるようにし、他の例として、ヒータをはじめ、LNGの気化熱を提供するための様々なヒーティング手段が使用され得る。また、LNG気化器130は、LNGの気化のために高圧で使用され得るHP気化器(High Pressure vaporizer)が使用され得る。一方、熱媒循環ライン131に循環供給される熱媒は、一例として、ボイラーなどから発生するスチームが使用され得る。

BOGライン140は、貯蔵タンク1から自然的に発生するBOGをメインエンジン3へ移送させるための経路を提供し、本実施形態のように、燃料供給ライン110に連結されることによってBOGを燃料としてメインエンジン3に供給されるようにすることができ、これと異なって、BOGを直接メインエンジン3に供給するための経路を提供することもできる。

BOG圧縮機150は、BOGライン140に設置されてBOGライン140を通過するBOGを圧縮させる。図1には1つのBOG圧縮機150のみを示しているが、BOG圧縮機は、従来の一般的な燃料供給システムと同様に、冗長化設計(redundancy)の要求事項を満たすために、同じ仕様の2台の圧縮機が並列に連結されるようにシステムが構成され得る。ただし、本実施形態のように、BOGライン140で余剰BOGライン160の分岐部分に単一のBOG圧縮機150が設置される場合は、高価のBOG圧縮機150の設置による経済的負担及びメンテナンスの負担を軽減できるという追加的な効果が得られる。

余剰BOGライン160は、BOG圧縮機150から余剰のBOGを統合型IGG/GCUシステム200に供給する経路を提供するが、統合型IGG/GCUシステム200だけでなく、例えば、DFエンジンのような補助エンジンなどに余剰BOGを燃料として供給できる。

統合型IGG/GCUシステム200は、IGG(Inert Gas Generator)とGCU(Gas Combustion Unit)とが統合されたシステムである。

一方、余剰BOGライン160と燃料供給ライン110とは、連結ライン170によって互いに連結され得る。したがって、連結ライン170によって余剰BOGをメインエンジン3の燃料として使用させる、または気化されたLNGを統合型IGG/GCUシステム200に燃料として使用させることができる。このような連結ライン170には通過するBOGや気化されたLNGの加熱のためにヒータ180が設置されることができ、BOGや気化されたLNGによる圧力を調節することによって過度な圧力を低減させる減圧バルブ(Pressure Reduction Valve;PRV)190が設置されることができる。一方、ヒータ180は、ガスの燃焼熱を用いたガスヒータであるか、その他にも熱媒の循環によって加熱のための熱源を提供する熱媒循環供給部をはじめ、様々なヒーティング手段が使用され得る。

このような本発明の第1実施形態による液化ガス処理システムの作用を説明する。

貯蔵タンク1内の圧力が所定の圧力以上又はBOGの発生量が多い場合、BOG圧縮機150の駆動によってBOGを圧縮してメインエンジン3に燃料として供給する。また、貯蔵タンク1内の圧力が所定の圧力未満又はBOG発生量が少ない場合、LNGポンプ120及びLNG気化器130の駆動によってLNGを移送及び気化させてメインエンジン3に燃料として供給され得るようにする。

一方、BOG圧縮機150から余剰のBOGを余剰BOGライン160を介して統合型IGG/GCUシステム200又はDFエンジンなどの補助エンジンに供給させ、BOGの消耗又は貯蔵タンク1に供給されるための不活性ガスを生成することを目的に使用し、さらには、補助エンジンなどの燃料として使用されることができるようにする。

BOGが供給される統合型IGG/GCUシステム200は、本体210内のBOG燃焼によって、貯蔵タンク1から持続的に発生するBOGを消耗することができ、必要に応じて、貯蔵タンク1に供給するための不活性ガスとして燃焼ガスを生成することもできる。

図2には本発明の好ましい第2実施形態による、船舶の液化ガス処理システムの概略構成図を示している。

図2には、天然ガスを燃料として使用できる高圧天然ガス噴射エンジン(すなわち、LNGを燃料として使用する推進手段)、例えば、MEGIエンジンを設置したLNG運搬船に本発明の液化ガス処理システムが適用された例が図示されているが、本発明の液化ガス処理システムは、液化ガス貯蔵タンクが設置された全ての種類の船舶、すなわち、LNG運搬船、LNG RVなどをはじめ、LNG FPSO、LNG FSRU、BMPPのような海上プラントに適用され得る。

本発明の第2実施形態による船舶の液化ガス処理システムによれば、液化ガスを貯蔵する貯蔵タンク11で発生して排出されたボイルオフガス(NBOG)は、ボイルオフガス供給ラインL1に沿って移送されて圧縮機13で圧縮された後、高圧天然ガス噴射エンジン、例えば、MEGIエンジンに供給される。ボイルオフガスは、圧縮機13によって約150乃至400bara程度の高圧に圧縮された後、高圧天然ガス噴射エンジン、例えば、MEGIエンジンに燃料として供給される。

貯蔵タンクは、LNGなどの液化ガスを極低温状態で貯蔵することができるように密封及び断熱防壁を備えているが、外部から伝達される熱を完壁に遮断することはできない。よって、貯蔵タンク11内では液化ガスの蒸発が持続的に行われ、ボイルオフガスの圧力を適正な水準に維持するために、ボイルオフガス排出ラインを介して貯蔵タンク11内部のボイルオフガスを排出させる。

貯蔵タンク11の内部には、必要な場合、LNGを貯蔵タンクの外部に排出させるために排出ポンプ12が設置される。

圧縮機13は、1つ以上の圧縮シリンダ14と、圧縮されながら温度が上昇したボイルオフガスを冷却させるための1つ以上の中間冷却機15とを含むことができる。圧縮機13は、例えば、ボイルオフガスを約400baraまで圧縮するように構成され得る。図2では、5つの圧縮シリンダ14及び5つの中間冷却機15を含む多段圧縮の圧縮機13が例示されているが、圧縮シリンダ及び中間冷却機の個数は必要に応じて変更され得る。また、1つの圧縮機内に複数個の圧縮シリンダが配列された構造の他、複数個の圧縮機を直列に連結した構造を有するように変更され得る。

圧縮機13で圧縮されたボイルオフガスはボイルオフガス供給ラインL1を介して高圧天然ガス噴射エンジンに供給されるが、高圧天然ガス噴射エンジンで必要とする燃料の必要量に応じて、圧縮されたボイルオフガスをすべて高圧天然ガス噴射エンジンに供給することもでき、圧縮されたボイルオフガスのうち一部のみを高圧天然ガス噴射エンジンに供給することもできる。

また、本発明の第1実施形態によれば、貯蔵タンク11から排出されて圧縮機13で圧縮されるボイルオフガス(すなわち、貯蔵タンクから排出されたすべてのボイルオフガス)を第1ストリームとした場合、ボイルオフガスの第1ストリームを圧縮した後、第2ストリームと第3ストリームとに分け、第2ストリームは高圧天然ガス噴射エンジンに燃料として供給し、第3ストリームは液化させて貯蔵タンクに戻すように構成できる。

