産業用ロボットおよびその運転方法

申请号 JP2016003060 申请日 2016-06-24 公开(公告)号 JPWO2017033376A1 公开(公告)日 2018-06-14
申请人 川崎重工業株式会社; 发明人 橋本 康彦; 前原 毅; 掃部 雅幸; 田中 繁次;
摘要 ロボットの自動運転中に異常状態が生じた場合でも、作業効率を大幅に低 下させることなく、異常状態に適切に対応することができる産業用ロボット およびその運転方法を提供する。 本産業用ロボットは、ロボットアームを有するロボット本体(1)と、ロ ボット本体(1)の動作を制御するロボット制御装置(7)と、ロボット本 体(1)による作業状態の異常を検出する異常状態検出装置(8)とを備え、 ロボット制御装置(7)は、所定の動作プログラムに基づいてロボット本体 (1)の動作を制御して自動運転を実施する自動運転実施手段(9)と、異 常状態検出装置(8)の検出結果に応じて操作者が行った手動操作に基づい て、ロボット本体(1)の自動運転の動作を補正する自動運転補正手段(1 0)とを有する。
权利要求

ロボットアームを有するロボット本体と、 前記ロボット本体の動作を制御するためのロボット制御装置と、 前記ロボット本体による作業状態の異常を検出するための異常状態検出装置と、を備え、 前記ロボット制御装置は、 所定の動作プログラムに基づいて前記ロボット本体の動作を制御して自動運転を実施するための自動運転実施手段と、 前記異常状態検出装置の検出結果に応じて操作者が行った手動操作に基づいて、前記ロボット本体の前記自動運転の動作を補正するための自動運転補正手段と、を有する、産業用ロボット。前記ロボットアームにワークを保持するためのエンドエフェクタが設けられ、 前記所定の動作プログラムは、前記エンドエフェクタで保持された前記ワークを搬送元から搬送先まで搬送する搬送動作と、前記搬送先にて前記ワークを対象物に組み付ける組付け動作とを前記ロボット本体に実行させるものである、請求項1記載の産業用ロボット。前記異常状態検出装置は、前記組付け動作における前記ロボット本体の作業状態の異常を検出するものである、請求項2記載の産業用ロボット。前記ロボット本体の作業状態の異常は、前記組付け動作における想定外の組付け誤差の発生を含む、請求項3記載の産業用ロボット。前記異常状態検出装置は、前記ロボット本体に外部から作用する反を検出するための反力検出手段を有し、前記反力検出手段の検出結果に応じて前記操作者に力触覚情報を提供するように構成されている、請求項1乃至4のいずれか一項に記載の産業用ロボット。前記異常状態検出装置は、前記ロボット本体の作業空間に関する視覚情報を前記操作者に提供するように構成されている、請求項1乃至5のいずれか一項に記載の産業用ロボット。前記ロボット本体を複数備え、 複数の前記ロボット本体の中から、前記自動運転補正手段によってその動作が補正される前記ロボット本体を選択するための補正対象選択手段をさらに備えた、請求項1乃至6のいずれか一項に記載の産業用ロボット。前記自動運転補正手段は、前記自動運転における前記ロボット本体の動作指令をΔP1、前記手動操作における前記ロボット本体の動作指令をΔP2、修正係数をα(0≦α≦1)とすると、前記ロボット本体に与える動作指令ΔP0を、次式 ΔP0 = (1−α)×ΔP1 + α×ΔP2に基づいて生成するように構成されている、請求項1乃至7のいずれか一項に記載の産業用ロボット。前記自動運転補正手段は、前記修正係数を調整するための修正係数調整手段を有する、請求項8記載の産業用ロボット。前記ロボット制御装置は、さらに、前記自動運転補正手段による前記自動運転の動作の補正履歴に基づいて前記自動運転の動作を補正するための学習機能実現手段を有する、請求項1乃至9のいずれか一項に記載の産業用ロボット。ロボットアームを有するロボット本体と、 操作者からの操作指示を受け付ける操作器と、 前記ロボット本体に所定の動作をさせるためのタスクプログラムが記憶されている記憶装置と、 前記ロボット本体の動作を制御するロボット制御装置と、を備え、 前記ロボット制御装置は、 前記タスクプログラムに基づいて、前記ロボット本体の動作を制御して自動運転を実施する自動運転実施手段と、 前記自動運転中に、前記操作器から動作指令が入力された場合に、前記自動運転における前記ロボット本体の動作指令をΔP1、前記手動操作における前記ロボット本体の動作指令をΔP2とすると、ΔP1に第1係数Aを積算した値と、ΔP2に第2係数Bを積算した値と、の和を前記ロボット本体に与えて、前記ロボット本体の前記自動運転の動作を補正する自動運転補正手段と、を有する、産業用ロボット。前記第1係数Aと前記第2係数Bは、一方の係数が増加すると、他方の係数が減少するように関係付けられている、請求項11に記載の産業用ロボット。前記第1係数Aと前記第2係数Bは、前記第1係数Aと前記第2係数Bを積算した値が予め設定されている第1所定値となる係数である、請求項11又は請求項12に記載の産業用ロボット。前記第1係数Aと前記第2係数Bは、前記第1係数Aと前記第2係数Bを和算した値が予め設定されている第2所定値となる係数である、請求項11又は請求項12に記載の産業用ロボット。前記第2係数Bは、前記操作器から動作指令が入力されてから所定時間かけて、予め設定された値になる変数である、請求項11〜請求項14のいずれか1項に記載の産業用ロボット。前記第2係数Bを調整するための調整手段をさらに備える、請求項11〜請求項15のいずれか1項に記載の産業用ロボット。ロボットアームを有するロボット本体と、前記ロボット本体の動作を制御するためのロボット制御装置と、前記ロボット本体による作業状態の異常を検出するための異常状態検出装置と、を備えた産業用ロボットの運転方法であって、 前記ロボット制御装置を用いて、所定の動作プログラムに基づいて前記ロボット本体の動作を制御して自動運転を実施する自動運転実施工程と、 前記異常状態検出装置の検出結果に応じて操作者が行った手動操作に基づいて、前記ロボット本体の前記自動運転の動作を補正する自動運転補正工程と、を有する、産業用ロボットの運転方法。前記ロボットアームにワークを保持するためのエンドエフェクタが設けられており、 前記所定の動作プログラムは、前記エンドエフェクタで保持された前記ワークを搬送元から搬送先まで搬送する搬送動作と、前記搬送先にて前記ワークを対象物に組み付ける組付け動作とを前記ロボット本体に実行させるものである、請求項17記載の産業用ロボットの運転方法。前記異常状態検出装置を用いて、前記組付け動作における前記ロボット本体の作業状態の異常を検出する、請求項18記載の産業用ロボットの運転方法。前記ロボット本体の作業状態の異常は、前記組付け動作における想定外の組付け誤差の発生を含む、請求項19記載の産業用ロボットの運転方法。前記異常状態検出装置は、前記ロボット本体に外部から作用する反力を検出するための反力検出手段を有し、 前記異常状態検出装置を用いて、前記反力検出手段の検出結果に応じて前記操作者に力触覚情報を提供する、請求項17乃至20のいずれか一項に記載の産業用ロボットの運転方法。前記異常状態検出装置を用いて、前記ロボット本体の作業空間に関する視覚情報を前記操作者に提供する、請求項17乃至21のいずれか一項に記載の産業用ロボットの運転方法。複数の前記ロボット本体の中から、前記自動運転補正工程によってその動作が補正される前記ロボット本体を選択するための補正対象選択工程をさらに備えた、請求項17乃至22のいずれか一項に記載の産業用ロボットの運転方法。前記自動運転補正工程は、前記自動運転における前記ロボット本体の動作指令をΔP1、前記手動操作における前記ロボット本体の動作指令をΔP2、修正係数をα(0≦α≦1)とすると、前記ロボット本体に与える動作指令ΔP0を、次式 ΔP0 = (1−α)×ΔP1 + α×ΔP2に基づいて生成する、請求項17乃至23のいずれか一項に記載の産業用ロボットの運転方法。前記自動運転補正工程は、前記修正係数を調整するための修正係数調整工程を有する、請求項24記載の産業用ロボットの運転方法。前記自動運転補正工程において、前記自動運転の動作の補正履歴に基づいて前記自動運転の動作を補正する、請求項17乃至25のいずれか一項に記載の産業用ロボットの運転方法。ロボット本体と、操作者からの操作指示を受け付ける操作器と、前記ロボット本体に所定の動作をさせるためのタスクプログラムが記憶されている記憶装置と、を備える産業用ロボットの運転方法であって、 前記タスクプログラムに基づいて、前記ロボット本体の自動運転を実行する(A)と、 前記(A)を実行中に、前記操作器から動作指令が入力された場合に、前記自動運転における前記ロボット本体の動作指令をΔP1、前記手動操作における前記ロボット本体の動作指令をΔP2とすると、ΔP1に第1係数Aを積算した値と、ΔP2に第2係数Bを積算した値と、の和を前記ロボット本体に与えて、前記ロボット本体の前記自動運転の動作を修正する(B)と、を備える、産業用ロボットの運転方法。前記第1係数Aと前記第2係数Bは、一方の係数が増加すると、他方の係数が減少するように関係付けられている、請求項27に記載の産業用ロボットの運転方法。前記第1係数Aと前記第2係数Bは、前記第1係数Aと前記第2係数Bを積算した値が予め設定されている第1所定値となる係数である、請求項27又は請求項28に記載の産業用ロボットの運転方法。前記第1係数Aと前記第2係数Bは、前記第1係数Aと前記第2係数Bを和算した値が予め設定されている第2所定値となる係数である、請求項27又は請求項28に記載の産業用ロボットの運転方法。前記第2係数Bは、前記操作器から動作指令が入力されてから所定時間かけて、予め設定された値になる変数である、請求項27〜請求項30のいずれか1項に記載の産業用ロボットの運転方法。前記産業用ロボットは、前記第2係数Bを調整するための調整手段をさらに備える、請求項27〜請求項31のいずれか1項に記載の産業用ロボットの運転方法。

