一种混合动车辆

申请号 CN201410213670.1 申请日 2014-05-20 公开(公告)号 CN104002657B 公开(公告)日 2017-02-15
申请人 浙江吉利控股集团有限公司; 浙江吉利汽车研究院有限公司; 发明人 李书福;
摘要 本 发明 提供了一种混合动 力 车辆,包括动力 电池 , 燃料 储罐,发电单元,压力检测单元和工作模式 控制器 ,以及工作模式控制器下的压力保护模式,其中,工作模式控制器配置成在发电单元处于停机状态的情况下,且当压力检测单元检测的气体压力高于一压力 阈值 时,控制车辆进入压力保护模式;在压力保护模式中,发电单元从停机状态启动进入工作状态,以消耗燃料储罐中的燃料,从而降低燃料储罐中的气体压力。本发明由于采用了压力保护模式,因此能够根据燃料储罐内燃料的气体压力大小来自动启动发电单元,使膨胀后的多余燃料对动力电池进行充电。避免了 现有技术 将燃料储罐内超过阈值的膨胀燃料排到大气中而造成安全性问题和浪费。
权利要求

1.一种混合动车辆,包括:
动力电池,其能够选择性地处于充电状态和放电状态,其中,所述动力电池在处于所述充电状态时储存电能并且在处于所述放电状态时提供用于驱动所述车辆的电能;
燃料储罐,用于在其内部储存燃料,并且,储存在所述燃料储罐内的所述燃料在所述燃料储罐内形成一气体压力;
发电单元,其具有工作状态和停机状态;其中,在所述发电单元处于工作状态时,其将所述燃料储罐中的所述燃料的化学能转化为电能输出;
压力检测单元,用于检测所述燃料储罐中的所述气体压力;和
工作模式控制器,用于控制所述车辆选择性地工作在多种工作模式之一;所述多种工作模式包括压力保护模式;
其中,所述工作模式控制器配置成在所述发电单元处于所述停机状态的情况下,且当所述压力检测单元检测的所述气体压力高于一压力阈值时,控制所述车辆进入所述压力保护模式;在所述压力保护模式中,所述发电单元从所述停机状态启动进入所述工作状态,以消耗所述燃料储罐中的所述燃料,从而降低所述燃料储罐中的所述气体压力。
2.根据权利要求1所述的混合动力车辆,其中,在所述压力保护模式中,所述动力电池处于所述充电状态,以接收来自所述发电单元的电能对其进行充电。
3.根据权利要求1所述的混合动力车辆,其中,所述多种工作模式还包括在所述车辆启动的情况下进行的纯电池供电模式;其中,在所述纯电池供电模式中,所述发电单元持续处于所述停机状态,所述动力电池持续处于所述放电状态,以消耗所述动力电池内储存的电能来驱动所述车辆。
4.根据权利要求3所述的混合动力车辆,其中,所述多种工作模式还包括在所述车辆启动的情况下进行的常规模式,在所述常规模式中,所述发电单元根据预定工作策略选择性地处于所述工作状态或停机状态,所述动力电池根据所述预定工作策略选择性地处于所述充电状态或所述放电状态。
5.根据权利要求3所述的混合动力车辆,还包括一模式输入接口,用于接收用户输入的表示选定所述纯电池供电模式的模式选择指令;
其中,所述工作模式控制器根据所述模式选择指令控制所述车辆工作在所述纯电池供电模式。
6.根据权利要求3所述的混合动力车辆,其中,所述工作模式控制器设置成:当所述动力电池的电量低于一电量阈值时,禁止所述车辆进入到所述纯电池供电模式或者使得所述车辆离开所述纯电池供电模式。
7.根据权利要求4所述的混合动力车辆,其中,在所述常规模式中,当所述动力电池处于所述充电状态时,对所述动力电池的充电量被限制成低于所述动力电池的最大可蓄电量。
8.根据权利要求1-7中任一项所述的混合动力车辆,其中,所述工作模式控制器配置成能够在所述车辆的启动状态或者熄火状态下使得所述车辆进入所述压力保护模式;或者,所述工作模式控制器配置成仅能够在所述车辆的熄火状态下使得所述车辆进入所述压力保护模式。
9.根据权利要求8中任一项所述的混合动力车辆,还包括:
电气开关,用于断开或闭合通向所述车辆的牵引电机的电能路径;其中,所述工作模式控制器配置成在所述车辆从所述熄火状态下进入所述压力保护模式时,断开所述电气开关;和/或
离合器,用于断开或闭合通向所述车辆的车轮的机械动力路径;其中,所述工作模式控制器配置成在所述车辆从所述熄火状态下进入所述压力保护模式时,断开所述离合器。
10.根据权利要求1-7中任一项所述的混合动力车辆,其中,所述车辆为串联式混合动力车辆。