この時、第2ストリームは、ボイルオフガス供給ラインL1を介して高圧天然ガス噴射エンジンに供給される。必要な場合、第2ストリームは、圧縮機13に含まれた複数個の圧縮シリンダ14を全部通過した後、高圧天然ガス噴射エンジンに連結されるライン(すなわち、ボイルオフガス供給ラインL1)と、圧縮機13に含まれた複数個の圧縮シリンダ14のうち一部を通過した後、DFエンジンに連結されるライン(すなわち、ボイルオフガス分岐ラインL8)を介して燃料として供給され得る。

第3ストリームは、ボイルオフガス復帰ラインL3を介して貯蔵タンク11に戻される。圧縮されたボイルオフガスの第3ストリームを冷却及び液化させることができるように、ボイルオフガス復帰ラインL3には熱交換器21が設置される。熱交換器21では圧縮されたボイルオフガスの第3ストリームを貯蔵タンク11から排出された後、圧縮機13に供給されるボイルオフガスの第1ストリームと熱交換させる。

圧縮される前のボイルオフガスの第1ストリームの流量が第3ストリームの流量より多いため、圧縮されたボイルオフガスの第3ストリームは、圧縮される前のボイルオフガスの第1ストリームから冷熱を供給されて液化され得る。このように、熱交換器21では貯蔵タンク11から排出された直後の極低温のボイルオフガスと圧縮機13で圧縮された高圧状態のボイルオフガスとを熱交換させ、この高圧状態のボイルオフガスを冷却及び液化させる。

熱交換器21で冷却されて少なくとも部分的に液化されたボイルオフガス(LBOG)は減圧手段としての膨脹バルブ22を通過しながら減圧されて気液混合状態で気液分離器23に供給される。膨脹バルブ22を通過しながらLBOGは略常圧に減圧(例えば、300bar から3barに減圧)され得る。液化されたボイルオフガスは、気液分離器23で気体と液体成分とが分離され、液体成分、すなわちLNGはボイルオフガス復帰ラインL3を介して貯蔵タンク11に移送され、気体成分、すなわちボイルオフガスはボイルオフガス再循環ラインL5を介して貯蔵タンク11から排出されて圧縮機13に供給されるボイルオフガスに合流される。さらに詳しくは、ボイルオフガス再循環ラインL5は、気液分離器23の上段から延長されボイルオフガス供給ラインL1で熱交換器21より上流側に連結される。

減圧されたボイルオフガスが円滑に貯蔵タンク11に戻ることができるように、また、減圧されたボイルオフガスの中の気体成分をボイルオフガス再循環ラインL5を介して円滑にボイルオフガス供給ラインL1に合流させることができるように、減圧手段による減圧後のボイルオフガスの圧力は貯蔵タンク11の内部圧力よりは高く設定されることが有利である。

以上では、説明の便宜上、熱交換器21がボイルオフガス復帰ラインL3に設置されたものであると説明したが、実際、熱交換器21ではボイルオフガス供給ラインL1を介して移送されているボイルオフガスの第1ストリームとボイルオフガス復帰ラインL3を介して移送されているボイルオフガスの第3ストリームとの間に熱交換が行われているので、熱交換器21はボイルオフガス供給ラインL1に設置されたものでもある。

ボイルオフガス再循環ラインL5にはさらに他の膨脹バルブ24がさらに設置されることができ、それにより、気液分離器23から排出された気体成分は膨脹バルブ24を通過しながら減圧され得る。また、熱交換器21で液化された後、気液分離器23に供給されるボイルオフガスの第3ストリームと気液分離器23で分離されてボイルオフガス再循環ラインL5を介して移送される気体成分とを熱交換させて第3ストリームをさらに冷却させることができるようにボイルオフガス再循環ラインL5には冷却器25が設置される。すなわち、冷却器25では、高圧液体状態のボイルオフガスを低圧極低温気体状態の天然ガスで追加的に冷却させる。

ここで、説明の便宜上、冷却器25がボイルオフガス再循環ラインL5に設置されたものであると説明したが、実際、冷却器25ではボイルオフガス復帰ラインL3を介して移送されているボイルオフガスの第3ストリームとボイルオフガス再循環ラインL5を介して移送されている気体成分との間に熱交換が行われているので、冷却器25はボイルオフガス復帰ラインL3に設置されたものでもある。

図に示していないが、本実施形態の変形例によれば、冷却器25が省略されるようにシステムが構成され得る。冷却器25を設置しない場合、全体システムの効率が若干低下する場合があるが、配管の配置及びシステムの運用が容易で冷却器の初期設置コスト及びメンテナンスコストも節減される利点がある。

一方、貯蔵タンク11で発生するボイルオフガスの量が高圧天然ガス噴射エンジンで要求する燃料量より多くて余剰のボイルオフガスが発生すると予想される場合は、圧縮機13で圧縮された又は段階的に圧縮されている途中のボイルオフガスを、ボイルオフガス分岐ラインL7,L8を介して分岐させてボイルオフガス消費手段で使用する。ボイルオフガス消費手段としては、MEGIエンジンに比べ相対的に低い圧力の天然ガスを燃料として使用できるGCU、DFエンジン(DFDG)、ガスタービンなどが使用され得る。圧縮機13の中間段でボイルオフガス分岐ラインL7,L8を介して分岐するボイルオフガスの圧力は約6〜10bara程度であり得る。

以上で説明した本発明の第1実施形態による液化ガス処理システム及び処理方法によれば、LNG運搬船の貨物(すなわち、LNG)の運搬時に発生するボイルオフガスを、エンジンの燃料として使用または再液化させて再度貯蔵タンクに戻して貯蔵することができるため、GCUなどで消耗して捨てられるボイルオフガスの量を減少または無くすことができ、窒素など別途の冷媒を使用する再液化装置を設置することなく、ボイルオフガスを再液化して処理できるようになる。

また、本発明の第1実施形態による液化ガス処理システム及び処理方法によれば、別途の冷媒を使用する再液化装置(すなわち、窒素冷媒冷凍サイクルや混合冷媒冷凍サイクル等)を設置する必要がないので、冷媒を供給及び貯蔵するための設備を追加的に設置する必要がなく、全体システムを構成するための初期設置コスト及び運用コストを節減できる。

図2には圧縮されたBOGを熱交換器21に供給するためのボイルオフガス復帰ラインL3が圧縮機13の後段で分岐されるものであると例示しているが、ボイルオフガス復帰ラインL3は、上記のボイルオフガス分岐ラインL7,L8と同様に、圧縮機13で段階的に圧縮されている途中のボイルオフガスを分岐させることができるように設置され得る。図3には2つのシリンダによって2段圧縮されたボイルオフガスを分岐させる変形例が図示されており、図4には3つのシリンダによって3段圧縮されたボイルオフガスを分岐させる変形例が図示されている。この時、圧縮機13の中段で分岐するボイルオフガスの圧力は約6〜10bara程度であり得る。

