气动制动辅助装置

申请号 CN201280075696.3 申请日 2012-08-23 公开(公告)号 CN104812640A 公开(公告)日 2015-07-29
申请人 皮尔伯格泵技术有限责任公司; 发明人 R.斯夸西尼; E.巴塔莱西; F·布基;
摘要 本 发明 涉及具有机械式 内燃机 驱动 真空 泵 (10)和真空 制动 辅助单元(40)的 气动 制动辅助装置(1),其中制动辅助单元(40)包括与泵送单元(18)的抽吸口(17)连接的真空腔室(42)。 真空泵 (10)包括:由内燃机(12) 直接驱动 的 输入轴 (20)、具有泵 转子 (19)和抽吸口(17)的泵送单元(18)以及布置在输入轴(20)与泵转子(19)之间的磁流变 离合器 (16),离合器(16)包括输入离合器主体(24)和输出离合器主体(22);在两个离合器主体(22、24)之间的封闭离合器液体间隙(26),离合器液体间隙(26)充有磁流变离合器液体(28);在 永磁体 元件的 磁场 以较高磁通量穿透离合器液体间隙(26)的接合 位置 与磁体元件在离合器液体间隙(26)中的磁场穿透通量小于在接合位置中的脱离位置之间可移动的永磁体元件(30);和用于在接合与脱离位置之间移动永磁体元件(30)的气动控制回路,气动控制回路包括经气动 导管 (46)连接到制动辅助单元(40)的真空腔室(42)的气动致动腔室(50),并包括在致动腔室(50)中的 活塞 装置(52);其中当相对高的压 力 存在于真空腔室(42)中时,活塞装置(52)直接将永磁体元件(30)移动到其接合位置,并且其中活塞装置(52)由被动式预紧元件(44)预紧到脱离或接合位置。
权利要求

1.具有机械式内燃机驱动真空(10)和真空制动辅助单元(40)的气动制动辅助装置(1),其中,所述制动辅助单元(40)包括真空腔室(42),所述真空腔室(42)与泵送单元(18)的抽吸口(17)连接,
所述真空泵(10)包括
由所述内燃机(12)直接驱动输入轴(20),
具有泵转子(19)和所述抽吸口(17)的泵送单元(18),和
布置在所述输入轴(20)与所述泵转子(19)之间的磁流变离合器(16),所述离合器(16)包括
输入离合器主体(24)和输出离合器主体(22),
在所述两个离合器主体(22、24)之间的封闭离合器液体间隙(26),所述离合器液体间隙(26)充有磁流变离合器液体(28),
在接合位置与脱离位置之间可移动的可移动永磁体元件(30),在所述接合位置中,所述永磁体元件的磁场以较高的磁通量穿透所述离合器液体间隙(26),在所述脱离位置中,所述磁体元件在离合器液体间隙(26)中的磁场穿透通量小于在所述接合位置中的磁场穿透通量,和
用于在接合位置与脱离位置之间移动所述永磁体元件(30)的气动控制回路,所述气动控制回路包括通过气动导管(46)连接到所述制动辅助单元(40)的真空腔室(42)的气动致动腔室(50),并且包括在所述致动腔室(50)中的活塞装置(52),
其中,当相对高的压存在于所述真空腔室(42)中时,所述活塞装置(52)直接将所述永磁体元件(30)移动到其接合位置,并且
其中,所述活塞装置(52)由被动式预紧元件(44)预紧到所述脱离位置或接合位置。
2.根据权利要求1所述的气动制动辅助装置(1),其中,所述活塞装置(52)由所述永磁体元件(30)限定,并且所述气动致动腔室(50)由在所述输入离合器主体(24)和所述输出离合器主体(22)内的空腔限定。
3.根据前述权利要求的一项所述的气动制动辅助装置(1),其中,所述气动致动腔室(50)设置有与所述气动导管(46)连接的真空入口(60)。
4.根据前述权利要求的一项所述的气动制动辅助装置(1),其中,提供了通气通道(56、58),用于在气动力学上逆着真空入口(60)以大气压将所述致动腔室(50)通气。
5.根据前述权利要求的一项所述的气动制动辅助装置(1),其中,所述永磁体元件(30)设置为在轴向方向上可移动。
6.根据前述权利要求的一项所述的气动制动辅助装置(1),其中,所述离合器主体(22、24)是杯形的,并在所述离合器主体(22、24)之间形成杯形间隙(26),并且所述永磁体元件(30)在其接合位置中定位在由杯形间隙(26)所限定的杯形空腔(27)的内部。
7.根据前述权利要求的一项所述的气动制动辅助装置(1),其中,当相对高的压力存在于所述真空腔室(42)中时,所述活塞装置(52)直接将所述永磁体元件(30)移动到其接合位置,并且其中,所述活塞装置(52)由被动式预紧元件(44)预紧到所述接合位置。