说明书全文

一种混合动车辆

技术领域

[0001] 本发明涉及混合动力汽车领域,特别是涉及一种至少包括电力驱动的混合动力车辆。

背景技术

[0002] 20世纪90年代以来,世界范围内的能源危机和环境污染问题日趋严重。石油在世界总能源消费中占比40%以上,按目前的探明储量和消耗速度估计,地球上的石油资源可能在未来几十年内消耗殆尽。
[0003] 机动车辆是石油的主要消耗者和大气污染的主要制造者。机动车辆尾气中的CO2是地球温室效应的主要来源之一,而尾气中的其它成分也是重要的城市大气污染物。
[0004] 多年来的实践证明,使用新型燃料和新型动力系统是解决车辆能源瓶颈与尾气污染的一个重要途径。在新型燃料方面,实践证明,使用较汽油、柴油更清洁的代用燃料是解决能源危机和排放污染问题的可行方案。在新型动力系统方面,尽管使用铅酸、镍氢或锂等动力电池的纯电动车辆具有零排放、低噪音和高效率的优点,但由于电能存储技术的制约,导致纯电动车辆不但制造成本高,而且续航里程短和充电时间长,目前以及未来相当长的一段时间内尚不能真正满足人们的使用需求,没有足够的市场竞争力。因此目前已经有采用混合动力来做为传统车辆和纯电动车辆之间的过渡型车辆,兼有两者的一些优点,如超低排放、高效率和续航里程长等,只是成本较采用传统动力系统的车辆稍高。混合动力车辆的动力系统包括串联式、并联式和混联式等多种类型。
[0005] 在采用新型燃料和电力相结合的混合动力车辆中,由于新型燃料一般采用压缩或冷却压缩的方式存储在相应的燃料储罐中。在外界环境温度升高时或者在长时间不使用车辆时,燃料储罐内部的燃料压力容易升高至其安全压力之上,例如,燃料储罐与外界的接口处易吸收外界热量而导致燃料储罐内部燃料压力升高。这相应地会带来安全性问题。此时,为避免燃料储罐出现问题,通常在燃料储罐上都设置有泄压,其在燃料储罐内燃料压力超过一限度时自动开启并释放部分燃料到周围大气中。这样的方式虽然从某种度上保证了燃料储罐的安全性,但泄露到周围大气中的可燃性的气体燃料又会带来新的潜在安全性问题,而且这也浪费了能源。

