排气净化系统

申请号 CN201180071056.0 申请日 2011-05-24 公开(公告)号 CN103562508B 公开(公告)日 2016-02-10
申请人 丰田自动车株式会社; 发明人 大崎真由子; 缪里尔·莱帕热;
摘要 本 发明 提供了一种使用NOx 净化 设备(4)的排气净化系统,其可减少贵金属的用量并且在低温下和/或在 氧 化性气氛中表现出NOx净化性能,并在非稳态运行等时可甚至通过包含HC和NOx的排气组成来具有NOx净化性能,即,本发明提供了一种使用NOx净化设备(4)的排气净化系统,所述NOx净化设备(4)具有NOx净化催化剂和用于预测NOx 排放量 的装置,所述NOx净化催化剂设置在排气通道(3)中并且包括载体,在所述载体上负载有包含呈紧邻状态的金 原子 和镍原子的纳米颗粒,当预测将排放NOx时,所述NOx净化设备(4)运行用于增加进给至NOx净化催化剂(4)的排气中的一氧化 碳 的装置(2,9),而在当预测将不排放NOx时,所述NOx净化设备(4)通过NOx净化催化剂(4)净化从 发动机 排放的排气而不注入过量的 燃料 。
权利要求

1.一种包括NOX净化设备的排气净化系统,所述NOX净化设备具有NOX净化催化剂、用于增加进给至所述NOX净化催化剂的排气中的一的装置和用于预测NOX排放量的装置,所述NOX净化催化剂设置在排气通道中并且包括载体,在所述载体上负载有包含呈紧邻状态的金原子和镍原子的合金的纳米颗粒,其中所述金原子和所述镍原子的组成按原子百分比计为Au∶Ni=7至91∶93至9;所述NOX净化设备构造成使得当预测将排放NOX时,运行所述用于增加进给至所述NOX净化催化剂的排气中的一氧化碳的装置,而当预测将不排放NOX时,通过所述NOX净化催化剂净化从发动机排放的排气而不注入过量的燃料
2.根据权利要求1所述的排气净化系统,其中所述用于预测NOX排放量的装置为设置在所述排气通道中的所述NOX净化催化剂的下游侧位置处的NOX传感器或用于从A/F值与温度之间的关系对NOX浓度进行预测的装置。
3.根据权利要求1或2所述的排气净化系统,其中所述用于增加一氧化碳的装置构造成对所述发动机进行富燃料控制或为氧化催化剂和在所述氧化催化剂的上游侧位置处的燃料注入部,其中所述氧化催化剂设置在所述排气通道中的所述NOX净化催化剂的上游侧位置处,用于氧化所述排气中的HC。
4.根据权利要求1至3中任一项所述的排气净化系统,其中所述用于增加一氧化碳的装置为用于燃料注入的装置以降低A/F值直至不再排放NOX。
5.根据权利要求1至4中任一项所述的排气净化系统,其中所述NOX净化设备还具有测量未反应的HC的排放量的装置。

说明书全文

排气净化系统

技术领域

[0001] 本发明涉及使用氮化物(下文有时缩写为“NOx”)净化催化剂的排气净化系统,更具体而言,涉及在非稳态运行时能够对包含(下文有时缩写为“HC”)的排气组成来改善NOx净化性能的排气净化系统。

背景技术

[0002] 近年来,从保护全球环境的度出发,在世界各地,排放控制已变得严厉起来。作为一种应对措施,内燃机中在使用排气净化催化剂。在此类排气净化催化剂中,为高效地移除排气中的HC(烃)、一氧化和NOx,正使用铂、金、铑和其它贵金属作为催化成分。在使用此类净化催化剂的车辆如汽油发动机车辆或柴油发动机车辆中,正使用各种系统来改善催化活性和燃料经济性。例如,为改善稳态运行中的燃料经济性,使燃料在贫空-燃比(A/F)(富氧)的条件下燃烧,而为改善催化活性,使燃料暂时地在化学计量(化学计量的空-燃比,A/F=14.7)到富(燃料过剩)条件下燃烧。
