序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种混凝土 CN201710737329.X 2017-08-24 CN107352924A 2017-11-17 李金东
发明公开了一种混凝土,包括以下重量份数的成分,泥100份,矿粉35-48份,灰30-50份,碎石250-600份,纤维0.5-1.2份,保护剂1-2份,火山灰20-35份,砂300-450份,煤渣25-50份,沸石粉25-50份,高效减水剂2-4份,增效剂1-2份,地表水80-110份。本发明的一种混凝土,该混凝土能够有效的预防和减缓混凝土内部的集料反应的发生,提高了混凝土的强度、抗拉强度和密实度,提高了混凝土工程的质量和使用寿命。
2 一种建筑用防乳胶的制备方法 CN201610749364.9 2016-08-26 CN106396434A 2017-02-15 何发丽
发明公开了一种建筑用防乳胶的制备方法,包括以下步骤:称取水泥,混合材料5-20%,石膏进行混合制成普通酸盐水泥,将普通硅酸盐水泥孔径为80um的方孔筛进行筛取,筛余量不得超过10%,且初凝时间为30-45min,终凝时间为10-20h,选取丙烯酸聚合物与配制的普通硅酸盐水泥按照1:0.5-1的比例进行混合,再加入2-3倍的水混合均匀,将制成的防水乳胶密封保存在阴凉通处,保存温度在5-25度。本发明通过在防水乳胶中添加活性混合材料或者非活性混合材料,如火山灰灰等成分,经过混合之后可以使乳胶的粘结性更好,且丙烯酸酯聚合物及其衍生物上含有疏水基团。
3 波特兰石灰石经煅烧的粘土 CN201080031443.7 2010-04-09 CN102459113A 2012-05-16 D·赫福特; J·S·达姆托夫特
发明涉及包含波特兰泥熟料和辅助胶凝材料的新型水泥。所述辅助胶凝材料包含经过热处理的粘土材料和任选经过热处理酸盐材料,其中所述粘土材料已经任选地与碳酸盐材料一起被热处理以使得经过热处理的粘土材料基本被脱羟基,而所述任选经过热处理的碳酸盐材料保持基本被碳酸化。这可以通过在热处理至400-700℃之前预混合碳酸盐和粘土材料、或将粘土材料单独热处理至最高900℃的温度来实现。当用于最终用途时,该水泥导致比由这些材料的任何其它组合所预期的高得多的强度。
4 酸盐和白石制成的熟料替代材料 CN201580063575.0 2015-11-17 CN107074650A 2017-08-18 F.布勒雅恩; M.扎雅克; D.尼德
发明涉及一种制造熟料替代材料的方法,其包含步骤:‑ 提供含有白石和酸盐的原材料,‑ 通过在> 800至1100℃的温度范围内燃烧或通过在矿化剂存在下在725至950℃的温度范围内燃烧将所述原材料转化成熟料替代材料,‑ 和冷却所述熟料替代材料。本发明还涉及包含泥和磨碎的熟料替代材料的粘合剂
5 波特兰石灰石经煅烧的粘土 CN201080031443.7 2010-04-09 CN102459113B 2016-01-20 D·赫福特; J·S·达姆托夫特
发明涉及包含波特兰泥熟料和辅助胶凝材料的新型水泥。所述辅助胶凝材料包含经过热处理的粘土材料和任选经过热处理酸盐材料,其中所述粘土材料已经任选地与碳酸盐材料一起被热处理以使得经过热处理的粘土材料基本被脱羟基,而所述任选经过热处理的碳酸盐材料保持基本被碳酸化。这可以通过在热处理至400-700℃之前预混合碳酸盐和粘土材料、或将粘土材料单独热处理至最高900℃的温度来实现。当用于最终用途时,该水泥导致比由这些材料的任何其它组合所预期的高得多的强度。
6 外墙保温抗裂砂浆 CN200710093153.5 2007-12-17 CN101195529A 2008-06-11 彭家惠; 陈明凤; 张建新; 瞿金东; 白冷; 李青; 李美
一种外墙保温抗裂砂浆。该外墙保温用特细砂抗裂砂浆主要包括泥25~48%、高分子粘结剂0.2~2.4%、高分子保水剂0.025~0.2%、纤维0.05~0.3%、膨胀剂1~5.8%和特细砂44~73%。通过控制特细砂含泥量和水泥用量以降低砂浆收缩、采用纤维和高分子粘结剂增加砂浆韧性、采用膨胀剂补偿收缩等综合措施提高特细砂抗裂砂浆抗裂性。该抗裂砂浆和易性与施工性好,压折比低,粘结强度高,收缩率低,抗裂性优异。主要作建筑物外墙保温用抗裂砂浆。
7 制造辅助胶凝材料(SCMs)的方法 CN201380013744.0 2013-03-11 CN104271528A 2015-01-07 V·龙尼
用于替代在砂浆混凝土的生产中的波特兰泥的辅助胶凝羽料的制造方法,其中胶凝材料包括岩石和灰烬形式的天然火山灰。本发明的特征在于,通过在研磨设备中的研磨,对粉碎状态的所述火山灰进行高能机械加工,由此火山灰颗粒接受机械脉冲,且特征在于进行预定时间的研磨,得到包含80%波特兰水泥和20%天然火山灰、与标准砂的比例为1∶2.75、还包含按照美国标准ASTM C109获得砂浆流而所需水的边长2英寸的砂浆立方体,该立方体在振动下合适地压实并在+20℃下在密封条件下硬化,在28天后的压缩强度≥包含波特兰水泥∶砂比例为1∶2.75且还包含对应于波特兰水泥重量48.5%的水、且如所述立方体那样处理的边长2英寸立方体的压缩强度的75%。