发明内容

[0006] 本发明的目的是要提高具有燃料储罐的混合动力车辆的安全性。本发明的另一目的是提高具有料储罐的混合动力车辆的燃料利用率。本发明的再一目的是以安全的方式控制或者说释放混合动力车辆的燃料储罐的燃料压力。
[0007] 特别地,本发明提供了一种混合动力车辆,包括:
[0008] 动力电池,其能够选择性地处于充电状态和放电状态,其中,所述动力电池在处于所述充电状态时储存电能并且在处于所述放电状态时提供用于驱动所述车辆的电能;
[0009] 燃料储罐,用于在其内部储存燃料,并且,储存在所述燃料储罐内的所述燃料在所述燃料储罐内形成一气体压力;
[0010] 发电单元,其具有工作状态和停机状态;其中,在所述发电单元处于工作状态时,其将所述燃料储罐中的所述燃料的化学能转化为电能输出;
[0011] 压力检测单元,用于检测所述燃料储罐中的所述气体压力;和
[0012] 工作模式控制器,用于控制所述车辆选择性地工作在多种工作模式之一;所述多种工作模式包括压力保护模式;
[0013] 其中,所述工作模式控制器配置成在所述发电单元处于所述停机状态的情况下,且当所述压力检测单元检测的所述气体压力高于一压力阈值时,控制所述车辆进入所述压力保护模式;在所述压力保护模式中,所述发电单元从所述停机状态启动进入所述工作状态,以消耗所述燃料储罐中的所述燃料,从而降低所述燃料储罐中的所述气体压力。
[0014] 进一步地,在所述压力保护模式中,所述动力电池处于所述充电状态,以接收来自所述发电单元的电能对其进行充电。
[0015] 进一步地,所述多种工作模式还包括在所述车辆启动的情况下进行的纯电池供电模式;其中,在所述纯电池供电模式中,所述发电单元持续处于所述停机状态,所述动力电池持续处于所述放电状态,以消耗所述动力电池内储存的电能来驱动所述车辆。
[0016] 进一步地,所述多种工作模式还包括在所述车辆启动的情况下进行的常规模式,在所述常规模式中,所述发电单元根据预定工作策略选择性地处于所述工作状态或停机状态,所述动力电池根据所述预定工作策略选择性地处于所述充电状态或所述放电状态。
[0017] 进一步地,所述混合动力车辆还包括一模式输入接口,用于接收用户输入的表示选定所述纯电池供电模式的模式选择指令;其中,所述工作模式控制器根据所述模式选择指令控制所述车辆工作在所述纯电池供电模式。
[0018] 进一步地,所述工作模式控制器设置成:当所述动力电池的电量低于一电量阈值时,禁止所述车辆进入到所述纯电池供电模式或者使得所述车辆离开所述纯电池供电模式。
[0019] 进一步地,在所述常规模式中,当所述动力电池处于所述充电状态时,对所述动力电池的充电量被限制成低于所述动力电池的最大可蓄电量。
[0020] 进一步地,所述工作模式控制器配置成能够在所述车辆的启动状态或者熄火状态下使得所述车辆进入所述压力保护模式;或者,所述工作模式控制器配置成仅能够在所述车辆的熄火状态下使得所述车辆进入所述压力保护模式。
[0021] 进一步地,所述混合动力车辆还包括:
[0022] 电气开关,用于断开或闭合通向所述车辆的牵引电机的电能路径;其中,所述工作模式控制器配置成在所述车辆从所述熄火状态下进入所述压力保护模式时,断开所述电气开关;和/或
[0023] 离合器,用于断开或闭合通向所述车辆的车轮的机械动力路径;其中,所述工作模式控制器配置成在所述车辆从所述熄火状态下进入所述压力保护模式时,断开所述离合器。
[0024] 进一步地,本发明的混合动力车辆为串联式混合动力车辆。
[0025] 本发明的混合动力车辆具有压力保护模式,能够在燃料储罐内燃料的气体压力超过一压力阈值时自动启动发电单元,将燃料储罐中膨胀后的多余燃料的化学能转化成电能。这就方便于在随后通过对所转化的电能进行利用或消耗。相比于现有技术将燃料储罐内的燃料排到大气中进行泄压的方式,本发明对燃料储罐内的多余燃料以电能的方式进行利用或消耗方式更为安全。特别是,在适当的情况下,可以将多余燃料的化学能转化成电能后给车辆的动力电池充电,这在提高安全性的同时还避免了燃料的浪费,提高了对燃料的利用率。
[0026] 根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。

附图说明

[0027] 后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
[0028] 图1是根据本发明一个实施例的串联式混合动力车辆的动力系统的结构示意图。