[0003] 这是因为此类传统已知的铂、钯、铑及其它贵金属催化剂在低温和氧化性条件下具有低的NOx净化性能。如果将净化催化剂升至高温以改善净化性能,则需要加入HC或一氧化碳等来获得还原性气氛。由于对催化活性的影响,因而甚至在稳态运行过程中也不可能增大空-燃比(A/F)。使用此类贵金属催化剂,燃料经济性的改善因此存在限制。这样,在传统已知的贵金属催化剂中,需要降低使净化催化剂升至高温以获得净化性能所需的能量以及发动机的空-燃比(A/F)。为改善汽车发动机及其它内燃机的燃料经济性,人们正在寻求能够在低温下和/或在氧化性气氛中表现出NOx净化性能的新的净化催化剂。另一方面,贵金属催化剂都有着资源枯竭的问题。人们已寻求这样的净化催化剂:其使用其它金属、具有程度等于或优于常规贵金属催化剂的净化性能并且可减少催化剂或贵金属的用量。为此,人们已对净化催化剂尝试各种改进。
[0004] 例如,日本专利公开(A)第10-216518号描述了一种金与选自铂、钯、金、和镍中的一种或两种金属M的金合金催化剂,其中使得重量比为Au/M=1/9至9/1并且使得合金中溶解的金的量为20重量%至80重量%。另外,作为该公开中的具体实例示出的催化剂为包括金和金属M的催化剂,所述催化剂作为金与钯或铂的金合金负载在Al2O3载体上。在还原性气氛下,其表现出高的NOx净化性能,但在低温下和/或在氧化性气氛中,NOx净化性能低。
[0005] 此外,日本专利公开(A)第2001-239161号描述了一种低温有害气体净化催化剂,所述净化催化剂包括金属氧化物或碳质材料的载体,在所述载体上使用高温、高压流体而负载有至少一种选自铂、钯、铑、钌、铱、锇、金、、铜、锰、和镍中的金属的超细颗粒。另外,作为该公开中的具体实例示出的催化剂为其上负载有铂、钯、铑、钌、镍或金中的一种的净化催化剂并且所述净化催化剂在还原性气氛中表现出NOx净化性能。
[0006] 然而,使用具有这些已知NOx净化催化剂的排气净化系统难以减少贵金属的用量以及难以在低温下和/或在氧化性气氛中获得NOx净化性能。这是因为NOx净化催化剂的NOx反应活性受排气中组成的影响。

发明内容

[0007] 因此,本发明的一个目的是提供一种排气净化系统,其使用减少贵金属的用量并且能够在低温下和/或在氧化性气氛中表现出NOx净化性能的NOx净化催化剂,并且在非稳态运行等时甚至对含有HC和NOx的排气组成也具有NOx净化性能。
[0008] 本发明涉及一种使用NOx净化设备的排气净化系统,所述NOx净化设备具有NOx净化催化剂和用于预测NOx排放量的装置,所述NOx净化催化剂设置在排气通道中并且包括载体,在所述载体上负载有包含呈紧邻状态的金原子和镍原子的纳米颗粒,当预测将排放NOx时,所述NOx净化设备运行用于增加进给至NOx净化催化剂的排气中的一氧化碳的装置,而当预测将不排放NOx时,所述NOx净化设备通过NOx净化催化剂净化从发动机排放的排气而不注入过量的燃料。
[0009] 概括本发明的有利效果,根据本发明,可以提供一种NOx净化催化剂,所述NOx净化催化剂减少贵金属的用量并且能够在低温下和/或在氧化性气氛中表现出NOx净化性能并在非稳态运行等时甚至对含有HC和NOx的排气组成提供NOx净化性能。附图说明
[0010] 参照下面结合附图给出的优选实施方案的描述,本发明的这些及其它目的和特征将变得更清楚,在附图中:
[0011] 图1为对比地示出通过参考例和对比例获得的NOx净化催化剂的NO净化特性的图;
[0012] 图2为对比地示出通过参考例获得的NOx净化催化剂对各种气体组成的排气的NO净化特性的图;
[0013] 图3为能够用于本发明的一个实施方案的排气净化系统的排气净化设备的示意图;