特に、5つのシリンダを含み、前段の3つのシリンダはオイルフリー(oil−free)方式で動作し、後段の2つのシリンダは油潤滑(oil−lubricated)方式で動作するブルクハルト社の圧縮機を使用する場合、圧縮機の後段や4段以上でBOGを分岐させるときはオイルフィルタを経てBOGが移送されるように構成する必要があるが、3段以下で分岐させるときはオイルフィルタを使用する必要がないという点で有利であり得る。

図5には本発明の好ましい第3実施形態による船舶の液化ガス処理システムの概略構成図を示している。

第3実施形態による液化ガス処理システムは、MEGIエンジンやDFエンジン等で要求するボイルオフガスの量が自然的に発生するボイルオフガスの量より多い場合、LNGを強制的に気化させて使用できるように構成されるという点において第2実施形態の液化ガス処理システムと異なる。以下では、第2実施形態の液化ガス処理システムとの相違点のみをさらに詳しく説明する。また、第2実施形態と同じ構成要素には同じ符号を付し、それに対する詳細な説明は省略する。

本発明の第3実施形態による船舶の液化ガス処理システムによれば、液化ガスを貯蔵する貯蔵タンク11で発生して排出されたボイルオフガス(NBOG)は、ボイルオフガス供給ラインL1に沿って移送されて圧縮機13で圧縮された後、高圧天然ガス噴射エンジン、例えば、MEGIエンジンに供給される、又は圧縮機13で多段圧縮される途中でDFエンジン(DF Generator)に供給されて燃料として使用されるという点においては第2実施形態と同じである。

ただし、第3実施形態の液化ガス処理システムは、高圧天然ガス噴射エンジン及びDFエンジンで要求する燃料としてのボイルオフガスの量が貯蔵タンク11で自然的に発生するボイルオフガスの量より多い場合、貯蔵タンク11に貯蔵されたLNGを強制気化器31で気化させて圧縮機13に供給できるように強制気化ラインL11を具備する。

第3実施形態のように強制気化ラインL11を具備すると、貯蔵タンクに貯蔵されているLNGの量が少なくてボイルオフガスの発生量が少ない場合、または各種エンジンで要求する燃料としてのボイルオフガスの量が自然的に発生するボイルオフガスの量より多い場合にも安定的に燃料を供給できるようになる。

図6には本発明の好ましい第4実施形態による船舶の液化ガス処理システムの概略構成図を示している。

第4実施形態による液化ガス処理システムは、膨脹バルブの代わりに、減圧手段として膨脹機(Expander)52を使用するという点において第2実施形態の液化ガス処理システムと異なる。すなわち、第4実施形態によれば、熱交換器21で冷却されて少なくとも部分的に液化されたボイルオフガス(LBOG)は、膨脹機(Expander)52を通過しながら減圧されて気液混合状態で気液分離器23に供給される。以下では、第2実施形態の液化ガス処理システムとの相違点のみをさらに詳しく説明する。また、第2実施形態と同じ構成要素には同じ符号を付し、それに対する詳細な説明は省略する。

膨脹機52は、高圧の液化されたボイルオフガスを低圧に膨脹させながらエネルギーを生産する。膨脹機52を通過しながらLBOGは略常圧に減圧され得る。液化されたボイルオフガスは、気液分離器23で気体成分と液体成分とが分離され、液体成分、すなわちLNGはボイルオフガス復帰ラインL3を介して貯蔵タンク11に移送され、気体成分、すなわちボイルオフガスはボイルオフガス再循環ラインL5を介して貯蔵タンク11から排出されて圧縮機13に供給されるボイルオフガスに合流される。さらに詳しくは、ボイルオフガス再循環ラインL5は、気液分離器23の上段から延長されボイルオフガス供給ラインL1で熱交換器21より上流側に連結される。

ボイルオフガス再循環ラインL5には減圧手段、例えば、膨脹バルブ24がさらに設置されることができ、それにより、気液分離器23から排出された気体成分は膨脹バルブ24を通過しながら減圧され得る。

図7及び図8には本発明の好ましい第4実施形態の変形例による船舶の液化ガス処理システムを示す概略構成図を示している。

図6に示す第4実施形態には圧縮されたBOGを熱交換器21に供給するためのボイルオフガス復帰ラインL3が圧縮機13の後段で分岐されるものであると例示している。しかし、上記のボイルオフガス分岐ラインL7,L8又は図3及び図4を参照して説明した第2実施形態の変形例におけるボイルオフガス復帰ラインと同様に、図7及び図8に示す第4実施形態の変形例によれば、ボイルオフガス復帰ラインL3は圧縮機13で段階的に圧縮されている途中のボイルオフガスを分岐させることができるように設置されることができる。

図7には2つのシリンダによって2段圧縮されたボイルオフガスを分岐させる変形例が図示されており、図8には3つのシリンダによって3段圧縮されたボイルオフガスを分岐させる変形例が図示されている。特に、5つのシリンダを含み、前段の3つのシリンダはオイルフリー(oil−free)方式で動作し、後段の2つのシリンダは油潤滑(oil−lubricated)方式で動作するブルクハルト社の圧縮機を使用する場合、圧縮機の後段や4段以上でBOGを分岐させるときはオイルフィルタを経てBOGが移送されるように構成する必要があるが、3段以下で分岐させるときはオイルフィルタを使用する必要がないという点で有利であり得る。

また、図7に示す第4実施形態の第1変形例を参照すると、第4実施形態による液化ガス処理システムは、熱交換器21を通過しながら冷却及び液化されたボイルオフガスを追加的に冷却するための熱交換器としての冷却器25(図6参照)が省略されるように変形され得る。冷却器25を設置しない場合、全体システムの効率が若干低下する場合があるが、配管の配置及びシステムの運用が容易で冷却器の初期設置コスト及びメンテナンスコストも節減される利点がある。

また、図8に示す第4実施形態の第2変形例を参照すると、第4実施形態による液化ガス処理システムは、減圧手段としての膨脹機52と膨脹バルブ55とが並列に配置されるように変形され得る。この時、並列に配置された膨脹機52及び膨脹バルブ55は、熱交換器21と気液分離器23との間に位置する。膨脹バルブ55を並列に設置するために、そして、必要時に膨脹機52又は膨脹バルブ55のみを使用するために、熱交換器21と気液分離器23との間のボイルオフガス復帰ラインL3から分岐して膨脹機52を迂回するバイパスラインL31が設置される。膨脹機52のみを使用して液化されたボイルオフガスを膨脹させる場合は膨脹バルブ55を閉鎖し、膨脹バルブ55のみを使用して液化されたボイルオフガスを膨脹させる場合はボイルオフガス復帰ラインL3で膨脹機52の前段と後段とにそれぞれ設置された開閉バルブ53,54を閉鎖する。

以上で説明した本発明の第4実施形態による液化ガス処理システム及び処理方法によれば、前述の実施形態による液化ガス処理システム及び処理方法と同様に、LNG運搬船の貨物(すなわち、LNG)の運搬時に発生するボイルオフガスを、エンジンの燃料として使用または再液化させて再度貯蔵タンクに戻して貯蔵することができるため、GCUなどで消耗して捨てられるボイルオフガスの量を減少または無くすことができ、窒素など別途の冷媒を使用する再液化装置を設置することなく、ボイルオフガスを再液化して処理できるようになる。