说明书全文

本発明は、ワークの搬送・組付け作業などを実施するための産業用ロボットおよびその運転方法に関する。

従来、産業用ロボットは、ワークを搬送するための搬送用ロボットまたはワークの加工などを行う作業用ロボットとして、電気機器、機械または自動車などの各種の生産工場に設置されている。

産業用ロボットを用いて同一の作業を繰り返し実施する場合には、予めロボットの動作をプログラミングしておき、所定の動作プログラムに基づく自動運転にてロボットを動作させる運転方法がある。この運転方法によれば、操作者によるロボットの手動操作を不要として、作業効率の向上を図ることができる。

ところで、産業用ロボットを用いて同一の作業を繰り返し実施する場合でも、前回作業時には存在しなかった障害物が出現したり、或いは、作業対象物(ワークの取り付け対象の構造体など)の位置や形状が、予め想定されていたものからずれていることがある。

このように当初想定していた状態とは異なる状態(異常状態)が生じている場合には、予め準備された動作プログラム通りにロボットを動作させると、障害物または作業対象物に、ロボットハンドで保持したワークまたはロボット自体が不用意に干渉する、或いは所定の作業(ワークの組付け作業など)ができなくなる可能性がある。

そこで、ロボットの自動運転中に異常状態が生じた場合には、運転モードを、自動運転モードから、操作者による手動運転モードに切り替える技術が提案されている。例えば特許文献1に記載の技術は、ロボットの作業環境をカメラで撮影し、その映像を利用して異常状態の有無を判定し、異常状態が検出されたら自動運転モードを手動運転モードに切り替えるものである。

この従来の技術によれば、ロボットの自動運転中に異常状態が生じた場合でも、ロボットの運転モードを自動運転モードから手動運転モードに切り替えることにより、ロボットハンドで保持したワークなどが障害物に不用意に干渉することを防止し、障害物を回避しつつ所定の作業(ワークの組付け作業など)をロボットに行わせることができる。

なお、ロボットを手動で運転するための代表的な技術として、マスタースレーブマニピュレータがある。マスタースレーブマニピュレータは、有線または無線で通信可能に接続されたマスターアームおよびスレーブアームを備えており、操作者がマスターアームを手動で操作すると、その動きが指令値としてスレーブアームに伝送され、これによりスレーブアームにマスターアームと同じ動きをさせることができる。

また、産業用ロボットに自動で作業を行わせるためには、作業に必要な情報をロボットに指示し、記憶させる教示が必要になる。ロボットの教示方式としては、例えば、教示者がロボットを直接触って動かすことによるダイレクト教示(例えば、特許文献2参照)、ティーチングペンダントを用いた遠隔操縦による教示(例えば、特許文献3参照)、プログラミングによる教示、マスタースレーブによる教示等がある。

特開2003−311661号公報

特開2013−71231号公報

特開2016−83713号公報

しかしながら、上述した従来の技術(特許文献1)は、ロボットの自動運転中にカメラによって異常状態が検出された場合に、自動運転モードを停止して、完全に手動運転モードに切り替えるものであるため、ロボットの運転モードを手動運転モードに切り替えた後は、ロボットの操作が完全に操作者に委ねられる。

すなわち、運転モード切替え後は、予め準備された動作プログラムをまったく利用することができない。このため、操作者の負荷が過大なものとなると共に、作業効率の低下がもたらされる。

また、上述した従来の技術は、異常状態の検出をカメラの映像を用いて行うものであるため、作業環境によっては十分な検出精度を確保することが困難であり、運転モードの切り替えを適時に行うことができない可能性がある。

しかも、運転モードが自動運転から手動運転に切り替えられた後は、上記の通り操作者の完全な手動操作によってロボットを操作する必要があるため、カメラの映像情報による手動操作は、操作者の負担をさらに過大なものとする。

本発明は、上述した従来の技術の問題点に鑑みてなされたものであって、ロボットの自動運転中に異常状態が生じた場合でも、作業効率を大幅に低下させることなく、異常状態に適切に対応することができる産業用ロボットおよびその運転方法を提供することを第1の目的とする。

また、種々の理由からロボットに教示した動作を部分的に変更する必要が生じる場合がある。例えば、ロボットの作業対象又は作業環境等が教示時のものから部分的に変化した場合には、ロボットが目的の作業を遂行できなくなったり、作業の精度が悪化したりする等の問題が生じ得る。

さらに、教示作業を終えた後に、当初作成した教示情報では作業の一部において不具合があることが発見される場合もある。このような場合には、改めて教示作業を行うことにより、ロボットの自動運転に使用される教示情報を変更することになる。