说明书全文

气动制动辅助装置

技术领域

[0001] 本发明涉及一种气动制动辅助装置,其由真空制动辅助单元和机械式真空组成,所述机械式真空泵为所述制动辅助单元提供真空并由内燃机直接驱动

背景技术

[0002] 用于为气动制动辅助单元提供真空的普通真空泵是由内燃机直接驱动的机械式真空泵。术语“直接驱动”在这里具有的含义是在发动机的旋转元件与泵的输入轴之间没有可脱离的离合器。泵的输入轴可以由发动机通过带、齿轮驱动,或通过与所述发动机的凸轮轴或曲轴的直接耦合而驱动。如果没有离合器设置在真空泵的输入轴与泵转子之间,则所述真空泵始终被发动机驱动,即使是对真空泵的性能没有需要亦如此。
[0003] 为了减少真空泵的不必要的磨损,并减少真空泵的能量消耗,可以在真空泵的输入轴与包括泵转子的泵送单元之间设置离合器。如果无需真空泵的泵送性能,则离合器被脱离。

发明内容

[0004] 本发明的一个目的是提供一种可靠的气动制动辅助装置,其具有简单且可靠控制的离合器。
[0005] 这个目的是用有权利要求1的特征的气动制动辅助装置解决的。
[0006] 所述气动制动辅助装置设置有由内燃机驱动的机械式可切换真空泵,并设置有真空制动辅助单元。所述制动辅助单元设置有真空腔室,其与真空泵的泵送单元的抽吸口相连。制动辅助单元的真空腔室用作制动蓄能器。制动辅助真空腔室中的绝对压应当总是低于例如100毫巴的限定的最大绝对压力值,以总是保证足够的制动力支持。真空泵包括离合器和泵送单元。离合器设置在真空泵的输入轴与泵送单元之间,使得如果离合器脱离,则泵送单元不被驱动。
[0007] 所述离合器是磁流变离合器,其中,离合器通过可移动的永磁体元件而接合和脱离。离合器设置在输入轴与泵转子之间,并且包括在两个离合器主体之间的离合器液体间隙。一个离合器主体直接连接到所述输入轴,而另一离合器主体直接连接到所述泵转子。两个离合器主体之间的离合器液体间隙充有磁流变离合器液体,其在磁场存在时具有相对高的粘度,而在没有磁场存在时具有相对低的粘度。在磁流变液体语境中的术语液体不应被字面地理解,而是应被理解为一种磁流变流体,其在由磁场激活时也可以是在某种程度上的固体。
[0008] 用于增加磁流变离合器液体的粘度的磁场由在脱离位置与接合位置之间可移动的永磁体元件产生,在所述脱离位置中,永磁体元件在离合器液体间隙中的磁场穿透通量较低,而在所述接合位置中,在离合器液体间隙中的磁场穿透通量较高。在它的接合位置中,永磁体靠近所述离合器液体间隙,而在脱离位置中,永磁体元件距离合器液体间隙更远。永磁体元件不必与输入离合器主体共同旋转,而是可以设置为与所述输入轴共同旋转。
[0009] 提供了气动控制回路,用于在永磁体元件的接合位置与脱离位置之间移动并转移所述永磁体元件。所述气动控制回路包括气动致动腔室,其经由气动导管连接至制动辅助单元的真空腔室,并还包括在所述致动腔室中的活塞装置。当相对高的绝对压力出现在致动辅助单元的真空腔室中时,所述活塞装置直接将所述永磁体转移到其接合位置。相对高的绝对压力是高于所限定的最大绝对压力值的绝对压力。活塞装置由被动式预紧元件预紧到脱离位置或接合位置。被动式预紧元件对抗致动腔室中的绝对压力而作用,所述绝对压力等于真空腔室中的压力。
[0010] 该预紧元件优选地将活塞装置转移到其接合位置,其中,当绝对压力低于限定的最大压力值时,活塞装置被致动腔室中的压力转移进入脱离位置。
[0011] 所描述的气动控制回路是相对简单和可靠的。不需要电控制或致动装置。即使用于在其接合位置与脱离位置之间移动永磁体元件的致动力可以是相对低的,磁流变离合器也可以产生相对高的离合器力。
[0012] 优选地,该活塞装置由永磁体元件本身限定,而气动致动腔室由空腔限定,所述空腔由输入离合器主体和输出离合器主体限定并环绕。没有设置单独的气动致动器,使得包括离合器和离合器致动装置的真空泵是相对简单的。优选地,限定活塞装置的永磁体元件设置为在轴向方向上可移动。
[0013] 根据优选的实施例,所述气动致动腔室设置有与所述气动导管连接的真空入口。根据另一优选的实施例,提供了通气通道,用于在气动力学上逆着真空入口以大气压将所述致动腔室通气。在活塞装置的一侧,致动腔室经由气动导管和真空入口气动地连接到制动辅助单元的真空腔室,而在活塞装置的另一侧,致动腔室经由通气通道连接到大气压。
[0014] 根据优选的实施例,离合器主体是杯形的,并在它们之间形成杯形的离合器液体间隙。离合器主体设置有盘状部分并且设置有柱形部分。永磁体在其接合位置中定位在由杯形离合器液体间隙所限定的环体状空腔内部。由于两个离合器主体之间的离合器液体间隙不仅是盘形的,而且也包括柱形部分,总间隙表面积显著增加,并且设置有长的力臂以传输高的扭矩值,而未增加离合器的总直径。附图说明
[0015] 本发明的一个实施例参照附图进行描述,其中
[0016] 图1以纵向截面示出了包括真空泵的气动制动辅助装置,具有接合的磁流变离合器,和
[0017] 图2以纵向截面示出了有脱离的磁流变离合器的气动制动辅助装置。