8 珍珠岩泥混合材料 CN200910186607.2 2009-12-02 CN101704639A 2010-05-12 喻乐华
一种珍珠岩泥混合材料,该珍珠岩水泥混合材料通过采用珍珠岩破碎后与水泥熟料及少量石膏共混研磨后获得,其生产工艺流程为:珍珠岩原料检测合格→珍珠岩破碎至粒径≤5mm→珍珠岩与熟料及少量石膏一起共混研磨→掺珍珠岩的混合材料酸盐水泥成品。所述珍珠岩与水泥熟料及少量石膏一起共混研磨至细度为450m2/kg时,珍珠岩掺量≤20%组成混合材料硅酸盐水泥强度等级可达42.5级,珍珠岩掺量≤40%组成混合材料硅酸盐水泥强度等级可达32.5级以上。本发明适用于混合材料硅酸盐水泥制备,用珍珠岩水泥混合材料改善水泥性能、节约混凝土成本。
9 補助セメント質材料(SCMs)の製造方法 JP2014561404 2013-03-11 JP2015514662A 2015-05-21 ロニン、ウラジミール
コンクリート及びモルタルの製造におけるポルトランドセメントの交換用補助セメント質材料の製造方法であって、当該セメント質材料が、灰及び岩の形状の天然のポゾランを含む。本発明は、以下を特徴とする:粉砕状態の前記ポゾランを、粉砕装置中で粉砕により高エネルギー機械的処理にかけ、それによって、当該ポゾラン粒子は機械的衝撃を受け、粉砕を、所定の時間実施し、標準砂及び更に要求されるに対して1:2.75の比率で80%のポルトランドセメント及び20%の天然のポゾランを含むモルタルの2インチサイドキューブの圧縮強度となり、ポルトランドセメントの重量の48.5%に対応する更なる水及び1:2.75のポルトランドセメント:砂の比率を含むモルタルの、前記キューブとして処理された、28日後には2インチサイドキューブの圧縮強度の≧75%である、封印状態で+20℃で硬化され及び振動下に適切に圧縮された、米国規格ASTM C109に従ったモルタルの流れを得る。
10 補助セメント質材料(SCMs)の製造方法 JP2014561404 2013-03-11 JP6175081B2 2017-08-02 ロニン、ウラジミール
11 Cement composition JP52404798 1997-11-21 JP2000504301A 2000-04-11 エドリンゲル,アルフレッド; ゲボーエル,ユライ; ボルテール,ホルスト
(57)【要約】 本発明は、a)10〜35重量%のセメント、とりわけポルトランドセメント、b)1を上回るSiO 2 /CaOの比を有し、1.5重量%を超える量のアルカリ酸化物(Na 2 OとK 2 O)を含む燃えがら(例えば、廃焼却スラグ)の少なくとも部分的な還元によって得られた合成ポゾランの65〜90重量%、 c)合成ポゾランの正の表面電位を低下させる活性剤、例えば、アニオン系活性剤又はアニオン系界面活性剤、とりわけスルホネート、を含んでなるセメント組成物に関する。
12 Portland limestone calcined clay cement US13319858 2010-04-09 US09212092B2 2015-12-15 Duncan Herfort; Jesper Sand Damtoft
The claimed subject matter relates to a novel cement comprising Portland cement clinker and a supplementary cementitious material. The supplementary cementitious material comprises a heat treated clay material and an optionally heat treated carbonate material, wherein the clay material has been heat treated optionally together with the carbonate material in such a way that the heat treated clay material is substantially dehydroxylated while the optionally heat treated carbonate material remains substantially carbonated. This can be achieved by premixing the carbonate and clay materials before heat treating to 400-700 C, or heat treating the clay material separately to a temperature of up to 900 C. When used in the final application the cement results in much higher strengths than would be predict from any other combination of these materials.