ここで、改めて教示作業を実行する際に、教示する作業者が熟練者である場合には、自動運転における指令値よりも、作業者から入される指令値を主とした方が、ロボットの動作の精度が高くなるが、作業者の熟練度が低い場合には、作業者から入力される指令値の方を主とすると、かえって、ロボットの動作精度が悪化するおそれがある。

そこで、本発明は、予め設定されたロボットの動作を修正するときに、その修正の度合いを変更することができる、ロボットシステム及びその制御方法を提供することを第2の目的とする。

すなわち、本発明は、ロボットの自動運転中に異常状態が生じた場合に、作業効率が大幅に低下するおそれがあるという第1の課題と、ロボットに改めて教示作業を実行する際に、作業者の熟練度が低い場合には、作業者から入力される指令値の方を主とすると、かえって、ロボットの動作精度が悪化するおそれがあるという第2の課題と、の少なくとも一方の課題を解決することを目的とする。

上記課題を解決するために、本発明の第1の態様による産業用ロボットは、ロボットアームを有するロボット本体と、前記ロボット本体の動作を制御するためのロボット制御装置と、前記ロボット本体による作業状態の異常を検出するための異常状態検出装置と、を備え、前記ロボット制御装置は、所定の動作プログラムに基づいて前記ロボット本体の動作を制御して自動運転を実施するための自動運転実施手段と、前記異常状態検出装置の検出結果に応じて操作者が行った手動操作に基づいて、前記ロボット本体の前記自動運転の動作を補正するための自動運転補正手段と、を有する、ことを特徴とする。

本発明の第2の態様は、第1の態様において、前記ロボットアームにワークを保持するためのエンドエフェクタが設けられ、前記所定の動作プログラムは、前記エンドエフェクタで保持された前記ワークを搬送元から搬送先まで搬送する搬送動作と、前記搬送先にて前記ワークを対象物に組み付ける組付け動作とを前記ロボット本体に実行させるものである、ことを特徴とする。

本発明の第3の態様は、第2の態様において、前記異常状態検出装置は、前記組付け動作における前記ロボット本体の作業状態の異常を検出するものである、ことを特徴とする。

本発明の第4の態様は、第3の態様において、前記ロボット本体の作業状態の異常は、前記組付け動作における想定外の組付け誤差の発生を含む、ことを特徴とする。

本発明の第5の態様は、第1乃至第4のいずれかの態様において、前記異常状態検出装置は、前記ロボット本体に外部から作用する反力を検出するための反力検出手段を有し、前記反力検出手段の検出結果に応じて前記操作者に力触覚情報を提供するように構成されている、ことを特徴とする。

本発明の第6の態様は、第1乃至第5のいずれかの態様において、前記異常状態検出装置は、前記ロボット本体の作業空間に関する視覚情報を前記操作者に提供するように構成されている、ことを特徴とする。

本発明の第7の態様は、第1乃至第6のいずれかの態様において、前記ロボット本体を複数備え、複数の前記ロボット本体の中から、前記自動運転補正手段によってその動作が補正される前記ロボット本体を選択するための補正対象選択手段をさらに備えた、ことを特徴とする。

本発明の第8の態様は、第1乃至第7のいずれかの態様において、前記自動運転補正手段は、前記自動運転における前記ロボット本体の動作指令をΔP1、前記手動操作における前記ロボット本体の動作指令をΔP2、修正係数をα(0≦α≦1)とすると、前記ロボット本体に与える動作指令ΔP0を、次式 ΔP0 = (1−α)×ΔP1 + α×ΔP2に基づいて生成するように構成されている、ことを特徴とする。

本発明の第9の態様は、第8の態様において、前記自動運転補正手段は、前記修正係数を調整するための修正係数調整手段を有する、ことを特徴とする。

本発明の第10の態様は、第1乃至第9のいずれかの態様において、前記ロボット制御装置は、さらに、前記自動運転補正手段による前記自動運転の動作の補正履歴に基づいて前記自動運転の動作を補正するための学習機能実現手段を有する、ことを特徴とする。

本発明の第11の態様は、ロボットアームを有するロボット本体と、操作者からの操作指示を受け付ける操作器と、前記ロボット本体に所定の動作をさせるためのタスクプログラムが記憶されている記憶装置と、前記ロボット本体の動作を制御するロボット制御装置と、を備え、前記ロボット制御装置は、前記タスクプログラムに基づいて、前記ロボット本体の動作を制御して自動運転を実施する自動運転実施手段と、前記自動運転中に、前記操作器から動作指令が入力された場合に、前記自動運転における前記ロボット本体の動作指令をΔP1、前記手動操作における前記ロボット本体の動作指令をΔP2とすると、ΔP1に第1係数Aを積算した値と、ΔP2に第2係数Bを積算した値と、の和を前記ロボット本体に与えて、前記ロボット本体の前記自動運転の動作を補正する自動運転補正手段と、を有する、ことを特徴とする。

本発明の第12の態様は、第11の態様において、前記第1係数Aと前記第2係数Bは、一方の係数が増加すると、他方の係数が減少するように関係付けられている、ことを特徴とする。

本発明の第13の態様は、第11または第12の態様において、前記第1係数Aと前記第2係数Bは、前記第1係数Aと前記第2係数Bを積算した値が予め設定されている第1所定値となる係数である、ことを特徴とする。

本発明の第14の態様は、第11または第12の態様において、前記第1係数Aと前記第2係数Bは、前記第1係数Aと前記第2係数Bを和算した値が予め設定されている第2所定値となる係数である、ことを特徴とする。

本発明の第15の態様は、第11乃至第14のいずれかの態様において、前記第2係数Bは、前記操作器から動作指令が入力されてから所定時間かけて、予め設定された値になる変数である、ことを特徴とする。

本発明の第16の態様は、第11乃至第15のいずれかの態様において、前記第2係数Bを調整するための調整手段をさらに備える、ことを特徴とする。

本発明の第17の態様は、ロボットアームを有するロボット本体と、前記ロボット本体の動作を制御するためのロボット制御装置と、前記ロボット本体による作業状態の異常を検出するための異常状態検出装置と、を備えた産業用ロボットの運転方法であって、前記ロボット制御装置を用いて、所定の動作プログラムに基づいて前記ロボット本体の動作を制御して自動運転を実施する自動運転実施工程と、前記異常状態検出装置の検出結果に応じて操作者が行った手動操作に基づいて、前記ロボット本体の前記自動運転の動作を補正する自動運転補正工程と、を有する、ことを特徴とする。

本発明の第18の態様は、第17の態様において、前記ロボットアームにワークを保持するためのエンドエフェクタが設けられており、前記所定の動作プログラムは、前記エンドエフェクタで保持された前記ワークを搬送元から搬送先まで搬送する搬送動作と、前記搬送先にて前記ワークを対象物に組み付ける組付け動作とを前記ロボット本体に実行させるものである、ことを特徴とする。

本発明の第19の態様は、第18の態様において、前記異常状態検出装置を用いて、前記組付け動作における前記ロボット本体の作業状態の異常を検出する、ことを特徴とする。

本発明の第20の態様は、第19の態様において、前記ロボット本体の作業状態の異常は、前記組付け動作における組付け誤差を含む、ことを特徴とする。

本発明の第21の態様は、第17乃至第20のいずれかの態様において、前記異常状態検出装置は、前記ロボット本体に外部から作用する反力を検出するための反力検出手段を有し、前記異常状態検出装置を用いて、前記反力検出手段の検出結果に応じて前記操作者に力触覚情報を提供する、ことを特徴とする。