[0014] 图4为能够用于本发明的另一个实施方案的排气净化系统的排气净化设备的示意图;以及
[0015] 图5为本发明的一个实施方案的排气净化系统的示意图。

具体实施方式

[0016] 在本发明中,排气净化系统必须为使用NOx净化设备的排气净化系统,所述NOx净化设备具有NOx净化催化剂和用于预测NOx排放量的装置,所述NOx净化催化剂设置在排气通道中并且包括载体,在所述载体上负载有包含呈紧邻状态的金原子和镍原子的纳米颗粒,当预测将排放NOx时,所述NOx净化设备运行用于增加进给至NOx净化催化剂的排气中的一氧化碳的装置,而当预测将不排放NOx时,所述NOx净化设备通过NOx净化催化剂净化从发动机排放的排气而不注入过量的燃料。由于此,能够提供一种NOx净化催化剂,所述NOx净化催化剂减少贵金属的用量并且能够在低温下和/或在氧化性气氛中表现出NOx净化性能并在非稳态运行等时甚至对含有HC和NOx的排气组成提供NOx净化性能。
[0017] 下面,将参照附图说明本发明的实施方案。参照图1,与本发明的范围外的包括其上仅负载镍或仅负载金的载体颗粒的NOx净化催化剂相比,本发明的一个实施方案的NOx净化催化剂在300至500℃的温度范围内表现出NO-CO催化活性,特别地,甚至在约425℃以上的温度下表现出高的NO-CO催化活性,本发明的所述NOx净化催化剂包括载体颗粒,在所述载体颗粒上负载有包含呈紧邻状态的金原子和镍原子的纳米颗粒。另外,即便共同使用金和镍,但使用包括其上负载有金和镍的简单混合物而并非负载有包含呈紧邻状态的金原子和镍原子的纳米颗粒的载体颗粒的NOx净化催化剂,在500℃下的NO-CO催化活性相反变得低于仅使用镍的情况。
[0018] 参照图2,如果使用NOx净化催化剂来处理非稳态运行时包含C3H6的各种组成的排气,则与曲线1的NO-CO气体组成(化学计量)相比,在约425至500℃的温度范围内,对于曲线2的NO-CO-O2-C3H6排气组成(化学计量)和曲线3的NO-C3H6排气组成(化学计量),特别是曲线2的NO-CO-O2-C3H6排气组成(化学计量),NO净化率低,另外,对于曲线4的NO-CO-C3H6排气组成(富燃料)和曲线5的NO-CO-O2-C3H6排气组成(富燃料),NO净化率稍低,但仍获得高的NO净化率。也就是说,从图2应了解,使用包括其上负载有呈紧邻状态的金原子和镍原子并且所述两种原子中的至少之一为一次颗粒的载体颗粒的NOx净化催化剂,在化学计量控制下,对于包括其中C3H6与NO共存的排气的气体组成,NO净化活性大大下降,但在富燃料控制下,如果为其中与NO和一氧化碳共存地包含C3H6的气体组成,则NO净化活性高。
[0019] 本发明基于该发现而完成。如图3中所示,能够用于本发明的一个实施方案的排气净化系统的排气净化设备10,具有在来自发动机2的排气通道3中的NOx净化催化剂4以及在NOx净化催化剂(有时也称“AuNi-NOx还原催化剂”)4的下游侧的位置处的NOx传感器5、A/F计6A、A/F计6B和HC传感器7,所述NOx净化催化剂4包括载体颗粒,在所述载体颗粒上负载有呈紧邻状态的金原子和镍原子并且所述两种原子中的至少之一为一次颗粒。
[0020] 另外,如图4中所示,能够用于本发明的另一个实施方案的排气净化系统的排气净化设备10,具有在来自发动机2的排气通道3中的NOx净化催化剂(有时也称“AuNi-NOx还原催化剂”)4,在所述NOx净化催化剂的下游侧的位置处的NOx传感器5、A/F计6A、A/F计6B和HC传感器7,在NOx净化催化剂4的上游侧的氧化催化剂8,以及在氧化催化剂8的上游侧的位置处的燃料注入部9,所述NOx净化催化剂4包括载体颗粒,在所述载体颗粒上负载有呈紧邻状态的金原子和镍原子并且所述两种原子中的至少之一为一次颗粒,所述氧化催化剂8部分地氧化排气中一定位置处的HC。