本発明の第4実施形態による液化ガス処理システム及び処理方法がLNG運搬船やLNG RVのような船舶の他、LNG FPSO、LNG FSRU、BMPPのようなプラントに適用された場合も、LNGを貯蔵する貯蔵タンクで発生するボイルオフガスをエンジン(推進のためのエンジンだけでなく、発電用に用いられるエンジンなども含まれる)で燃料として使用または再液化させることができるため、浪費されるボイルオフガスを減少または無くすことができる。

また、本発明の第4実施形態による液化ガス処理システム及び処理方法によれば、別途の冷媒を使用する再液化装置(すなわち、窒素冷媒冷凍サイクルや混合冷媒冷凍サイクル等)を設置する必要がないので、冷媒を供給及び貯蔵するための設備を追加的に設置する必要がなく、全体システムを構成するための初期設置コスト及び運用コストを節減できる。

図9には本発明の好ましい第5実施形態による、船舶の液化ガス処理システムの概略構成図を示している。

第5実施形態による液化ガス処理システムは、熱交換器21で液化された後、減圧手段(例えば、膨脹バルブ22)で減圧されたボイルオフガスを、気液分離器23を経ることなく、そのまま貯蔵タンク11に戻すように構成されるという点において第2実施形態の液化ガス処理システムと異なる。以下では、第2実施形態の液化ガス処理システムとの相違点のみをさらに詳しく説明する。また、第2実施形態と同じ構成要素には同じ符号を付し、それに対する詳細な説明は省略する。

本実施形態によれば、液化された後、減圧されながら気体成分(すなわち、フラッシュガス)と液体成分(すなわち、液化ボイルオフガス)とが混合された状態になったボイルオフガス(すなわち、2相(two phase)ボイルオフガス)を、ボイルオフガス復帰ラインL3を介して貯蔵タンク11に戻す。ボイルオフガス復帰ラインL3は、貯蔵タンク11に戻る2相ボイルオフガスが貯蔵タンク11の底に噴射されるように構成され得る。

貯蔵タンク11の底に噴射された2相ボイルオフガスの中の気体成分(すなわち、フラッシュガス)は、貯蔵タンク11に貯蔵されているLNGに部分的に溶ける、またはLNGの冷熱によって液化され得る。また、溶けなかった又は液化されなかったフラッシュガス(BOG)は、貯蔵タンクで追加的に発生するBOG(NBOG)とともにボイルオフガス供給ラインL1を介して再度貯蔵タンク11から排出される。新しく発生したBOGとともに貯蔵タンク11から排出されたフラッシュガスはボイルオフガス供給ラインL1に沿って圧縮機13に再循環される。

本実施形態によれば、膨脹後、2相状態のボイルオフガスを貯蔵タンク11の底に噴射させることによって、貯蔵タンク11に貯蔵されているLNGによって、液化されたボイルオフガスの量を増加させることができ、気液分離器などの設備を省略して設置コスト及び運用コストなどを節減できるという長所がある。

図10には本発明の好ましい第5実施形態の第1変形例による船舶の液化ガス処理システムを示す概略構成図を示している。

図10に示す第5実施形態の第1変形例は、減圧手段として膨脹バルブの代わりに膨脹機(Expander)52を使用するという点においてのみ図9に示す第5実施形態による液化ガス処理システムと異なる。すなわち、第5実施形態の第1変形例によれば、熱交換器21で冷却されて液化されたボイルオフガス(LBOG)は、膨脹機(Expander)52を通過しながら減圧されて気液混合状態になった後、2相状態で貯蔵タンク11に戻る。

図11には本発明の好ましい第5実施形態の第2変形例による船舶の液化ガス処理システムを示す概略構成図を示している。

図11に示す第5実施形態の第2変形例は、圧縮機として多段圧縮機の代わりに複数個の圧縮機(例えば、第1圧縮機13a及び第2圧縮機13b)を使用するという点において図9に示す第5実施形態による液化ガス処理システムと異なる。

本発明の第5実施形態の第2変形例による液化ガス処理システムによれば、液化ガスを貯蔵する貯蔵タンク11で発生して排出されたボイルオフガス(NBOG)は、ボイルオフガス供給ラインL1に沿って移送されて第1圧縮機13aに供給される。第1圧縮機13aで圧縮されたボイルオフガスは約6〜10bara程度に圧縮された後、燃料供給ラインL2に沿って需要先、すなわちLNGを燃料として使用する推進システム(例えば、DFDE)に供給され得る。DFDEに供給された後の残りのボイルオフガスはブースタ圧縮機としての第2圧縮機13bによって追加的に圧縮されることができ、その後、上記の第5実施形態と同様に、ボイルオフガス復帰ラインL3に沿って移動しながら液化されて貯蔵タンク11に戻ることができる。

第1圧縮機13aは、1つの圧縮シリンダ14a及び1つの中間冷却機15aを含む1段圧縮機である場合がある。第2圧縮機13bは、1つの圧縮シリンダ14b及び1つの中間冷却機15bを含む1段圧縮機である場合があり、必要な場合、複数個の圧縮シリンダ及び複数個の中間冷却機を含む多段圧縮機が活用されても良い。

第1圧縮機13aで圧縮されたボイルオフガスは約6〜10bara程度まで圧縮された後、燃料供給ラインL2を介して需要先、例えばDFエンジン(すなわち、DFDE)に供給されるが、エンジンで必要とする燃料の必要量に応じてボイルオフガスを全部エンジンに供給することもでき、ボイルオフガスのうち一部のみをエンジンに供給することもできる。

すなわち、貯蔵タンク11から排出されて第1圧縮機13aに供給されるボイルオフガス(すなわち、貯蔵タンクから排出されたすべてのボイルオフガス)を第1ストリームとした場合、ボイルオフガスの第1ストリームを第1圧縮機13aの下流側で第2ストリームと第3ストリームとに分け、第2ストリームは推進システムであるDFエンジン(すなわち、DFDE)に燃料として供給し、第3ストリームは液化させて貯蔵タンクに戻すように構成できる。

この時、第2ストリームは、燃料供給ラインL2を介してDFDEに供給され、第3ストリームは、第2圧縮機13bでさらに加圧された後、液化及び減圧過程を経てボイルオフガス復帰ラインL3を介して貯蔵タンク11に戻される。圧縮されたボイルオフガスの第3ストリームを液化させることができるようにボイルオフガス復帰ラインL3には熱交換器21が設置される。熱交換器21では圧縮されたボイルオフガスの第3ストリームを貯蔵タンク11から排出された後、第1圧縮機13aに供給されるボイルオフガスの第1ストリームと熱交換させる。

圧縮される前のボイルオフガスの第1ストリームの流量が第3ストリームの流量より多いため、圧縮されたボイルオフガスの第3ストリームは圧縮される前のボイルオフガスの第1ストリームから冷熱を供給されて冷却(すなわち少なくとも部分的に液化)され得る。このように、熱交換器21では貯蔵タンク11から排出された直後の極低温のボイルオフガスと圧縮機13で圧縮された高圧状態のボイルオフガスとを熱交換させ、この高圧状態のボイルオフガスを冷却(液化)させる。