本発明の第22の態様は、第17乃至第21のいずれかの態様において、前記異常状態検出装置を用いて、前記ロボット本体の作業空間に関する視覚情報を前記操作者に提供する、ことを特徴とする。

本発明の第23の態様は、第17乃至第22のいずれかの態様において、複数の前記ロボット本体の中から、前記自動運転補正工程によってその動作が補正される前記ロボット本体を選択するための補正対象選択工程をさらに備えた、ことを特徴とする。

本発明の第24の態様は、第17乃至第23のいずれかの態様において、前記自動運転補正工程は、前記自動運転における前記ロボット本体の動作指令をΔP1、前記手動操作における前記ロボット本体の動作指令をΔP2、修正係数をα(0≦α≦1)とすると、前記ロボット本体に与える動作指令ΔP0を、次式 ΔP0 = (1−α)×ΔP1 + α×ΔP2に基づいて生成する、ことを特徴とする。

本発明の第25の態様は、第24の態様において、前記自動運転補正工程は、前記修正係数を調整するための修正係数調整工程を有する、ことを特徴とする。

本発明の第26の態様は、第17乃至第25のいずれかの態様において、前記自動運転補正工程において、前記自動運転の動作の補正履歴に基づいて前記自動運転の動作を補正する、ことを特徴とする。

本発明の第27の態様は、ロボット本体と、操作者からの操作指示を受け付ける操作器と、前記ロボット本体に所定の動作をさせるためのタスクプログラムが記憶されている記憶装置と、を備える産業用ロボットの運転方法であって、前記タスクプログラムに基づいて、前記ロボット本体の自動運転を実行する(A)と、前記(A)を実行中に、前記操作器から動作指令が入力された場合に、前記自動運転における前記ロボット本体の動作指令をΔP1、前記手動操作における前記ロボット本体の動作指令をΔP2とすると、ΔP1に第1係数Aを積算した値と、ΔP2に第2係数Bを積算した値と、の和を前記ロボット本体に与えて、前記ロボット本体の前記自動運転の動作を修正する(B)と、を備える、ことを特徴とする。

本発明の第28の態様は、第27の態様において、前記第1係数Aと前記第2係数Bは、一方の係数が増加すると、他方の係数が減少するように関係付けられている、ことを特徴とする。

本発明の第29の態様は、第27又は第28の態様において、前記第1係数Aと前記第2係数Bは、前記第1係数Aと前記第2係数Bを積算した値が予め設定されている第1所定値となる係数である、ことを特徴とする。

本発明の第30の態様は、第27又は第28の態様において、前記第1係数Aと前記第2係数Bは、前記第1係数Aと前記第2係数Bを和算した値が予め設定されている第2所定値となる係数である、ことを特徴とする。

本発明の第31の態様は、第27乃至第30のいずれかの態様において、前記第2係数Bは、前記操作器から動作指令が入力されてから所定時間かけて、予め設定された値になる変数である、ことを特徴とする。

本発明の第32の態様は、第27乃至第31のいずれかの態様において、前記産業用ロボットは、前記第2係数Bを調整するための調整手段をさらに備える、ことを特徴とする。

上記特徴を備えた本発明によれば、ロボットの自動運転中に異常状態が生じた場合でも、作業効率を大幅に低下させることなく、異常状態に適切に対応できる産業用ロボットおよびその運転方法を提供することができる。

また、上記特徴を備えた本発明によれば、予め設定されたロボットの動作を修正するときに、その修正の度合いを変更することができる産業用ロボットおよびその運転方法を提供することができる。

図1は、本発明の一実施形態による産業用ロボットの概略構成を示した模式図である。

図2は、図1に示した産業用ロボットの運転方法に関するフローチャートを示した図である。

図3は、図1に示した産業用ロボットの位置の経時変化に関するグラフを示した図である。

図4Aは、図1に示した産業用ロボットのワーク搬送・組付け動作を示した模式図である。

図4Bは、図1に示した産業用ロボットのワーク搬送・組付け動作を示した他の模式図である。

図4Cは、図1に示した産業用ロボットのワーク搬送・組付け動作を示した他の模式図である。

図4Dは、図1に示した産業用ロボットのワーク搬送・組付け動作を示した他の模式図である。

図4Eは、図1に示した産業用ロボットのワーク搬送・組付け動作を示した他の模式図である。

図5は、図1に示した自動運転補正手段の制御系の一例を示すブロック図である。

図6は、図1に示した実施形態の一変形例による産業用ロボットの概略構成を示した模式図である。

図7は、図1に示した実施形態の他の変形例による産業用ロボットの概略構成を示した模式図である。

図8は、本実施の形態2に係る産業用ロボットの概略構成を示すブロック図である。

図9は、図8に示す自動運転補正手段の制御系の一例を示すブロック図である。

図10は、本実施の形態2における変形例1の産業用ロボットの自動運転補正手段の制御系の一例を示すブロック図である。

図11は、本実施の形態2における変形例2の産業用ロボットの自動運転補正手段の制御系の一例を示すブロック図である。

(実施の形態1) 以下、本実施の形態1に係る産業用ロボットおよびその運転方法について、図面を参照して説明する。

[産業用ロボットの構成] 図1に示したように、本実施形態による産業用ロボットのロボット本体1は、第1関節部21を介して、第1軸線(旋回軸線)J1周りに回転可能な基台2を有し、この基台2には、第2関節部22を介して、第2軸線J2周りに回転可能に下部アーム3の基端が接続されている。下部アーム3の先端には、第3関節部23を介して、第3軸線J3周りに回転可能に上部アーム4の基端が接続されている。

上部アーム4は、第4関節部24を介して、その長手軸線(第4軸線)J4周りに回転可能である。上部アーム4の先端には、第5関節部25を介して、第5軸線(揺動軸線)J5周りに揺動可能に手首部5が接続されている。第5軸線J5は、上部アーム4の長手軸線(第4軸線)J4に直交している。

手首部5の先端面には、手首部5の中心軸線(第6軸線)J6周りに回転可能な回転体6が設けられている。回転体6には、ワークを保持できるエンドエフェクタ(図示を省略)が装着される。

第1関節部21〜第5関節部25、および回転体6には、それぞれ、連結する2つの部材を相対的に回転させるアクチュエータの一例としての駆動モータMが設けられている(図5参照)。駆動モータMは、例えば、ロボット制御装置7によってサーボ制御されるサーボモータであってもよい。また、第1関節部21〜第5関節部25、および回転体6には、それぞれ、駆動モータMの回転位置を検出するための回転センサE(図5参照)と、駆動モータMの回転を制御する電流を検出するための電流センサC(図5参照)とが設けられている。回転センサEは、例えばエンコーダであってもよい。

基台2、下部アーム3、上部アーム4、手首部5、回転体6、およびエンドエフェクタが、産業用ロボットのロボット本体1を構成している。

本実施形態による産業用ロボットは、ロボット本体1の動作を制御するためのロボット制御装置7を備えている。さらに、産業用ロボットは、ロボット本体1による作業状態の異常を検出するための異常状態検出装置8を備えている。