[0021] 如图5中所示,本发明的一个实施方案的排气净化系统1,在步骤11处使用NOx净化设备来预测是否将向外排放NOx,当预测将排放NOx时,即当预测和/或测得排气含有未反应的HC以及NOx时,在步骤12处,运行用于增加进给至NOx净化催化剂的排气中的一氧化碳的装置,而当预测将不排放NOx时,在步骤13处,通过本发明中的排气净化催化剂净化从发动机排放的排气而不注入过量的燃料。是否将排放NOx可从来自图3和图4中所示A/F计6A或6B的A/F值(特别是来自A/F计6B的A/F值)与从热电偶(未示出)估计的温度之间的关系或从A/F值使用预先准备的NO浓度图预测。另外,可以通过例如测量未反应的HC的排放量的装置例如通过图3和图4中所示的HC传感器7来预测和/或测量是否包含未反应的HC。
[0022] 在本发明的一个实施方案中,用于增加进给至NOx净化催化剂的排气中的一氧化碳的装置可通过“富燃料控制”来控制发动机。作为富燃料控制,如图5中所示,可以向发动机中注入燃料直至不再排放NOx的A/F值。另外,在本发明的另一个实施方案中,用于增加一氧化碳的装置可为来自具有氧化催化剂的排气净化设备中的燃料注入部的燃料注入和在所述氧化催化剂的上游侧的位置处的燃料注入部的燃料注入,所述氧化催化剂设置在排气通道中NOx净化催化剂的上游侧的位置处,用于部分地氧化排气中的HC。
[0023] 另外,根据图5中所示的本发明的一个实施方案的排气净化系统,甚至当从发动机排放的排气为以化学计量比含有HC和NOx的排气组成时,通过经由向发动机注入燃料或经由在氧化催化剂的上游侧注入燃料来将空-燃比从化学计量比转化为富空-燃比,可以使用发动机或氧化催化剂的催化作用在低温下部分地氧化HC而增加一氧化碳。引入到NOx净化催化剂的排气组成,如图2中的曲线4或曲线5所示,包含HC和NO外加增加的量的一氧化碳,因而NOx净化催化剂可被赋予高的NOx净化性能。另外,在本发明的该实施方案中,当预测将不排放NOx时,可例如控制空-燃比至贫空-燃比侧从而不从发动机排放未燃烧的HC。
[0024] 以上面的方式,本发明的NOx净化催化剂必须包括载体颗粒,在所述载体颗粒上负载有包含呈紧邻状态的金原子和镍原子的纳米颗粒。为此,原子紧邻的部分可包含能够与所述两种原子合金化的其它金属原子,但仅可在能够保证其中所述两种原子紧邻的状态的范围内包含不能够与所述两种原子合金化的惰性物质。因此,本发明的NOx净化催化剂可通过例如使用形成载体的材料的纳米颗粒作为核以获得其中所述两种金属紧邻的纳米颗粒。作为能够与金原子和镍原子两种原子合金化的其它金属原子,可提及例如钨(W),其可通过合金化改善金的耐热性。另外,作为载体颗粒,可提及Al2O3、SiO2、CeO2、CeO2-ZrO2和其它金属氧化物颗粒。
[0025] 本发明中的NOx净化催化剂可通过使载体颗粒负载包含呈紧邻状态的金原子和镍原子的纳米颗粒来获得。包含呈紧邻状态的金原子和镍原子的纳米颗粒可例如通过在聚合物保护性材料的存在下用还原剂例如多元醇还原金盐和镍盐的混合物来获得。该还原反应优选在溶液、优选地溶液中在搅拌的同时进行。在还原反应结束后,通过任何分离措施例如离心分离、萃取等分离和移除聚合物保护性材料,并将所得的其中金原子和镍原子以紧邻状态存在的胶体与载体均匀地混合以使载体负载包含呈紧邻状态的金原子和镍原子的纳米颗粒。包含呈紧邻状态的金原子和镍原子的Au-Ni颗粒的尺寸可为0.2nm至100nm,例如1nm至20nm左右。