熱交換器21で冷却されたボイルオフガス(LBOG)は、減圧手段としての膨脹バルブ22(例えば、J−Tバルブ)を通過しながら減圧された後、引続き気液混合状態に貯蔵タンク11に戻る。膨脹バルブ22を通過しながらLBOGは略常圧に減圧(例えば、300barから3barに減圧)され得る。

一方、貯蔵タンク11で発生するボイルオフガスの量がDFエンジンで要求する燃料量より多くて余剰のボイルオフガスが発生すると予想される場合(例えば、エンジン停止時又は低速運航時等)は、第1圧縮機13aで圧縮されたボイルオフガスを、ボイルオフガス分岐ラインL7を介して分岐させてボイルオフガス消費手段で使用する。ボイルオフガス消費手段としては、天然ガスを燃料として使用できるGCU、ガスタービンなどが使用され得る。

図12には本発明の好ましい第5実施形態の第3変形例による船舶の液化ガス処理システムを示す概略構成図を示している。

図12に示す第5実施形態の第3変形例は、減圧手段として膨脹バルブの代わりに膨脹機(Expander)52を使用するという点においてのみ図11に示す第5実施形態の第2変形例による液化ガス処理システムと異なる。すなわち、第5実施形態の第3変形例によれば、熱交換器21で冷却されて液化されたボイルオフガス(LBOG)は、減圧手段としての膨脹機(Expander)52を通過しながら減圧されて気液混合状態になった後、2相状態で貯蔵タンク11に戻る。

以上で説明した本発明の第5実施形態による液化ガス処理システム及び処理方法によれば、前述の実施形態による液化ガス処理システム及び処理方法と同様に、LNG運搬船の貨物(すなわち、LNG)の運搬時に発生するボイルオフガスを、エンジンの燃料として使用または再液化させて再度貯蔵タンクに戻して貯蔵することができるため、GCUなどで消耗して捨てられるボイルオフガスの量を減少または無くすことができるようになり、窒素など別途の冷媒を使用する再液化装置を設置する必要なく、ボイルオフガスを再液化して処理できるようになる。

本発明の第5実施形態による液化ガス処理システム及び処理方法がLNG運搬船やLNG RVのような船舶の他、LNG FPSO、LNG FSRU、BMPPのようなプラントに適用された場合も、LNGを貯蔵する貯蔵タンクで発生するボイルオフガスをエンジン(推進のためのエンジンだけでなく、発電用に用いられるエンジンなども含まれる)で燃料として使用または再液化させることができるため、浪費されるボイルオフガスを減少または無くすことができる。

また、本発明の第5実施形態による液化ガス処理システム及び処理方法によれば、別途の冷媒を使用する再液化装置(すなわち、窒素冷媒冷凍サイクルや混合冷媒冷凍サイクル等)を設置する必要がないので、冷媒を供給及び貯蔵するための設備を追加的に設置する必要がなく、全体システムを構成するための初期設置コスト及び運用コストを節減できる。

図13には本発明の第6実施形態による船舶の液化ガス処理システムを示している。

図13に示す本発明の第6実施形態による液化ガス処理システムは、図1に示す本発明の第1実施形態による液化ガス処理システム(すなわち、高圧ポンプ120によってLNGを加圧して推進システムに燃料として供給するライン、及び圧縮機150によってBOGを加圧して推進システムに燃料として供給するラインを有するハイブリッドシステム)と、図2に示す本発明の第2実施形態による液化ガス処理システムとが統合されて構成される。

図に示していないが、本発明によれば、図3乃至図12に示す第3乃至第5実施形態によるそれぞれの液化ガス処理システムが、図13に示すように、ハイブリッドシステム(図13のL23,L24,L25参照)と統合され得ることは勿論である。

図13に示す本発明の船舶の液化ガス処理システムは、主エンジンとして高圧天然ガス噴射エンジン、例えば、MEGIエンジンを含み、副エンジンとしてDFエンジン(DF Generator;DFDG)を含む。通常、主エンジンは船舶の運航のための推進用に使用され、副エンジンは船舶内部に設置された各種装置及び設備に電力を供給するための発電用に使用されるが、本発明は主エンジン及び副エンジンの用途によって限定されるものではない。主エンジン及び副エンジンは、それぞれ複数個が設置されることができる。

本実施形態による船舶の液化ガス処理システムは、エンジン(すなわち、主エンジンであるMEGIエンジン及び副エンジンであるDFエンジン)に対して貯蔵タンク11に貯蔵されている天然ガス(すなわち、気体状態のBOG及び液体状態のLNG)を燃料として供給できるように構成される。

気体状態のBOGを燃料ガスとして供給するために、本実施形態による船舶の液化ガス処理システムは、貯蔵タンク11に貯蔵されているBOGを主エンジンに供給するボイルオフガス供給ラインとしてのBOG主供給ラインL1と、このBOG主供給ラインL1から分岐してBOGを副エンジンに供給するBOG副供給ラインL8とを含む。BOG主供給ラインL1は、前述の実施形態におけるボイルオフガス供給ラインL1と同じ構成であるが、図13を参照して行われる説明では、DFエンジンに対するボイルオフガス供給ライン(すなわち、BOG副供給ラインL8)との区別のために、BOG主供給ラインL1と称する。また、BOG副供給ラインL8は、前述の実施形態におけるボイルオフガス分岐ラインL8と同じ構成であるが、図13を参照して行われる説明では、BOG主供給ラインL1との区別のために、BOG副供給ラインL8と称する。

また、液体状態のLNGを燃料ガスとして供給するために、本実施形態による船舶の液化ガス処理システムは、貯蔵タンク11に貯蔵されているLNGを主エンジンに供給するLNG主供給ラインL23と、このLNG主供給ラインL23から分岐してLNGを副エンジンに供給するLNG副供給ラインL24とを含む。

本実施形態によれば、BOG主供給ラインL1にはBOGを圧縮するための圧縮機13が設置され、LNG主供給ラインL23にはLNGを圧縮するための高圧ポンプ43が設置される。

液化ガスを貯蔵する貯蔵タンク11で発生してBOG排出バルブ41を介して排出されたボイルオフガス(NBOG)は、BOG主供給ラインL1に沿って移送されて圧縮機13で圧縮された後、高圧天然ガス噴射エンジン、例えば、MEGIエンジンに供給される。ボイルオフガスは圧縮機13によって約150乃至400bara程度の高圧に圧縮された後、高圧天然ガス噴射エンジンに供給される。

貯蔵タンクはLNGなどの液化ガスを極低温状態で貯蔵することができるように密封及び断熱防壁を備えているが、外部から伝達される熱を完壁に遮断することはできない。よって、貯蔵タンク11内では液化ガスの蒸発が持続的に行われ、ボイルオフガスの圧力を適正な水準に維持するために貯蔵タンク11内部のボイルオフガスを排出させる。