ロボット制御装置7は、予め準備された所定の動作プログラムに基づいてロボット本体1の動作を制御して自動運転を実施するための自動運転実施手段9を有する。この所定の動作プログラムは、エンドエフェクタで保持したワークを搬送元から搬送先まで搬送する搬送動作と、搬送先にてワークを対象物に組み付ける組付け動作とをロボット本体1に実行させるものである。

なお、ロボット制御装置7は、例えば、マイクロコントローラ、MPU、PLC(Programmable Logic Controller)、論理回路等からなる演算部(図示せず)と、ROM又はRAM等からなるメモリ部(図示せず)と、により構成することができる。また、ロボット制御装置7は、単独の制御装置で構成される形態だけでなく、複数の制御装置が協働して、ロボット本体1(産業用ロボット)の制御を実行する制御装置群で構成される形態であっても構わない。

ロボット制御装置7は、さらに、異常状態検出装置8の検出結果に応じて操作者が行った手動操作に基づいて、ロボット本体1の自動運転の動作を補正するための自動運転補正手段10を有する。上述した異常状態検出装置8は、ワークの対象物への組付け動作におけるロボット本体1の作業状態の異常を検出するものである。

異常状態検出装置8によって検出されるロボット本体1の作業状態の異常は、対象物へのワークの組付け動作における想定外の組付け誤差の発生に対応している。異常状態検出装置8は、ロボット本体1に外部から作用する反力を検出するための反力検出手段11を有し、反力検出手段11の検出結果に応じて操作者に力触覚情報(haptics information)を提供するように構成されている。

例えば、対象物に対するワークの組付け動作において、対象物の設置位置が正規の位置からずれていると、ワークと対象物との相対的な位置関係が、所定の動作プログラムが前提としている位置関係と相違することになる。このため、所定の動作プログラムに基づいてワークを移動させて対象物に組み付けようとすると、ワークの組付け部位と対象物の組付け部位との位置合わせがうまくいかず、想定外の組付け誤差が発生する。

このように想定外の組付け誤差が発生すると、ワークに対して対象物からの想定外の反力が作用するので、この反力を反力検出手段11で検出する。より詳細には、ワークを介してロボットアームに伝達された反力を、反力検出手段11を用いて検出する。

反力検出手段11としては、例えば、マスタースレーブマニピュレータのバイラテラル制御に利用される力逆送型システム、または力帰還型システムを採用することができる。

本実施形態による産業用ロボットは、さらに、手動操作入力装置、例えばジョイスティック12を有する補正情報入力装置13を備えている。手動操作入力装置としては、ジョイスティック以外にも、例えば、ロボットアーム(スレーブアーム)と相似構造を有するマスターアームを使用することができる。補正情報入力装置13とロボット制御装置7とは、有線または無線で通信可能に接続されている。

反力検出手段11の検出結果に応じて、補正情報入力装置13のジョイスティック12に傾動動作が引き起こされ、この傾動動作を介して操作者に力触覚が提供される。例えば、ワークの組付け部位と対象物の組付け部位との位置合わせがうまくいかず、想定外の組付け誤差が発生すると、それによりワークおよびロボットアームに作用した反力が反力検出手段11で検出され、その検出結果がジョイスティック12の傾動動作を介して操作者に力触覚として伝達される。

また、異常状態検出装置8は、上述した反力検出手段11に代えて、あるいはそれに加えて、ロボット本体1の作業空間に関する視覚情報を操作者に提供するための視覚情報取得手段14を備えることができる。具体的には、ロボット本体1の作業空間を撮像する撮像手段(カメラなど)によって視覚情報取得手段14を構成することができる。撮像手段は、ロボットアームやエンドエフェクタに設けることができる。

[産業用ロボットの動作及び作用効果] 次に、本実施の形態1に係る産業用ロボットの運転方法について、図2乃至図5を参照して説明する。なお、以下の動作は、ロボット制御装置7の演算部が、ロボット制御装置7のメモリ部又は記憶装置(図8参照)に格納されているプログラムを読み出すことにより実行される。

また、本明細書においては、ロボット本体1が、予め設定されたタスクプログラムに従って動作する制御モードを「自動運転モード」と称する。自動運転モードでは、従来のティーチングプレイバックロボットと同様に、操作者によるジョイスティック12の操作なしに、ロボット本体1が所定の作業を自動的に行う。

また、本明細書では、ロボット本体1が、ジョイスティック12が受け付けた操作者の操作に基づいて動作する制御モードを「手動運転モード」と称する。なお、手動運転モードでは、ジョイスティック12から受け付けた操作指示に完全に従うように、ロボット本体1を動作させてもよく、ジョイスティック12から受け付けた操作指示に対して、予め設定されているプログラムにより補正(例えば、手ブレ補正)をしながら、ロボット本体1を動作させてもよい。

さらに、本明細書では、予め設定されたタスクプログラムに従って動作しているロボット本体1をジョイスティック12が受け付けた操作者の操作によって修正する制御モードを「修正運転モード」と称する。

図1に示した産業用ロボットを用いてワークを搬送して対象物に取り付ける際には、まず、ロボット制御装置7を用いて、所定の動作プログラムに基づいてロボット本体1の動作を制御して、自動運転を実施する(自動運転実施工程)。すなわち、図2に示したように、ワーク搬送・組付け作業を、自動運転モードにて開始する(ステップS1)。

ワーク搬送・組付け作業開始後、異常状態検出装置8によって作業状態の異常が検出されなければ(ステップS2)、そのまま自動運転モードが継続され(ステップS3)、ワークが搬送元から搬送先まで搬送され、搬送先にて対象物にワークが組み付けられ、作業が終了する(ステップS5)。この場合、ワーク搬送・組付け作業の開始から終了まで、操作者による手動操作は行われず、自動運転補正手段10による自動運転の補正は行われない。

一方、異常状態検出装置8によって作業状態の異常が検出された場合には(ステップS2)、その検出結果が操作者に伝達される。例えば、対象物へのワークの組付け動作において、ワークと対象物との位置合わせがうまくいかず、両者に想定外の反力が生じた場合には、その反力に応じて、反力検出手段11によってジョイスティック12に傾動動作が引き起こされ、ジョイスティック12を把持している操作者に力触覚が提供される。

力触覚を感じた操作者は、力触覚に基づいてジョイスティック12を操作し、この手動操作によって、ロボット本体1の自動運転の動作が補正される(自動運転補正工程)。この自動運転補正工程における運転モードを、修正運転モードS4と呼ぶ。

また、カメラ等の撮像手段からなる視覚情報取得手段14を用いて、ロボット本体1の作業空間に関する視覚情報を提供する場合には、操作者は提供された視覚情報に基づいて異常発生の有無を判断する。そして、異常発生を確認したら、操作者は、ジョイスティック12を操作してロボット本体1の自動運転の動作を補正する(修正運転モードS4)。

例えば、対象物へのワークの組付け動作において、対象物の組付け部位に対するワークの組付け部位の位置合わせがうまくいっていないと視覚情報から判断した場合、操作者は、ジョイスティック12を操作してロボット本体1の自動運転の動作を補正する(修正運転モードS4)。

修正運転モードS4によってワークの搬送・組付け作業を継続しつつ、異常状態の検出の有無を判定し(ステップS2)、異常状態が解除された場合には、修正運転モードS4から自動運転モードS3に切り替える。