13 METHOD FOR MANUFACTURING OF SUPPLEMENTARY CEMENTITIOUS MATERIALS (SCMS) US13418729 2012-03-13 US20130233208A1 2013-09-12 Vladimir RONIN
The method includes subjecting the pozzolans in crushed state to a high energetic mechanical processing by grinding in a grinding equipment, whereby the pozzolan particles receive mechanical impulses, and the grinding is carried out for a predetermined time resulting in a compressive strength of a 2 inch side cube of mortar having 80% Portland cement and 20% natural pozzolan in a ratio of 1:2.75 to standard sand and in addition water required to obtain a flow of the mortar according to American standard ASTM C 109, which has been properly compacted under vibration and hardened at +20° C. in sealed condition, which after 28 days is ≧75% of the compressive strength of a 2 inch side cube, treated as the cube, of a mortar having a ratio of Portland cement:sand of 1:2.75 and water corresponding to 48.5% of the weight of Portland cement.
14 PORTLAND LIMESTONE CALCINED CLAY CEMENT US13319858 2010-04-09 US20120055376A1 2012-03-08 Duncan Herfort; Jesper Sand Damtoft
The claimed subject matter relates to a novel cement comprising Portland cement clinker and a supplementary cementitious material. The supplementary cementitious material comprises a heat treated clay material and an optionally heat treated carbonate material, wherein the clay material has been heat treated optionally together with the carbonate material in such a way that the heat treated clay material is substantially dehydroxylated while the optionally heat treated carbonate material remains substantially carbonated. This can be achieved by premixing the carbonate and clay materials before heat treating to 400-700 C, or heat treating the clay material separately to a temperature of up to 900 C. When used in the final application the cement results in much higher strengths than would be predict from any other combination of these materials.
15 Low alkali, non-crystaline, vitreous silica fillers US11477137 2006-06-28 US20070042890A1 2007-02-22 Raymond Hemmings; Robert Nelson; Philip Graves; Bruce Cornelius
A substantially white powder for use as a filler and/or extender derived from by-products of manufacturing vitreous low alkali, low iron glass fibers, and a method for producing the powder. The filler has very low alkalinity and by virtue of its being essentially free of crystalline silica is non-hazardous to health and therefore safe for consumer-based and industrial-based uses.
16 Interground white blended cement US790958 1997-01-29 US6033468A 2000-03-07 Timothy S. Folks; Patrick M. Hill; Frank T. Sheets, III; Richard F. Ball; Joseph R. Sisneros; Jesus Uribe; Curtis W. Forrester
A composition comprises anhydrous alumino-silicate, diatomaceous earth, and/or other natural pozzolans, white clinker, and white gypsum interground together and in a ratio by weight of 5-20% anhydrous alumino-silicate, diatomaceous earth, and/or other natural pozzolans, 3-7% gypsum, and 73-92% white clinker.
17 Process for producing a binder for slurry, mortar, and concrete US154879 1980-05-30 US4306912A 1981-12-22 Bengt Forss
A process for producing a binder (cement) to be used in slurry, mortar, or concrete having a low water-to-cement ratio. As raw-material for the binder is used at least 50% by weight of a hydraulic material, such as slag, technical pozzolanas and/or natural pozzolanas. The hydraulic material is ground to a specific surface of at least 400 m.sup.2 /kg. To the raw-material is added 0.1 to 5% by weight of a plasticizing material, such as a sulphonated polyelectrolyte. To the raw-material are also added in total 0.5 to 8% by weight of sodium carbonate and/or sodium hydroxide. Added in small amounts, the sodium carbonate and the sodium hydroxide, separately or in combination, considerably shorten the hardening time of the concrete, yield excellent strengths, and make it possible to use cheap raw-materials.
18 Manufacture of cementitious materials US64408532 1932-11-23 US2125281A 1938-08-02 BLANK JOHN A; BLANK ALTON J
19 RAPID-SETTING HYDRAULIC BINDER COMPOSITION US15460728 2017-03-16 US20170181931A1 2017-06-29 Sung Wook JANG; Kye Hong CHO; Jin Sang CHO; Moon Kwan CHOI; Ki Yeon MOON
The present invention relates to a rapid-setting hydraulic binder composition and, more specifically, to a hydraulic binder composition, which contains tricalcium aluminate (C3A) and dodecacalcium heptaaluminate (C12A7), and thus is rapidly set, has an easily adjustable setting time, and is bio-friendly.
20 Clinker substitute based on calcined clay US14005280 2012-02-24 US08906155B2 2014-12-09 Edgar Gasafi; Michael Missalla
A method for producing a clinker substitute for use in cement production includes predrying clay with an iron content >1.5 wt-% in a form of iron oxides and a kaolinite content <40 wt-% to a moisture <10 wt-%. The clay is comminuted to a grain size <2 mm. The clay is calcined by thermal treatment in a furnace at a temperature of 600 to 1000° C. The clay is thermally treated under reducing conditions at a temperature of 600 to 1000° C. so as to form a reduction product. The reduction product is intermediately cooled to a temperature <300° C. and finally cooled.
QQ群二维码
意见反馈