圧縮機13は、1つ以上の圧縮シリンダ14と、圧縮されながら温度が上昇したボイルオフガスを冷却させるための1つ以上の中間冷却機15とを含むことができる。圧縮機13は、例えば、ボイルオフガスを約400baraまで圧縮するように構成され得る。図13では、5つの圧縮シリンダ14及び5つの中間冷却機15を含む多段圧縮の圧縮機13が例示されているが、圧縮シリンダ及び中間冷却機の個数は必要に応じて変更され得る。また、1つの圧縮機内に複数個の圧縮シリンダが配列された構造の他、複数個の圧縮機を直列に連結した構造を有するように変更され得る。

圧縮機13で圧縮されたボイルオフガスは、BOG主供給ラインL1を介して高圧天然ガス噴射エンジンに供給されるが、高圧天然ガス噴射エンジンで必要とする燃料の必要量に応じて圧縮されたボイルオフガスをすべて高圧天然ガス噴射エンジンに供給することもでき、圧縮されたボイルオフガスのうち一部のみを高圧天然ガス噴射エンジンに供給することもできる。

副エンジンであるDFエンジンに燃料ガスを供給するためのBOG副供給ラインL8は、BOG主供給ラインL1から分岐される。さらに詳しくは、BOG副供給ラインL8は、圧縮機13で多段圧縮されている途中のボイルオフガスを分岐することができるようにBOG主供給ラインL1から分岐される。図13には2段圧縮されたBOGを分岐させ、その一部をBOG副供給ラインL8を介して副エンジンに供給するものであると示しているが、これは例示に過ぎず、1段又は3乃至5段圧縮されたBOGを分岐させてBOG副供給ラインを介して副エンジンなどに供給できるようにシステムを構成することもできる。圧縮機としては、例えば、ブルクハルト(Burckhardt)社の圧縮機を使用することができる。ブルクハルト社の圧縮機は、総5つのシリンダを含み、前段の3つのシリンダはオイルフリー(oil−free)方式で動作し、後段の2つのシリンダは油潤滑(oil−lubricated)方式で動作すると知られる。したがって、ブルクハルト社の圧縮機をBOGを圧縮させる圧縮機13で使用する場合、4段以上でBOGを分岐させるときはオイルフィルタを経てBOGが移送されるように構成する必要があるが、3段以下で分岐させるときはオイルフィルタを使用する必要がないという点で有利であり得る。

副エンジンであるDFエンジン(例えば、DFDG)は、要求圧力がMEGIエンジンに比べて低いため、圧縮機13の後段で高圧に圧縮された状態のBOGを分岐させる場合はBOGの圧力をさらに下げた後、副エンジンに供給しなければならず非効率的であり得る。

上記のように、LNGが加熱されると、液化温度が相対的に低いメタン成分が優先的に気化されるため、ボイルオフガスの場合はメタン含有量が高く、そのままDFエンジンに燃料として供給され得る。したがって、BOG主供給ライン及びBOG副供給ラインにはメタン価を調節するための装置が別途に設置される必要がない。

一方、貯蔵タンク11で発生するボイルオフガスの量が主エンジン及び副エンジンで要求する燃料量より多くて余剰のボイルオフガスが発生すると予想される場合は、本発明の液化ガス処理システムを介してボイルオフガスを再液化させて貯蔵タンクに戻すことができる。

再液化容量を超えるボイルオフガスが発生する場合は、圧縮機13で圧縮された又は段階的に圧縮されている途中のボイルオフガスを、ボイルオフガス分岐ラインL7を介して分岐させてBOG消費手段で使用することができる。ボイルオフガス消費手段としては、MEGIエンジンに比べ相対的に低い圧力の天然ガスを燃料として使用することができるGCU、ガスタービンなどが使用され得る。ボイルオフガス分岐ラインL7は、図13に示すように、BOG副供給ラインL8から分岐されることが好ましい。

圧縮機13で圧縮された後、ボイルオフガス供給ラインL1を介して高圧天然ガス噴射エンジンに供給されるボイルオフガスのうち少なくとも一部をボイルオフガス復帰ラインL3を介して処理、すなわち再液化させて貯蔵タンク11に戻す過程は、図2を参照して上述したものと同様であるので、詳細な説明は省略する。

図13には圧縮されたBOGを熱交換器21に供給するためのボイルオフガス復帰ラインL3が圧縮機13の後段で分岐されるものであると例示しているが、ボイルオフガス復帰ラインL3は上記のボイルオフガス分岐ラインL7やボイルオフガス分岐ラインとしてのBOG副供給ラインL8と同様に、圧縮機13で段階的に圧縮されている途中のボイルオフガスを分岐させることができるように設置されることができる。図3には2つのシリンダによって2段圧縮されたボイルオフガスを分岐させる変形例が図示されており、図4には3つのシリンダによって3段圧縮されたボイルオフガスを分岐させる変形例が図示されている。この時、圧縮機13の中段で分岐するボイルオフガスの圧力は約6〜10bara程度であり得る。

特に、5つのシリンダを含み、前段の3つのシリンダはオイルフリー(oil−free)方式で動作し、後段の2つのシリンダは油潤滑(oil−lubricated)方式で動作するブルクハルト社の圧縮機を使用する場合、圧縮機の後段や4段以上でBOGを分岐させるときはオイルフィルタを経てBOGが移送されるように構成する必要があるが、3段以下で分岐させるときはオイルフィルタを使用する必要がないという点で有利であり得る。

LNG主供給ラインL23には、貯蔵タンク11の内部に設置されてLNGを貯蔵タンク11の外部に排出させるための排出ポンプ12と、この排出ポンプ12で一次圧縮されたLNGをMEGIエンジンで要求する圧力まで二次圧縮させるための高圧ポンプ43とが設置されている。排出ポンプ12は、各貯蔵タンク11ごとに内部に1つずつ設置されることができる。高圧ポンプ43は、図4には1つのみが図示されているが、必要に応じて、複数の高圧ポンプが並列に連結され使用され得る。

上記のように、MEGIエンジンで要求する燃料ガスの圧力は150〜400bara(絶対圧)程度の高圧である。本明細書における「高圧」とは、MEGIエンジンで要求する圧力、例えば150〜400bara(絶対圧)程度の圧力を意味するものであると見なされるべきである。

液化ガスを貯蔵する貯蔵タンク11から排出ポンプ12を介して排出されたLNGは、LNG主供給ラインL23に沿って移送されて高圧ポンプ43に供給される。さらに、LNGは高圧ポンプ43で高圧に圧縮された後、気化器44に供給されて気化される。気化されたLNGは燃料として高圧天然ガス噴射エンジン、例えば、MEGIエンジンに供給される。MEGIエンジンで要求する圧力は超臨界状態であるから、高圧に圧縮されたLNGは気体でもなくて液体でもない状態である。したがって、気化器44で高圧に圧縮されたLNGを気化させるという表現は、超臨界状態であるLNGの温度をMEGIエンジンで要求する温度まで上昇させるという意味であると見なされるべきである。