図3は、ワーク搬送・組付け作業におけるロボット位置の経時変化のグラフの一例を示した図である。図4A乃至図4Eは、エンドエフェクタ15に保持されたワークWと、ワークWを取り付ける対象物Oとの、各時刻における位置関係を示した図である。

図3に示したように、時刻t0において自動運転モードにてワーク搬送・組付け作業が開始されると(ステップS1)、所定のプログラムに基づいてロボット本体1が駆動され、予め登録された所定の軌道(予定軌道)に沿ってロボット位置が変化する。このときの状態を図4Aに示す。

ここで、搬送元から搬送先にワークWを搬送する搬送動作においては、その途中で異常状態が発生する可能性は低く、自動運転のみによって搬送動作が完了する可能性が高い。一方、搬送先においてワークWを対象物Oに取り付ける取付け動作においては、対象物Oの配置の位置ずれなどに起因して、異常状態が生じる可能性がある。

図3に示した例においては、時刻t1の時点で、何らかの原因(例えば、図4Bに示したワークWと対象物Oとの干渉)により、ロボット本体1が予定通りに動かなくなっている(異常状態の発生)。すなわち、ロボット位置の実軌道が、自動運転による所定軌道からずれている。このとき、ワークWおよび/またはロボット本体1に作用する反力に基づく力触覚が、反力検出手段11によって、ジョイスティック12を介して操作者に伝達される。

これを受けて操作者は、時刻t2の時点から、ジョイスティック12を操作して、ロボット本体1のエンドエフェクタ15を一旦後退させる。このときの状態を図4Cに示す。そして、ジョイスティック12から伝達される力触覚に基づいてロボット本体1の自動運転を補正しながら、ロボット本体1の動作プロセスを進行させる。

図3に示したように、ジョイスティック12を用いた手動操作による補正量は徐々に小さくなり、ロボット位置の変化(実軌道)は、自動運転による所定軌道(時間遅れの予定軌道)に近づいていく。このときの状態を図4Dに示す。ロボット位置の変化が、自動運転による所定軌道(時間遅れの予定軌道)に戻ると、ワークWおよび/またはロボット本体1に想定外の反力が作用しなくなり、ジョイスティック12を介して操作者に伝達される力触覚が消失する。

この状態においては、操作者の手動操作による自動運転の補正が不要となり、ロボット本体1は、修正なしの所定の自動運転のみに基づいて駆動され、所定のワーク組付け動作が時間遅れで実行される。このときの状態を図4Eに示す。

以下、上述した修正運転モードについて補足して説明する。

修正運転モードの内容を概念的に説明すれば、自動運転の動作指令(例えばプラス5)に対して、手動操作の動作指令(例えばマイナス10)を重畳して、ロボットに補正後の動作(マイナス5)を行わせる、というのが修正運転モードであってもよい。

また、修正運転モードは、図5に示すような動作を実行してもよい。ここで、図5は、図1に示した自動運転補正手段の制御系の一例を示すブロック図である。なお、図5に示す例では、自動運転におけるロボットの動作指令をΔP1、手動操作におけるロボットの動作指令をΔP2とすると、ΔP1およびΔP2は、時系列データを含む軌道指令値(位置指令値)である。また、図5に示す例では、たとえば、ロボットに与える動作指令ΔP0は、以下のように修正されてもよい。

ΔP0 = (1−α)×ΔP1 + α×ΔP2・・・式(1) ここで、αは修正係数である。なお、α=0のときは、通常の自動運転の指令が送られ、α=1のときは、完全な遠隔操縦動作の指令となり、0<α<1のときは、その中間状態の動作、すなわち、修正運転モードによるロボット本体1の動作である。

以下、図5を参照しながら、修正運転モードの一例について、詳細に説明する。

図5に示すように、自動運転補正手段10は、加算器31a、減算器31b,31e,31g、位置制御器31c、微分器31d、速度制御器31fを備え、自動運転におけるロボットの動作指令(ΔP1)および手動操作におけるロボットの動作指令(ΔP2)により、ロボット本体1の駆動モータMの回転位置を制御する。

加算器31aは、ΔP1に、ΔP2を加算することによって、修正された位置指令値を生成する。このとき、加算器31aは、上記式(1)に従って、位置指令値を生成する。すなわち、加算器31aは、自動運転におけるロボットの動作指令(ΔP1)に1−αを積算した値と、手動操作におけるロボットの動作指令(ΔP2)にαを積算した値と、の和を修正された位置指令値として生成する(算出する)。そして、加算器31aは、修正された位置指令値を減算器31bに送る。

なお、修正係数αは、ボリュームつまみ(修正係数調整手段)が、ジョイスティック12または補正情報入力装置13に備えられていて、操縦者が手動でボリュームつまみを調整することで、自動運転補正手段10に入力されてもよい。また、修正係数調整手段として、たとえば、作業対象物(ワークの取り付け対象の構造体など)から大きく離れたところではαは0で、作業対象物に近づくにつれ、徐々に1に近くなるようにするプログラムが、予め記憶装置(図示せず)に記憶されていてもよい。また、修正係数調整手段として、通常はα=0とし、ロボット本体1の先端に取り付けられた力触覚部がワークの接触を感知すると、それを操縦者に知らせ、α=1に切り替わるプログラムが予め記憶装置に記憶されていてもよい。

減算器31bは、修正された位置指令値から、回転センサEで検出された位置現在値を減算して、度偏差を生成する。減算器31bは、生成した角度偏差を位置制御器31cに出力する。

位置制御器31cは、予め定められた伝達関数または比例係数に基づいた演算処理により、減算器31bから入力された角度偏差から速度指令値を生成する。位置制御器31cは、生成した速度指令値を減算器31eに出力する。

微分器31dは、回転センサEで検出された位置現在値情報を微分して、駆動モータMの回転角度の単位時間あたりの変化量、すなわち速度現在値を生成する。微分器31dは、生成した速度現在値を減算器31eに出力する。

減算器31eは、位置制御器31cから入力された速度指令値から、微分器31dから入力された速度現在値を減算して、速度偏差を生成する。減算器31eは、生成した速度偏差を速度制御器31fに出力する。

速度制御器31fは、予め定められた伝達関数または比例係数に基づいた演算処理により、減算器31eから入力された速度偏差からトルク指令値(電流指令値)を生成する。速度制御器31fは、生成したトルク指令値を減算器31gに出力する。

減算器31gは、速度制御器31fから入力されたトルク指令値から、電流センサCで検出された電流現在値を減算して、電流偏差を生成する。減算器31gは、生成した電流偏差を駆動モータMに出力し、駆動モータMを駆動する。

このように、自動運転補正手段10は、駆動モータMを制御して、自動動作情報に関する動作から修正された動作を行うように、ロボット本体1を制御する。

なお、本実施の形態1においては、手動操作におけるロボットの動作指令(ΔP2)が、時系列データを含む軌道指令値(位置指令値)とする形態を採用したが、これに限定されない。たとえば、ΔP2を速度指令値とする形態を採用してもよく、トルク指令値とする形態を採用してもよい。

ΔP2が速度指令値である場合には、減算器31eに、ΔP2としての速度指令値にαを積算した値(手動速度指令値)が入力される。また、減算器31eには、位置制御器31cが自動運転におけるロボットの動作指令(ΔP1;位置指令値)および位置現在値に基づいて生成した速度指令値に1−αを積算した値(修正速度指令値)が入力される。さらに、減算器31eには、微分器31dから、当該微分器31dが生成した速度現在値が入力される。