[0026] 作为金盐,可提及氯金酸(HAuCl4)、氯金酸钠、氯金酸、二亚硫酸金三钠、二亚硫酸钾三钠等。作为镍盐,可提及例如硫酸镍、硝酸镍、氯化镍、溴化镍、醋酸镍、氢氧化镍等。作为多元醇,可提及乙二醇、二甘醇、三甘醇、四甘醇、1,2-丙二醇、二丙二醇、1,2-丁二醇、
1,3-丁二醇、1,4-丁二醇、2,3-丁二醇、1,5-戊二醇、聚乙二醇等。为完成多元醇对金离子和镍离子的还原,在还原的最后阶段,可使用例如三(二甲基基)烷、三(二乙基氨基)硼烷、硼氢化钠、氢化硼或其它硼化合物作为还原剂。作为聚合物保护性材料,可提及聚N-乙烯基吡咯烷、聚丙烯酰胺、N-乙烯基吡咯烷酮和丙烯酸共聚物、聚甲基乙烯基酮、聚(4-乙烯基苯酚)、 唑啉聚合物、聚亚烷基亚胺及其它含有官能团的聚合物。
[0027] 本发明的NOx净化催化剂包括以金和镍作为主要成分的纳米颗粒。金和镍的组成为Au:Ni=7至91:93至9(原子%),优选20至80:80至20(原子%),特别优选40至60:60至40(原子%)。如果固体中金和镍的组成在此范围之外,则NOx净化催化剂的NOx净化性能趋于下降。本发明的NOx净化催化剂组合了金和镍并因此作为协同效应具有通过单一成分所不能够获得的优异NOx净化性能,特别地,即使与Rh或其它单一贵金属相比,也具有优异的NOx净化催化活性。另外,可以通过本发明中NOx净化催化剂的催化性能来确定催化剂成分即纳米颗粒的量或是载体的结构以净化排气中的NOx至足够的水平。
[0028] 在本发明中一个实施方案中,作为用于增加一氧化碳(CO)的装置,可以使用对发动机的富燃料控制或氧化催化剂和在氧化催化剂的上游侧位置处的燃料注入,其中所述氧化催化剂设置在排气通道的NOx净化催化剂的上游侧位置处,用于氧化排气中的HC。在来自发动机的排气含有HC的低温下,排气中的HC可用来通过氧化催化剂产生一氧化碳。氧化HC的氧化催化剂不受特别限制。例如,通常可提及用作HC氧化催化剂的已知催化剂,例如Pd/CeO2、Ag/Al2O3等。
[0029] 根据本发明的排气净化系统,可甚至对包含HC和NOx的排气组成获得NOx净化性能。
[0030] 实施例
[0031] 下面示出本发明的实施例。在下面的实施例中,通过下面示出的测量方法评价所得的催化剂。
[0032] 1.测量催化剂的合金组成
[0033] 测量方法:作为一个整体通过XRD(X-射线衍射)测量体相的组成
[0034] 测量设备:PHILIPS X’Pert MRD
[0035] 2.合金纳米颗粒的颗粒形状和粒度分布测量
[0036] 测量方法1:通过TEM(透射电子显微镜)测量
[0037] TEM测量设备:HITACHI HD-2000
[0038] 测量方法2:通过HRTEM(高分辨透射电子显微镜)测量
[0039] HRTEM测量设备:HITACHI HD2000
[0040] 3.合金纳米颗粒的元素分析测量
[0041] 测量方法:通过TEM-EDS(EDS:能量散射X-射线能谱)测量组成比TEM-EDS测量设备:HITACHI HD2000
[0042] 4.催化活性测量
[0043] 将催化剂粒料充填到玻璃反应管中并由玻璃固定在位。使预先混合的气体流进玻璃反应管中。使气体温度以20℃/分钟的升温速率从100℃升温至500℃。通过排气光谱仪(HORIBA MEXA7100H)或MS(质谱法)测量NO浓度。注意,当使不含有H2的气体流动时,在氢还原后于500℃下进行测量。
[0044] 参考例1
[0045] 1.AuNi纳米颗粒的合成