具体实施方式

[0029] 图1示出了根据本发明一个实施例的串联式混合动力车辆的动力系统。该车辆可以包括动力电池50、燃料储罐10、发电单元40、压力检测单元20和工作模式控制器30。
[0030] 该动力电池50可以选择性地处于充电状态和放电状态,其在处于充电状态时可以储存电能,并且在处于放电状态时可以提供用于驱动车辆的电能。燃料储罐10可以在其内部储存燃料。特别是,当该燃料是常温下为气态的天然气压缩天然气或二甲醚等,或者易挥发的甲醇或乙醇等时、储存在燃料储罐10内的该燃料会在燃料储罐10内可以形成一明显的气体压力,而且该气体压力会随着外界温度的升高而显著提高。压力检测单元20可以用于检测燃料储罐10中的气体压力。发电单元40可以具有工作状态和停机状态,其在工作状态时,可以将燃料储罐10中的燃料的化学能转化为电能输出。该发电单元40可以是由发动机和发电机构成的发电机组,发动机消耗燃料储罐10中的燃料,并将燃料的化学能转化成机械能输出,而发电机随后可以将发动机输出的机械能转化成电能输出。
[0031] 除上文描述的各个组成部分之外,在图1所示的实施例中还示例性地示出了牵引电机70和车辆的传动系统。在图1所示的串联式混合动力车辆的动力系统在工作时,发电单元40和/或动力电池50向牵引电机70提供电能,以驱动该牵引电机70。该牵引电机70在工作时可以将电能转化成机械能传递给车辆的传动系统50,从而驱动车辆运行。
[0032] 工作模式控制器30可以控制该车辆选择性地工作在多种工作模式之一。在一个实施例中,该多种工作模式可以包括常规模式、压力保护模式和纯电池供电模式。其中:
[0033] 常规模式
[0034] 常规模式可以是车辆在启动或者说运行状态下的主要工作模式,可以采用现有的混合动力车辆通常所具有的工作模式。在该常规模式中,发电单元40可以根据预定工作策略选择性地处于工作状态或停机状态,并且动力电池50可以根据该预定工作策略选择性地处于充电状态或放电状态。发电单元40和动力电池50的工作状态可以根据车辆实际情况的变化而受常规模式的自动调整。例如,在动力电池50电量充足时则可由其独立为车辆的牵引电机70提供电能,以使得牵引电机产生机械驱动力而驱动车辆行进,此时发电单元40可以处于停机状态;或者,在动力电池50处于电能不足时,发电单元40会启动并为动力电池50充电;又或者,在车辆需要较大驱动力时,由发电单元40和动力电池50同时为牵引电机70提供电能。通常,按照常规模式运行的车辆,其发电单元40中的发动机以及动力电池50都会运行在最优的状态,这是混合动力车辆所具有的优势。
[0035] 压力保护模式
[0036] 在发电单元40处于停机状态的情况下且当压力检测单元20检测的气体压力高于一压力阈值时,该工作模式控制器30控制该车辆进入压力保护模式。当燃料储罐10内的气体压力高于该压力阈值时,表明燃料储罐10处于不安全的状态。在压力保护模式中,发电单元40从停机状态启动进入工作状态,以消耗燃料储罐10中的燃料,从而降低燃料储罐10中的气体压力,使其回复到至少低于该压力阈值。
[0037] 本发明通过在车辆上增设压力保护模式,使燃料储罐10内的气体压力在超过压力阈值后不向大气排放,而是驱动车辆的发电单元40进行发电以减少或消耗燃料储罐10内膨胀后的燃料,使燃料储罐10内的气体压力回到安全范围内。发电单元40输出的电能可以通过不同的方式进行消耗,如用于驱动车辆的牵引电机70,或给动力电池50充电,或用于车辆上的车载空调等其它用电设备。在其它实施例中,甚至可以在车辆中增设专的耗电设备,如电驱动的空转飞轮等,以便在车辆进入压力保护模式时消耗发电单元40所产生的电能。本发明通过这种方式避免了在燃料储罐10中的压力升高时将燃料直接排放到大气所带来的不安全性和能源浪费。