具体实施方式

[0018] 图1和图2示出了气动制动辅助装置1,其包括内燃机12、由内燃机12直接驱动的机械真空泵10和真空驱动的制动辅助单元14。
[0019] 真空泵10提供小于100毫巴的真空至气动制动辅助单元14。内燃机12机械地直接连接到真空泵10的磁流变离合器16的输入轴20,使得输入轴20总是以与内燃机12的转速直接地成正比的转速共同旋转。
[0020] 磁流变离合器16被布置在输入轴20与输出轴21之间。如图1所示,离合器16在离合器接合状态下连接输入轴20与输出轴21,而如图2所示,离合器16在脱离状态下将输出轴21从输入轴20断开。离合器16的输出轴21直接耦合到有泵转子19的真空泵送单元18。离合器16设置有两个离合器主体22、24、轴向可移动的永磁体元件30、预紧元件44,在所述两个离合器主体之间限定充有磁流变离合器液体28的离合器液体间隙26,所述预紧元件44设计为用于气动地致动永磁体元件30以在接合装置和脱离位置之间移动它的弹簧和气动装置。
[0021] 离合器主体22、24都是杯形的,使得它们在其间限定具有盘状环形部分和柱形部分的小杯形离合器液体间隙26。永磁体元件30被设置为圆形永磁体环状主体32,其在由输入离合器主体24和输出离合器主体22所限定的空腔内设置为轴向可移动的。
[0022] 在如图1所示的接合位置中,永磁体主体32接近在其中包括磁流变离合器液体28的离合器液体间隙26的两个部分,以便由永磁体元件30所产生的磁场以最大的磁通量穿透在离合器液体间隙26内部的磁流变离合器液体28。如图2所示,在永磁体元件30的脱离位置中,穿透离合器液体间隙26的磁通量是相对低的,使得磁流变离合器液体的粘度相对较低。
[0023] 轴向可移动的永磁体元件30由预紧元件44预紧到其示于图1中的接合位置。这种布置使得离合器16是故障安全的,因为如果气动致动失败,则永磁体元件30始终被推入其接合位置。
[0024] 由输入离合器主体24和输出离合器主体22环绕的柱形空腔用作气动致动腔室50,其通过真空入口60、轴向孔48和气动导管46气动地直接连接到制动辅助单元40的真空腔室42。通气通道56、58设置在气动致动腔室52的另一轴向端部以不断地提供大气压到致动腔室50的此轴向端部。永磁体元件30限定在致动腔室50内部的活塞装置52。真空制动辅助单元40的真空腔室42、真空泵送单元18、有活塞装置52的气动致动腔室50和气动导管46限定气动控制回路,其确保在制动辅助单元40的真空腔室42中的绝对压力总是保持低于临界最大压力值。
[0025] 当内燃机12旋转时,输入离合器主体24同样旋转。如图1所示,只要真空制动辅助单元40的真空腔室42中的绝对压力高于限定的和恒定的最大压力值,在气动致动腔室50中的绝对压力对于将永磁体元件30推入其脱离位置是不够低的,使得永磁体元件30保持在接合位置。由于穿透离合器液体间隙26的磁场在接合位置中是相对高的,所述磁流变离合器液体28具有高的粘度。其结果是,离合器16被接合,而真空泵18的泵转子19与输入轴20共同旋转。旋转的真空泵18抽空真空制动辅助单元40的真空腔室42,直到在真空腔室42中和在相连的气动致动腔室50中的绝对压力降到限定的最大压力值之下,所述最大压力值由预紧元件44的强度限定。如图2所示,当在气动致动腔室50中的绝对压力低于限定的最大压力值时,由在永磁体元件30两侧的腔室区段之间的压力差产生的力足够强,以将由永磁体元件30限定的活塞装置50抵抗预紧元件44的预紧而移动进入脱离位置。
QQ群二维码
意见反馈