そして、減算器31eでは、入力された手動速度指令値に修正速度指令値を加算し、かつ、速度現在値を減算した値から速度偏差を生成する。なお、減算器31eが速度偏差を生成した後の動作は、上記と同様に実行される。

同様に、ΔP2がトルク指令値である場合には、減算器31gに、ΔP2としてのトルク指令値にαを積算した値(手動トルク指令値)が入力される。また、減算器31gには、自動運転におけるロボットの動作指令(ΔP1;位置指令値)から、位置制御器31cおよび減算器31eを介して、速度制御器31fに入力された速度偏差から、当該速度制御器31fが生成したトルク指令値に1−αを積算した値(修正トルク指令値)が入力される。さらに、減算器31gには、電流センサCで検出された電流現在値が入力される。

そして、減算器31gでは、入力された手動トルク指令値に修正トルク指令値を加算し、かつ、電流現在値を減算して、電流偏差を生成する。減算器31gは、生成した電流偏差を駆動モータMに送り、駆動モータMを駆動する。

なお、修正運転モードの他の例としては、例えば、今回のワークでは、自動運転指令値ΔP1に対し、実際にはΔP0によって嵌め合いが成功した場合、次回、同じワークを組み立てる際には、ΔP0をΔP1に置き換えてもよいし、完全に置き換えるのではなく、それに近づくよう修正してもよい。

また、ΔP2とロボット本体1の力触覚情報のログをとり、どのようなときにどれぐらい修正したらよいかを学習する機能(学習機能実現手段)をロボット制御装置7に設けて、自動運転動作指令ΔP1を自動的に修正することができ、遠隔操縦者が介在する機会は徐々に減り、最終的には、自動運転のみで組立作業が実現できる。

以上述べたように、本実施の形態1に係る産業用ロボットおよびその運転方法によれば、ロボットの自動運転中に異常状態が生じた場合でも、自動運転によるロボット動作を基調としつつ、操作者による手動操作によって自動運転を補正することができるので、作業効率を大幅に低下させることなく、異常状態に適切に対応することができる。

また、操作者による手動操作によって、ロボット動作(実軌道)が、自動運転による所定動作に復帰した場合には、自動運転に対する補正を中止すれば、その後も自動運転が継続されるので、手動運転から自動運転への復帰のための特別な切替機構などは不要である。

[変形例1] 次に、上述した実施形態の一変形例について、図6を参照して説明する。

本例による産業用ロボットは、上述したロボット本体1を複数備えており、各ロボット本体1に対して、上述したロボット制御装置7および異常状態検出装置8が設けられている。

そして、補正情報入力装置13は、複数のロボット本体1の中から、上述した自動運転補正手段10によってその動作が補正されるロボット本体1を選択するための補正対象選択手段16を備えている。

本例による産業用ロボットにおいては、複数のロボット本体1のうちの任意の一台が補正対象とされ、必要に応じて修正運転モードで運転される。一方、残余のロボット本体1は、自動運転モードのみにて運転される。なお、ロボット制御装置7は、複数のロボット本体1を1つの制御装置で制御してもよい。

例えば、搬送元から搬送先へのワークWの搬送動作を行っているロボット本体1は自動運転モードのみにて運転すると共に、搬送先にて対象物OへのワークWの組付け動作を行っているロボット本体1は、必要に応じて修正運転モードにて運転する。

本例においては、補正対象選択手段16を用いて補正対象のロボット本体1を選択できるので、複数のロボット本体1に対して一台の補正情報入力装置13を設けるのみで足り、構成の複雑化を抑制することができる。

例えば、搬送元から搬送先にワークWを搬送する搬送動作と、搬送先にてワークを対象物に組み付ける組付け動作とを行う場合には、自動運転の補正が必要となるのは主として組付け動作の際であるから、組付け動作を実施しているロボット本体1のみを補正対象とすればよい。

[変形例2] 次に、上述した実施形態の他の変形例について、図7を参照して説明する。

本例においては、補正情報入力装置13が、ジョイスティックに代えて、ロボットアーム(スレーブアーム)と相似構造のマスターアーム17を備えている。

マスターアーム17には、上述した修正係数調整手段としてのボリュームつまみ18が設けられており、操作者は、このボリュームつまみ18を操作することにより、上述した修正係数αを調整することができる。

また、本例においては、ロボット制御装置7が、上述した学習機能実現手段19を備えている。学習機能実現手段19を用いて、上述した自動運転動作指令ΔP1を自動的に修正することができ、遠隔操縦者が介在する機会は徐々に減り、最終的には、自動運転のみで組立作業が実現できる。

(実施の形態2) [産業用ロボットの構成] 図8は、本実施の形態2に係る産業用ロボットの概略構成を示すブロック図である。

図8に示すように、本実施の形態2に係る産業用ロボットは、実施の形態1に係る産業用ロボットと基本的構成は同じであるが、ジョイスティック12がボリュームつまみ(調整器)18を備えている点が異なる。ボリュームつまみ18は、操作者が操作することにより、第2係数Bを調整することができるように構成されている。

また、本実施の形態2に係る産業用ロボットにおいては、記憶装置20は、読み書き可能な記録媒体であり、タスクプログラム20aと産業用ロボットの動作シーケンス情報20bが記憶されている。なお、本実施の形態2に係る産業用ロボットでは、記憶装置20は、ロボット制御装置7と別体に設けられているが、ロボット制御装置7と一体として設けられていてもよい。

タスクプログラム20aは、例えば、ティーチングにより作成され、ロボット本体1の識別情報とタスクとに対応付けられて、記憶装置20に格納されている。なお、タスクプログラム20aは、作業ごとの動作フローとして作成されてもよい。

動作シーケンス情報20bとは、作業空間内でロボット本体1によって実施される一連の作業工程を規定した動作シーケンスに関する情報である。動作シーケンス情報20bでは、作業工程の動作順と、ロボット本体1の制御モードと、が対応付けられている。また、動作シーケンス情報20bでは、各作業工程に対し、ロボット本体1にその作業を自動的に実行させるためのタスクプログラムが対応付けられている。なお、動作シーケンス情報20bは、各作業工程に対し、ロボット本体1にその作業を自動的に実行させるためのプログラムを含んでいてもよい。

なお、本実施の形態2に係る産業用ロボットでは、ジョイスティック12を備える形態を採用したが、これに限定されず、ジョイスティック12に代えて、マスターアーム17を備える形態を採用してもよく、ジョイスティック12に代えて、タブレット型の操作器を備える形態を採用してもよい。

[産業用ロボットの動作及び作用効果] 次に、本実施の形態2に係る産業用ロボットの動作及び作用効果について、図8及び図9を参照しながら説明する。

図9は、図8に示す自動運転補正手段の制御系の一例を示すブロック図である。

図9に示すように、本実施の形態2に係る産業用ロボットの自動運転補正手段10が実行する修正運転モードは、実施の形態1に係る産業用ロボットの自動運転補正手段10が実行する修正運転モードと基本的には、同様に実行されるが、以下の点が異なる。

すなわち、本実施の形態2に係る産業用ロボットでは、自動運転補正手段10の加算器31aは、下記式(2)に従って、位置指令値を生成する。なお、位置指令値を生成した後の動作は、実施の形態1と同様に実行されるため、その詳細な説明は省略する。