[0046] 在二颈烧瓶中,向120ml无水乙二醇中加入1.1g聚N-乙烯基吡咯烷酮(PVP)。向该混合物中加入0.1404g硫酸镍。于80℃下搅拌混合物3小时以获得溶液(溶液1)。
[0047] 分别地,在二颈烧瓶中,向50ml蒸馏水中加入0.1809g NaAuCl4。将该混合物强烈搅拌2小时以上以导致溶解并获得亮红色溶液(溶液2)。
[0048] 通过冷却浴将溶液1冷却至0℃,然后向烧瓶内的溶液1中倒入溶液2并均匀地搅拌二者。用1M NaOH溶液(约5ml)调节混合溶液以得到9至10的pH。搅拌的同时用油浴将混合溶液加热至100℃并保持2小时。其后,从油浴中提起烧瓶并让其静置,直至胶态悬浮体冷却至室温为止。为完全还原烧瓶中的所有离子,加入0.038g硼氢化钠,然后将悬浮体静置一段时间。
[0049] 通过用大量的丙酮处理包含预定量纳米颗粒的一定部分来精制所产生的纳米颗粒。由于这,PVP聚合物保护性材料被提取到丙酮相中,而金属纳米颗粒凝聚。转移(倾析)或离心上清液以获得胶体。移除丙酮相,然后轻轻搅拌经精制的胶体以分散在纯乙醇中。
[0050] 2.在载体上负载AuNi纳米颗粒
[0051] 在100ml Schlenk烧瓶中,添入1g载体(Al2O3)。对Schlenk烧瓶的内部抽真空,然后使N2流进烧瓶以清洁管道并完全移除空气。预先测定先前合成的胶体悬浮体(经精制的胶体和剩余的溶液二者)的浓度,并通过橡胶隔片向Schlenk烧瓶中倒入含有摩尔当量为0.5重量%Rh的量的金和镍金属的精制胶态悬浮体。混合物于室温下搅拌3小时,然后真空除去溶剂。其后,移除胶态沉淀物的残余聚合物保护性材料并通过真空加热于200至600℃下干燥所得物。压制所得的催化剂粉末以获得大约2mm尺寸的粒料。
[0052] 3.催化剂的评价
[0053] 通过TEM和TEM-EDS对所得的AuNi(50:50)/Al2O3催化剂测量合金颗粒的形状、粒度分布和元素分析。纳米颗粒的尺寸为3.75nm±0.70nm。另外,从对在覆铜格栅上的AuNi(50:50)胶体测得的TEM-EDS谱图示出,所有单个颗粒都包含金和镍。
[0054] 此外,在如下气流条件下测量所得的AuNi(50:50)/Al2O3催化剂的NO净化特性。
[0055] 气流条件
[0056] 气体组成:NO1000ppm,CO1000ppm,N2余量/10升
[0057] 流量:500毫升/分钟,粒料:150mg
[0058] 空间速度:3.3升/分钟·克
[0059] Ni、贱金属浓度:各为0.0486mmol/g催化剂
[0060] 结果与其他结果一起示于图1中。
[0061] 对比例1
[0062] 除了不使用溶液1之外,按与实施例1中相同的工序获得Au/Al2O3催化剂。以与实施例1中相同的方式测量所得的Au/Al2O3催化剂的NO净化特性。该结果与其他结果一起示于图1中。
[0063] 对比例2
[0064] Ni纳米颗粒的合成
[0065] 在二颈烧瓶中,向120ml无水乙二醇中加入1.1g聚N-乙烯基吡咯烷酮(PVP)。向该混合物中加入0.1404g硫酸镍,然后将混合物于80℃下搅拌3小时。将所得溶液冷却至0℃,然后调节pH到9至10。搅拌的同时将溶液保持2小时。其后,从油浴中提起烧瓶并将其静置,直至胶态悬浮体冷却至室温为止。通过用大量的丙酮处理包含预定量纳米颗粒的一定部分来精制所产生的纳米颗粒。由于这,保护性PVP被提取到丙酮相中,而金属纳米颗粒凝聚。倾析或离心上清液以获得胶体。移除丙酮相,然后轻轻搅拌经精制的胶体以分散在纯乙醇中。
[0066] 在载体上负载Ni纳米颗粒