[0038] 车辆可以在启动状态下进入该压力保护模式,或者可以在熄火状态下使得车辆进入压力保护模式。在车辆处于熄火状态时,特别是在车辆在较长时间闲置的情况下,燃料储罐10内的燃料在高温等条件下会发生气体压力超高的现象。即使在车辆处于启动状态时,如果长时间仅由动力电池50驱动而未通过发电单元40来消耗燃料储罐内的燃料时,燃料储罐10内的燃料在高温、震动等条件下同样会发生气体压力超高的现象。因此,本发明的压力保护模式针对上述两种情况的任一情况下发生气体压力超标时都能够自行启动。当然,可以理解,该车辆在启动状态下会由其自身的控制系统(常规模式)自动对电能利用方式进行优化控制,以间隔一定时间的方式使用燃料储罐10内的燃料,避免燃料储罐10内出现气体压力过高的现象。所以,车辆在启动状态下燃料储罐10内燃料的气体压力超过该压力阈值的机率远远小于车辆熄火状态下的机率。因此,在另一个实施例中,该工作模式控制器30也可以设置成仅可在车辆熄火状态下启动该压力保护模式。在本发明中,车辆在启动或者熄火状态下进入压力保护模式的行为可以完全是由该工作模式控制器30根据压力检测单元20所检测的燃料储罐10内的气体压力自动运行,而无需驾驶员干预。
[0039] 特别地,在车辆的启动状态下,压力保护模式可以比常规模式具有更高的执行优先级,以便在燃料储罐10内的燃料压力高于该压力阈值时及时使得车辆进入到压力保护模式。当压力检测单元20检测到燃料储罐10内的气体压力回复到安全范围时,车辆的工作模式控制器30可以使得车辆从压力保护模式返回到常规模式。
[0040] 此外,为了使得车辆能够在熄火状态下进入压力保护模式,车辆的工作模式控制器30以及压力检测单元20最好可以在任何时候(特别是在车辆熄火状态下)都处于带电的工作状态,以应对随时可能发生的燃料储罐10的气体压力变化。
[0041] 在压力保护模式中,尽管如前所述可以采用各种手段来消耗发电单元40所产生的电能,但是,为了节约能源,提高燃料的利用率,最好将对动力电池50的充电作为首选,可以最大限度的提高对电能的利用。
[0042] 纯电池供电模式
[0043] 如前所述,在压力保护模式中,优选是用发电单元40所产生的电能对动力电池50进行充电。但是可以理解,动力电池50此时并不一定处于可充电条件。例如,在车辆熄火后,动力电池50内的电能可能还处于满状态或较充足状态的情况。在这样的情况下,动力电池50可能无法容纳或不能充分容纳发电单元40的输出电能。为此,在本发明中还可以提供一种纯电池供电模式。
[0044] 该纯电池供电模式是在车辆启动状态下以消耗动力电池50内的电能为目的的工作方式。在该纯电池供电模式中,发电单元40可以持续处于停机状态,而动力电池50持续处于放电状态,以消耗动力电池50内储存的电能来驱动车辆。在这里,“持续”的意思是在动力电池50连续输出电能时发电单元40不会向动力电池50补充电量,使其电量状态适合于能够充分容纳燃料储罐10在气体压力超过该压力阈值后并在压力保护模式中回复到安全范围时发电单元40所发出的电能。例如,通过纯电池供电模式,可以使动力电池50的电量最终能够降低到其总蓄电量的30%。
[0045] 需要理解的是,在车辆的常规模式中,在一段时间内,发电单元40也可能持续处于停机状态,并且动力电池50持续处于放电状态。但是,这里的纯电池供电模式是以降低动力电池50内的电量为目的,不同于常规模式以动力电池50工作在最优状态为目的。
[0046] 工作模式控制器30可以根据用户例如驾驶员提供的模式选择指令控制车辆进入纯电池供电模式。如图1所示,该车辆还可以包括一模式输入接口31,用户可以通过该模式输入接口31向工作模式控制器30输入该模式选择指令。纯电池供电模式可以比常规模式具有更高的执行优先级。这样,当工作模式控制器30接收到用户的表示选定纯电池供电模式的模式选择指令时,可以使得车辆从常规模式切换到纯电池供电模式。该模式输入接口31可以是针对纯电池供电模式而独立设置的一个仅强制控制当前车辆运行在纯电池供电模式的一个开关或按钮。通过设置该模式输入接口31,可以使得用户如驾驶员可以根据车辆是否要进入长期熄火状态,对还处于电量充足状态下的动力电池50进行强制放电。例如,当驾驶员预期会有较长时间闲置车辆时,则可以在行驶过程中在距离停车目的地还有一定距离时,主动通过此模式输入接口31强制车辆进入到纯电池供电模式工作,从而使得车辆熄火后的动力电池50内的蓄电量处于一个相对较低的状态,以确保在随后可能进入的压力保护模式下有足够空间来容纳发电单元40的输出电能。在其它实施例中,该模式输入接口31还可以用于接收用户输入的表示选定其它工作模式的模式选择指令。例如,在车辆处于纯电池供电模式时,如果驾驶员主动期望切换回到常规模式,则其也可以通过该模式输入接口31输入表示选定常规模式的模式选择指令。