ΔP0 = A×ΔP1 + B×ΔP2・・・式(2) ここで、第1係数Aと第2係数Bは変数であり、一方の係数が増加すると、他方の係数が減少する関係にある。より詳細には、第1係数Aと第2係数Bは、第1係数Aと第2係数Bを積算した値が予め設定されている第1所定値となる係数であってもよく、第1係数Aと第2係数Bを和算した値が予め設定されている第2所定値となる係数であってもよい。なお、第1所定値、又は第2所定値は、1であってもよく、10であってもよく、100であってもよい。

なお、第2係数Bは、上述したように、ジョイスティック12に設けられたボリュームつまみ(調整器)18を操縦者が手動で調整することで、補正情報入力装置13から自動運転補正手段10に入力されてもよい。また、調整器として、例えば、作業対象物(ワークの取り付け対象の構造体など)から大きく離れたところでは、第2係数Bは0で、作業対象物に近づくにつれ、第2係数Bを徐々に大きくなるようにするプログラムが、予め記憶装置20に記憶されていてもよい。

また、第2係数Bは、ボリュームつまみ18から補正情報入力装置13を介して自動運転補正手段10にその値が入力されてから、所定時間かけて入力された値になる変数であってもよく、ジョイスティック12から自動運転補正手段10に修正指令値ΔP2が入力されてから、所定時間かけて予め設定された値になる変数であってもよい。所定時間としては、ロボット本体1の急激な動作の修正を抑制する観点から、例えば、0.5秒以上であってもよく、1秒以上であってもよい。また、所定時間は、ロボット本体1の修正動作が反映されていることを操作者が認知する観点から、2秒以内であってもよく、3秒以内であってもよく、5秒以内であってもよい。

具体的には、例えば、第2係数Bは、ボリュームつまみ18から自動運転補正手段10にその値が入力されてから、又はボリュームつまみ18から自動運転補正手段10に修正指令値ΔP2が入力されてから経過した時間と、単位時間当たりの変化量ΔBと、の関係が、一次関数となる変数であってもよい。また、第2係数Bは、経過した時間と、単位時間当たりの変化量ΔBと、の関係が、二次関数、又は三次関数等の高次関数となる変数であってもよく、対数関数となる変数であってもよい。さらに、第2係数Bは、経過した時間と、単位時間当たりの変化量ΔBと、の関係が、階段状に増加する変数であってもよい。

これにより、ジョイスティック12から自動運転補正手段10に修正指令値ΔP2が入力されたときに、急激にロボット本体1の動作が修正されて、思わぬ方向にロボット本体1が動作されることを抑制することができる。

このように構成された、本実施の形態2に係る産業用ロボットであっても、実施の形態1に係る産業用ロボットと同様の作用効果を奏する。また、本実施の形態2に係る産業用ロボットでは、第2係数Bがボリュームつまみ18から自動運転補正手段10にその値が入力されてから、所定時間かけて入力された値になる変数である場合、又はジョイスティック12から自動運転補正手段10に修正指令値ΔP2が入力されてから、所定時間かけて予め設定された値になる変数である場合には、急激にロボット本体1の動作が修正されて、思わぬ方向にロボット本体1が動作されることを抑制することができる。

次に、本実施の形態2に係る産業用ロボットの変形例について、説明する。

[変形例1] 図10は、本実施の形態2における変形例1の産業用ロボットの自動運転補正手段の制御系の一例を示すブロック図である。

図10に示すように、本変形例1では、ジョイスティック12から自動運転補正手段10に入力される修正指令値ΔP2が速度指令値である場合に、自動運転補正手段10が実行する動作を示している。以下、具体的に説明する。

ΔP2が速度指令値である場合には、減算器31eに、ΔP2としての速度指令値に第2係数Bを積算した値(手動速度指令値)が入力される。また、減算器31eには、位置制御器31cが自動運転におけるロボットの動作指令(ΔP1;位置指令値)および位置現在値に基づいて生成した速度指令値に第1係数Aを積算した値(補正速度指令値)が入力される。さらに、減算器31eには、微分器31dから、当該微分器31dが生成した速度現在値が入力される。

そして、減算器31eでは、入力された手動速度指令値に補正速度指令値を加算し、かつ、速度現在値を減算した値から速度偏差を生成する。なお、減算器31eが速度偏差を生成した後の動作は、実施の形態1に係る産業用ロボットと同様に実行される。

このように構成された、本変形例1の産業用ロボットであっても、実施の形態2に係る産業用ロボットと同様の作用効果を奏する。

[変形例2] 図11は、本実施の形態2における変形例2の産業用ロボットの自動運転補正手段の制御系の一例を示すブロック図である。

図11に示すように、本変形例2では、ジョイスティック12から自動運転補正手段10に入力される修正指令値ΔP2がトルク指令値である場合に、自動運転補正手段10が実行する動作を示している。以下、具体的に説明する。

ΔP2がトルク指令値である場合には、減算器31gに、ΔP2としてのトルク指令値に第2係数Bを積算した値(手動トルク指令値)が入力される。また、減算器31gには、自動運転におけるロボットの動作指令(ΔP1;位置指令値)から、位置制御器31cおよび減算器31eを介して、速度制御器31fに入力された速度偏差から、当該速度制御器31fが生成したトルク指令値に第1係数Aを積算した値(補正トルク指令値)が入力される。さらに、減算器31gには、電流センサCで検出された電流現在値が入力される。

そして、減算器31gでは、入力された手動トルク指令値に補正トルク指令値を加算し、かつ、電流現在値を減算して、電流偏差を生成する。減算器31gは、生成した電流偏差を駆動モータMに送り、駆動モータMを駆動する。

このように構成された、本変形例2の産業用ロボットであっても、実施の形態2に係る産業用ロボットと同様の作用効果を奏する。

なお、上述した実施形態およびその変形例による産業用ロボットおよびその運転方法は、人とロボットが共存して作業を行う場合、もしくは、人とロボットが協調して作業を行う場合に特に適している。例えば、ワークの組付け作業において微妙な位置合わせが必要となる場合でも、必要に応じて操作者が介入して補正運転モードで作業を行うことができるので、ワークの組付け作業を支障なく実施することができる。

上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の形態を当業者に教示する目的で提供されたものである。本発明の要旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。

1 ロボット本体 2 基台(ロボット本体) 3 下部アーム(ロボット本体) 4 上部アーム(ロボット本体) 5 手首部(ロボット本体) 6 回転体(ロボット本体) 7 ロボット制御装置 8 異常状態検出装置 9 自動運転実施手段 10 自動運転補正手段 11 反力検出手段 12 ジョイスティック 13 補正情報入力装置 14 視覚情報取得手段 15 エンドエフェクタ(ロボット本体) 16 補正対象選択手段 17 マスターアーム 18 ボリュームつまみ(修正係数調整手段) 19 学習機能実現手段 20 記憶装置 20aタスクプログラム 20b 動作シーケンス情報 21 第1関節部 22 第2関節部 23 第3関節部 24 第4関節部 25 第5関節部 31a 加算器 31b 減算器 31c 位置制御器 31d 微分器 31e 減算器 31f 速度制御器 31g 減算器 J1 第1軸線 J2 第2軸線 J3 第3軸線 J4 第4軸線 J5 第5軸線 J6 第6軸線 O 対象物 W ワーク

QQ群二维码
意见反馈