[0067] 在100ml Schlenk烧瓶中,添入1g载体(Al2O3)。对Schlenk烧瓶的内部抽真空,然后用N2吹扫管道。预先测定先前合成的胶体悬浮体(经精制的胶体和剩余的溶液二者)的浓度。向Schlenk烧瓶中倒入含有摩尔当量为0.5重量%Rh的量的镍金属的精制胶态悬浮体。混合物于室温下搅拌3小时,然后真空除去溶剂。其后,移除胶态沉淀物的残余保护性材料并在真空或空气中于200至600℃下焙烧所得物。压制所得的催化剂粉末以获得大约2mm尺寸的Ni/Al2O3催化剂粒料。以与实施例1中相同的方式测量所得的Ni/Al2O3催化剂的NO净化特性。该结果与其他结果一起示于图1中。
[0068] 对比例3
[0069] 除了分别使用硫酸镍和NaAuCl4作为两种金属盐之外,按与对比例2中相同的工序通过金和镍混合金属离子溶液的蒸发使金属沉淀,从而获得其中金和镍不以紧邻状态存在的(Au+Ni)混合物/Al2O3催化剂粒料。以与实施例1中相同的方式测量所得催化剂的NO净化特性。该结果与其他结果一起示于图1中。
[0070] 参考例2
[0071] 除了将载体颗粒从Al2O3改为CeO2-ZrO2(CZ)之外,按与参考例1中相同的工序获得AuNi(50:50)/CZ催化剂。通过TEM和TEM-EDS对所得的AuNi(50:50)/SiO2催化剂测量合金颗粒的形状、粒度分布和元素分析。纳米颗粒的尺寸为3.10nm±1.42nm。另外,从对在覆铜格栅上的AuNi(50:50)胶体测得的TEM-EDS谱图示出,所有单个颗粒都包含金和镍。
[0072] 另外,在如下气流条件下测量所得的AuNi(50:50)/CZ催化剂的催化活性。
[0073] 空间速度(SV):100000(0.6g,1升/分钟)
[0074] 所有条件余量都为N2。
[0075] H2处理在催化活性测试前于500℃下进行。
[0076] 气流条件:
[0077] (1)NO:1500ppm,CO:1500ppm(化学计量的)
[0078] (2)NO:1500ppm,CO:6500ppm,O2:7000ppm,C3H6:1000ppm(化学计量的)[0079] (3)NO:1500ppm,C3H6:167ppm(化学计量的)
[0080] (4)NO:1500ppm,CO:1500ppm,C3H6:1000ppm(富燃料的)
[0081] (5)NO:1500ppm,CO:1.55%,O2:7000ppm,C3H6:1000ppm(富燃料的)[0082] 所得结果与其他结果一起示于图2中。
[0083] 实施例1
[0084] 在用于测量催化活性的上述装置中,使用参考例2中获得的AuNi(50:50)/CZ催化剂作为NOx净化催化剂来制造排气净化设备。如果向该排气净化设备进给以化学计量控制下的气体组成(2)的气体,则预计将排放NO。为此,加入C3H6以改变为富燃料控制,并通过NOx净化催化剂来净化气体组成(6)的气体以获得与图2的曲线6中所示曲线相同的NO净化特性。接下来,当预计将不排放NO时,向NOx净化催化剂进给气体组成(1)的气体进行净化以获得与图2的曲线1所示的曲线相同的NO净化特性。
[0085] 概括工业适用性,从资源枯竭的角度出发,根据本发明的排气净化系统采用使用镍的NOx净化催化剂,而镍可与金和铜大约相同的程度得到。使用其,将无需像过去那样将催化剂的温度升至高温来提升NOx净化活性,并且可在宽的排气组成范围上获得高的NOx净化性能。
[0086] 虽然参照为说明目的而选择的具体实施方案描述了本发明,但应该很明显,本领域技术人员可对其作诸多修改而不偏离本发明的基本思想和范围。
QQ群二维码
意见反馈