副エンジンであるDFエンジンに燃料ガスを供給するためのLNG副供給ラインL24はLNG主供給ラインL23から分岐される。さらに詳しくは、LNG副供給ラインL24は、高圧ポンプ43で圧縮される前のLNGを分岐できるようにLNG主供給ラインL23から分岐される。

一方、図13ではLNG副供給ラインL24が高圧ポンプ43の上流側でLNG主供給ラインL23から分岐するものであると示しているが、変形例によれば、LNG副供給ラインL24が高圧ポンプ43の下流側でLNG主供給ラインL23から分岐するものに変形され得る。ただし、LNG供給ラインL24が高圧ポンプ43の下流側で分岐する場合は、LNGの圧力が高圧ポンプ43によって上昇した状態であるため、副エンジンに燃料としてのLNGを供給する前に減圧手段によって副エンジンで要求する圧力にLNGの圧力を下降させる必要がある。図13に示す実施形態と同様に、LNG副供給ラインL24が高圧ポンプ43の上流側で分岐する場合は追加の減圧手段を設置する必要がないという点で有利である。

LNG副供給ラインL24には気化器45、気液分離器46、及びヒータ47が設置され、燃料として供給されるLNGのメタン価及び温度をDFエンジンで要求する値に調節できる。

上記のように、LNGの場合は、メタン含有量がボイルオフガスに比べて相対的に低いのでDFエンジンで要求するメタン価も低く、産地によってLNGを構成する炭化水素成分(メタン、エタン、プロパン、ブータン等)の比率が異なるため、そのまま気化させて燃料としてDFエンジンに供給することには適していない。

メタン価を調節するために、LNGは気化器45で加熱されて部分的にのみ気化される。部分的に気化されて気体状態(すなわち、天然ガス)と液体状態(すなわち、LNG)とが混合された状態の燃料ガスは気液分離器46に供給され、気体と液体とに分離される。発熱量の高い重炭化水素(HHC)成分の気化温度が相対的に高いため、部分的に気化された燃料ガスで気化されないまま残っている液体状態のLNGには重炭化水素成分の比率が相対的に高くなる。したがって、気液分離器46で液体成分を分離することによって、すなわち重炭化水素成分を分離することによって、燃料ガスのメタン価は高くなることができる。

LNGに含まれていた炭化水素成分の比率及びエンジンで要求するメタン価などを勘案して、適切なメタン価を得るために、気化器45での加熱温度を調節できる。気化器45での加熱温度は約−80℃乃至−120℃の範囲内で定めることができる。気液分離器46で燃料ガスから分離された液体成分は液体成分復帰ラインL25を介して貯蔵タンク11に戻される。ボイルオフガス復帰ラインL3と液体成分復帰ラインL25とは合流した後、貯蔵タンク11まで延長され得る。

メタン価が調節された燃料ガスはLNG副供給ラインL24を介してヒータ47に供給され、副エンジンで要求する温度にさらに加熱された後、副エンジンに燃料として供給される。副エンジンが、例えば、DFDGである場合、要求されるメタン価は、一般に80以上である。例えば、一般的なLNG(通常、メタン:89.6%、窒素:0.6%)の場合、重炭化水素成分を分離する前のメタン価は71.3であり、その時のLHV(lower heating value)は48,872.8kJ/kg(1 atm、saturated vapor基準)である。この一般的なLNGを7baraに加圧した後、−120℃まで加熱して重炭化水素成分を除去すると、メタン価は95.5まで高くなり、その時のLHVは49,265.6kJ/kgである。

本実施形態によれば、エンジン(主エンジン及び副エンジン)に燃料ガスを供給する経路が2つからなる。すなわち、燃料ガスは、圧縮機13を介して圧縮された後、エンジンに供給されることもでき、高圧ポンプ43を介して圧縮された後、エンジンに供給されることもできる。

特に、LNG運搬船、LNG RVなどのような船舶は、LNGを生産地から消費地へ輸送するために使用されるので、生産地から消費地へ運航する時は貯蔵タンクにLNGを満タンに積載した積載(Laden)状態で運航し、LNGを荷役した後、再度生産地に戻る時は貯蔵タンクがほぼ空のバラスト(Ballast)状態で運航する。積載状態ではLNGの量が多いので相対的にボイルオフガス発生量も多く、バラスト状態ではLNGの量が少ないので相対的にボイルオフガス発生量も少ない。

貯蔵タンクの容量、外部温度などの条件に応じて多少差があるが、例えば、LNGの貯蔵タンク容量が約130,000乃至350,000の場合に発生するボイルオフガスの量は、積載時は約3乃至4ton/hで、バラスト時は約0.3乃至0.4ton/hである。また、エンジンで要求する燃料ガスの量は、MEGIエンジンの場合は約1乃至4ton/h(平均約1.5ton/h)で、DFエンジン(DFDG)の場合は約0.5ton/hである。一方、最近では、貯蔵タンクの断熱性能が向上するとともに、BOR(Boil Off Rate)が次第に低くなる傾向にあるため、BOGの発生量も減少する傾向にある。

したがって、本実施形態の燃料ガス供給システムのように圧縮機ライン(すなわち、図13でのL1及びL8)と高圧ポンプライン(すなわち、図13でのL23及びL24)とが共に備えられている場合、ボイルオフガスの発生量が多い積載状態では、圧縮機ラインを介してエンジンに燃料ガスを供給し、ボイルオフガスの発生量が少ないバラスト状態では、高圧ポンプラインを介してエンジンに燃料ガスを供給することが好ましい。

一般に、MEGIエンジンで要求する150〜400bara(絶対圧)程度の高圧まで圧縮機によって気体(BOG)を圧縮するために必要なエネルギーはポンプによって液体(LNG)を圧縮するために必要なエネルギーに比べ非常に多くのエネルギーが要求され、高圧に気体を圧縮するための圧縮機は相当高価で体積も多く占めるため、圧縮機ラインを設けることなく高圧ポンプラインのみを使用することが経済的であると考えられ得る。例えば、多段で構成された1セットの圧縮機を駆動させてME−GIエンジンに燃料を供給するためには2MWの電力が消費されるが、高圧ポンプを使用する場合は100kWの電力のみが消費される。しかし、積載状態で高圧ポンプラインのみを使用してエンジンに燃料ガスを供給する場合、貯蔵タンクから持続的に発生するBOGを処理するために、BOGを再液化させるための再液化装置が不可欠で、この再液化装置で消耗するエネルギーを共に考慮した場合、圧縮機ライン及び高圧ポンプラインを共に設置し、積載状態では圧縮機ラインを介して燃料ガスを供給し、バラスト状態では高圧ポンプラインを介して燃料ガスを供給することが有利である。