[0047] 在纯电池供电模式中,为避免动力电池50过度放电,该工作模式控制器30可以设置成当动力电池50的电量低于一电量阈值时,禁止车辆进入到纯电池供电模式或者使得车辆离开纯电池供电模式。本发明的目的之一是避免燃料浪费且可充分利用此部分能源所发出的电能,在动力电池处于这种低电量状态时已经符合本发明的要求,因此不需要再进入纯电池供电模式。这样,当车辆在纯电池供电模式下运行时,一旦动力电池50内的电量降到低于预设的电量阈值,即使驾驶员预定的停车目的地没有到达,工作模式控制器30也会自动结束纯电池供电模式以保护动力电池50。
[0048] 尽管在上述实施例中车辆可以同时具有前述的三种工作模式,但是在其它实施例中,车辆上也可以省略纯电池供电模式。这样,在压力保护模式中,可以在动力电池50符合充电条件的情况下对其进行充电,而在不符合充电条件或者充满时选择前文描述的其它方式来消耗发电单元40输出的电能;或者,也可以直接采用其它方式来消耗发电单元40输出的电能。另外,还需要理解,尽管在前文中列出了常规模式,但是很显然,在前述实施例中,本发明可以并不涉及对常规模式本身的改进。在其它实施例中,也可以针对本发明的目的对该常规模式进行一些改进。例如,在常规模式下,当动力电池50处于充电状态时,可以将对动力电池50的充电量限制成低于动力电池50的最大可蓄电量,例如限制成该最大可蓄电量的80%。通过这种随时留有充电余地的方式,可以为随时可能发生的由压力保护模式留出电量空间来容纳发电单元40的输出电能。
[0049] 如图1所示,该车辆还可以包括用于断开或闭合通向车辆的牵引电机70的电能路径的电气开关60。工作模式控制器30可以配置成在车辆从熄火状态下进入压力保护模式时断开电气开关60。该电气开关60可以安装在由动力电池50和发电单元40向牵引电机70供电的线路上。这样,车辆在熄火状态下进入压力保护模式时,通过断开该电气开关60,可以使得发电单元40输出的电能仅能够对车辆的动力电池50充电或被其它耗电设备消耗,而不能将其电力输送到车辆的牵引电机70,以避免车辆的牵引电机70工作而浪费电能。同时也使压力保护模式仅作为消耗燃料储罐10内的燃料而驱动发电单元40的一个独立程序,以避免可能的利用压力保护模式而不通过车钥匙启动车辆的漏洞。在车辆启动时可以通过工作模式控制器30来检测当前电气开关90的状态,以保证电气开关60处于闭合状态而使得牵引电机70供电线路的正常连通。此外在车辆启动状态下,即使压力保护模式启动,其电气开关90也会在工作模式控制器30的控制下处于闭合状态。
[0050] 如图1所示,该车辆还可以包括离合器80,其用于断开或闭合通常车辆的车轮的机械动力路径。该工作模式控制器30可以配置成在车辆从熄火状态下进入压力保护模式时,断开该离合器80。该离合器80可以是车辆变速器中原有的离合器,也可以是为此目的而增设的离合器。通过操控该离合器80,可以达到在车辆熄火状态下启动压力保护模式时,即使牵引电机70工作也无法驱动车辆的效果。
[0051] 工作模式控制器30可以由混合动力车辆的动力控制系统来实现,或者作为该动力控制系统的一部分,或者独立于车辆原有的动力控制系统。在一个示例性工作过程中,在车辆熄火(或启动)状态下,压力检测单元20可以在检测到燃料储罐10内的燃料的气体压力超过预定的压力阈值时,向工作模式控制器30发送信号,工作模式控制器30接到信号后会启动压力保护模式。或者是,工作模式控制器30持续读取压力检测单元10检测到的压力值并与存储在其内的预定的压力阈值进行比较,当所检测的压力值高于该压力阈值时启动压力保护模式。在启动压力保护模式时,工作模式控制器30向发电单元40发送启动信号,使其工作来消耗燃料储罐10内的燃料以降低其气体压力;同时,工作模式控制器30还向动力电池50(具体地,通常是动力电池50的电池管理系统)发送一充电信号,使得动力电池50进入充电状态,使得发电单元40工作后发出的电能可直接为动力电池50充电。此外,如车辆此时处于熄火状态下,则工作模式控制器30还可以同时或者提前向电气开关60和/或离合器80发出控制信号,以断开车辆的牵引电机70的供电路径和/或通向传动系统80的机械传动路径。