一方、バラスト状態のように、貯蔵タンクで発生するボイルオフガスの量がME−GIエンジンで要求する燃料量に満たない場合、多段圧縮機でボイルオフガスをME−GIエンジンで要求する高圧まで圧縮させることなく、多段圧縮される途中にBOG副供給ラインL8を介してボイルオフガスを分岐させてDFエンジンで燃料として使用することが効率的であり得る。すなわち、例えば、5段圧縮機のうち2段の圧縮シリンダのみを経てボイルオフガスをDFエンジンに供給する場合、残りの3段の圧縮シリンダは空回転される。5段圧縮機全体を駆動させてボイルオフガスを圧縮させる場合に要求される電力は2MWであるが、一方で2段まで使用し、残りの3段を空回転させる場合に要求される電力は600kWで、高圧ポンプを介してME−GIエンジンに燃料を供給する場合、要求される電力は100kWである。したがって、バラスト状態のように、BOG発生量がME−GIエンジンでの燃料必要量より少ない場合は、BOGはDFエンジンなどで全量消費し、高圧ポンプを介してLNGを燃料として供給することがエネルギー効率の側面で有利である。

しかし、必要に応じては、BOG発生量がME−GIエンジンでの燃料必要量より少ない場合も圧縮機を介してBOGをME−GIエンジンに燃料として供給しながら不足した量だけのLNGを強制気化させて供給することもできる。一方、バラスト状態ではBOGの発生量が少ないので、BOGを発生する度に排出させて消費する代わり、貯蔵タンクが所定の圧力に到達するまでBOGを排出させず集めておき、間歇的に排出させてDFエンジン又はME−GIエンジンに燃料として供給することもできる。

バラスト状態で、船舶のエンジン(DFエンジン又はME−GIエンジン)は、圧縮機13によって圧縮されたBOGと高圧ポンプ43によって圧縮されたLNGとを、同時に燃料として供給されることもできる。また、バラスト状態で、船舶のエンジン(DFエンジン又はME−GIエンジン)は、圧縮機13によって圧縮されたBOGと高圧ポンプ43によって圧縮されたLNGとのうちいずれか1つを、交互に燃料として供給されることもできる。

ボイラー、ガスタービン、低圧DFエンジンなどのように低圧の燃料を供給されて使用する低圧エンジンの場合、平常時は貯蔵タンクで発生したボイルオフガスを燃料として使用し、ボイルオフガスの量が燃料必要量より少ない時は、LNGを強制的に気化させてボイルオフガスとともに燃料として使用する燃料供給システムが開発されていた。このような燃料供給システムは、船舶に低圧エンジンのみが設置された場合に限定される。自然的に発生したボイルオフガスと強制気化させたLNGとは発熱量(heating value)、メタン価(methane number)などが互いに異なるため、1つのエンジンにボイルオフガスと強制気化されたLNGとを混合して共に供給する場合、燃料の成分、すなわち熱量が変化しつづけることによってエンジンの出力が変化しエンジンの運転が非常に難しい問題がある。LNG運搬船のような貨物船の場合、貨物を積んで運航する積載(Laden)運航時には比較的十分な量のボイルオフガスが発生するが、貨物を下ろした後戻るバラスト運航時にはボイルオフガスの量が不足してLNGを強制的に気化させて使用する必要があるため、全体運航期間の略半分に該当するバラスト運航時にはエンジンの出力変化などの問題が持続的に発生する。

しかし、上記の本発明の実施形態は、船舶に高圧に燃料を供給される高圧エンジン(例えば、ME−GIエンジン、約150〜400bara)と低圧に燃料を供給される低圧エンジン(例えば、DFエンジン、約6〜10bara)とが共に装着されているという点において、低圧エンジンのみが装着された場合の燃料供給システムとは顕著な差が存在する。

また、本発明の場合は、ボイルオフガスの発生量が全体エンジンの燃料要求量より少ない時、低圧エンジンに対してのみボイルオフガスを燃料として供給したり、高圧エンジン及び低圧エンジンのいずれに対してLNGを燃料として供給したり、貯蔵タンクにボイルオフガスを集めて一定量が集まるとLNGと交互にエンジンに燃料として供給しているため、1つのエンジンにボイルオフガスと強制気化されたLNGとを混合して共に供給する場合に発生する問題を防止できる。

ただし、本発明の実施形態によるシステムは、必要な場合、圧縮機13によって圧縮されたBOGと高圧ポンプ43によって圧縮されたLNGとを同時に燃料として1つのエンジンに供給することができることは勿論である。

また、装備の修理及び交替が容易ではない船舶では、非常時を考慮して重要な設備を2つずつ設置することが要求される(redundancy;すなわち、冗長化設計)。すなわち、船舶では、主設備と同じ機能を行うことができる余分の設備を設置し、主設備の正常動作時には余分の設備を待機状態に置き、主設備の故障時にその機能を引き継いで行うことができるように重要な設備を重複設計することが要求される。冗長化設計が要求される設備としては、主に回転駆動される設備、例えば、圧縮機やポンプなどを挙げることができる。

このように、船舶には、普段は使用されないが、単に冗長性の要求条件のみを満たすために各種設備が二重に設置される必要があるが、2つの圧縮機ラインを使用する燃料ガス供給システムは、圧縮機の設置に多くのコスト及び空間が必要になり、使用時に多くのエネルギーが消耗される問題があり、2つの高圧ポンプラインを使用する燃料ガス供給システムは、ボイルオフガスの処理(すなわち、再液化)に多くのエネルギーが消耗される問題があり得る。それに比べ、圧縮機ライン及び高圧ポンプラインを共に設置した本発明の燃料ガス供給システムは、いずれか一方の供給ラインに問題が発生しても他方の供給ラインを介して正常な運航を続けることができ、圧縮機ラインを1つのみ設置した場合は高価の圧縮機を少なく使用しながらボイルオフガスの発生量によって最適の燃料ガス供給方式を適切に選択して運用することができ、最初の建造時のコストだけでなく、運用コストも節減できるようになるという追加的な効果が得られる。

図13に示すように、本発明の一実施形態によって液化ガス処理システムとハイブリッド燃料ガス供給システムとが結合された場合、LNG運搬船の貨物(すなわち、LNG)の運搬時に発生するボイルオフガスを、エンジンの燃料として使用または再液化させて再度貯蔵タンクに戻して貯蔵することができるため、GCUなどで消耗して捨てられるボイルオフガスの量を減少または無くすことができるようになり、窒素など別途の冷媒を使用する再液化装置を設置する必要なく、ボイルオフガスを再液化して処理できるようになる。

本実施形態によれば、貯蔵タンクの容量が大きくなってボイルオフガスの発生量は多くなり、エンジンの性能が改善されることに伴い、必要な燃料量は減少する最近の傾向にもかかわらず、エンジンの燃料として使用した後の残りのボイルオフガスは再液化させて再度貯蔵タンクに戻すことができるため、ボイルオフガスの浪費を防止できるようになる。

特に、本実施形態による液化ガス処理システム及び処理方法によれば、別途の冷媒を使用する再液化装置(すなわち、窒素冷媒冷凍サイクルや混合冷媒冷凍サイクル等)を設置する必要がないので、冷媒を供給及び貯蔵するための設備を追加的に設置する必要がなく、全体システムを構成するための初期設置コスト及び運用コストを節減できる。

本発明は、上記実施形態に限定されず、本発明の技術的要旨から逸脱しない 範囲内で様々に修正又は変形されて実施できることは本発明の属する技術分野における通常の知識を有する者に自明である。

QQ群二维码
意见反馈