[0052] 在另一个实施性工作过程中,在车辆启动状态下时,当车辆当前处于常规模式时,驾驶员通过模式输入接口31向工作模式控制器30发出表示选择纯电池供电模式的模式选择指令。工作模式控制器30首先通过动力电池50的电池管理系统获取其当前的荷电状态,并将动力电池50的当前电量与存储在工作模式控制器30内的一个预定的电量阈值进行比较。如果动力电池50的当前电量低于该电量阈值,则工作模式控制器30不改变发电单元40和动力电池50的当前工作状态,即,禁止车辆进入到纯电池供电模式。如果动力电池50的当前电量高于该电量阈值,则工作模式控制器30向发电单元40发送控制信号以强制其保持或进入停机状态,并向动力电池50发送控制信号以强制其保持或进入放电状态,使得车辆仅以动力电池50作为电能输出源为车辆的牵引电机70提供电能以驱动车辆前进。在动力电池50持续放电过程中,工作模式控制器30继续获取其当前的荷电状态,并在动力电池50的电量降低成低于该电量阈值时,控制车辆退出纯电池供电模式并以常规模式控制发电单元40和动力电池50的工作。
[0053] 此外,在本发明中,燃料储罐10的压力阈值的设定方式可以采用以下两种方式之一:
[0054] (1)该压力阈值是单个压力值,一旦燃料储罐10内的气体压力超过此压力值,则触发压力保护模式。
[0055] (2)该压力阈值是一个压力范围,其包括一个压力上限值和一个压力下限值。
[0056] 在压力阈值是一个压力范围的情况下,燃料储罐10中的压力“高于该压力阈值”可以是指高于该压力范围的上限值,而燃料储罐10中的压力“回复到安全范围”可以是指低于该压力范围的下限值。这样,因燃料储罐10中的压力高于该上限值而启动压力保护模式后,压力保护模式会至少一直持续到燃料储罐10中的压力低于该下限值。这样,一次压力保护模式结束后,即使燃料储罐10中的压力继续从该下限值之下上升成高于该上限值而需再次启动压力保护模式,这也使得两次压力保护模式之间会有相应的时间间隔,从而避免了当压力阈值是单个压力值时,由于燃料储罐10中的压力在该压力值上下交错变化时而频繁地启动和终止压力保护模式。
[0057] 如图1示出的车辆为一种串联式混合动力车辆。该串联式混合动力车辆的动力系统可以采用本申请人已经申请的中国专利申请No.201310467918.2所公开的方案,并在此将该申请全文进入作为参考。在该所参考的专利申请中提供了一种应用于串联式混合动力车辆的动力系统,其包括:
[0058] 燃料源(可以对应于本申请的燃料储罐10);
[0059] 控制系统(可以对应于本申请的工作模式控制器30)
[0060] 至少两个辅助动力单元(可以对应于本申请的发电单元40),每个辅助动力单元在控制系统的控制下各自独立地从燃料源接收燃料,将燃料中的化学能转化为电能输出到公共电流总线;
[0061] 动力电池(可以对应于本申请的动力电池50),其电连接到公共电流总线,以在控制系统的控制下从公共电流总线接收电能进行充电或通过公共电流总线进行放电;以及[0062] 牵引电机(可以对应于本申请的牵引电机70),其电连接到公共电流总线,以在控制系统的控制下从公共电流总线接收电能,并将其转换为机械能传递给车辆的传动系(可以对应于本申请的传动系统90),从而驱动所述车辆运行。
[0063] 该动力系统适于允许使用能量密度较低的代用燃料而不使用传统的汽油或柴油,并且适于允许辅助动力单元中的发动机工作于处于油耗同排放都很低的工况区域,有效地减少了排放,提高了燃料经济性,弥补了串联式混合动力车辆动力系统能量转化效率相对较低的问题。而且,该动力系统能够根据需要灵活设置适当数目的发动机进行组合使用。
[0064] 虽然前面是以串联式混合动力车辆作为示例说明,但本领域技术人员应该可以理解,对于其它形式的混合动力车辆,如并联或混联式,只要是其所使用的燃料有发生压力过高的可能,并且具有能够通过燃料的化学能进行发电的发电单元以及可选的具有充电和放电状态的动力电池,则都可以适用本发明的方案。
[0065] 至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
QQ群二维码
意见反馈