序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 基于泥的叠层铠装面板 CN200980107142.5 2009-02-27 CN101970975B 2014-06-04 T·D·托尼安; W·A·弗兰克; A·迪比; C·陈; B·P·德斯特; P·G·金尼布; T·K·康明斯; N·布恩; W·F·赫德; M·J·罗斯; J·L·戴维斯
一种具有防冲击和防爆破特性的泥面板,该面板具有超高抗压强度复合材料的一个内芯层以及至少一个表皮层。这些面板还可以用在要求用于防震的高抗压强度的墙壁天花板以及地板面板中,以及耐表面磨损(例如在监狱以及其他场所中)的表面中。这种面板内芯层具有一个连续的水泥相,该水泥相产生于一种水性混合物的固化,该水性混合物不存在粉、具有无机水泥粘合剂、具有约150-450微米的颗粒大小的无机矿物填充剂、一种火山灰矿物填充剂、基于聚羧酸酯的超增塑剂、烷醇胺以及酸或金属的酸式盐,以及水。该混合物可以使用在固化前所加入的纤维均匀地增强。然后将该水泥内芯层使用附接到至少一个面板表面上的表皮例如纤维增强的聚合物来增强。
2 基于泥的铠装面板系统 CN200980107409.0 2009-02-27 CN101970976A 2011-02-09 T·D·托尼安; W·A·弗兰克; A·迪比; K·那特萨叶; B·P·德斯特; P·G·金尼布; T·K·康明斯; N·布恩; W·F·赫德; M·J·罗斯; T·斯劳森; J·L·戴维斯; R·斯廷森
一种泥铠装面板组件,包括附接到一个框架结构上的具有防冲击和防爆破特性的水泥铠装面板,以产生一种保护结构。这些水泥铠装面板具有一个连续相,该连续相产生于一种水性混合物的固化,该水性混合物是一种无机水泥粘合剂、一种具有约150-450微米的颗粒大小的无机矿物填充剂、一种火山灰矿物填充剂、一种基于聚羧酸酯的超增塑剂流平剂以及水。该混合物还可以包括烷醇胺、以及酸或酸式盐。在固化之前,将该连续相在其固化以形成面板之前用均匀分布在该连续相中的纤维进行增强。该面板可以用附接到该面板的至少一个表面上的一个皮层来增强。
3 一种矿用膨胀防碎黄泥炮泥制作方法 CN201610153435.9 2016-03-11 CN106167370A 2016-11-30 任旭明
发明涉及一种矿用防碎炮泥制作方法,具体说是一种煤矿用防碎炮泥的制作方法;具体是将纤维切割成长度不大于30mm的纤维或者将石棉编制成孔径不大于1mm,厚度不超过1mm的石棉网与黄泥进行不同形式的混合最后干燥形成;使用时最大限度的降低了上述黄泥炮泥的破碎率,提高了完整度和整体利用率,同时利用可膨胀性石墨薄片在炸药爆破后,高温作用下迅速膨胀的特点来高黄泥炮泥的膨胀率,最大限度的防止炮眼内炸药爆炸时形成的高压气体从眼口喷泄出,提高眼口抵抗,增强爆破效果。
4 基于泥的铠装面板系统 CN200980107409.0 2009-02-27 CN101970976B 2013-08-28 T·D·托尼安; W·A·弗兰克; A·迪比; K·那特萨叶; B·P·德斯特; P·G·金尼布; T·K·康明斯; N·布恩; W·F·赫德; M·J·罗斯; T·斯劳森; J·L·戴维斯; R·斯廷森
一种泥铠装面板组件,包括附接到一个框架结构上的具有防冲击和防爆破特性的水泥铠装面板,以产生一种保护结构。这些水泥铠装面板具有一个连续相,该连续相产生于一种水性混合物的固化,该水性混合物是一种无机水泥粘合剂、一种具有约150-450微米的颗粒大小的无机矿物填充剂、一种火山灰矿物填充剂、一种基于聚羧酸酯的超增塑剂流平剂以及水。该混合物还可以包括烷醇胺、以及酸或酸式盐。在固化之前,将该连续相在其固化以形成面板之前用均匀分布在该连续相中的纤维进行增强。该面板可以用附接到该面板的至少一个表面上的一个皮层来增强。
5 制造基于泥的铠装面板的方法 CN200980107289.4 2009-02-27 CN101959675B 2014-06-25 W·A·弗兰克; A·杜贝
用于制造一种纤维增强的泥产品例如面板的方法,该产品硬化成一种超高抗压强度的复合材料,用来制造具有防冲击以及爆炸特性的面板。该面板具有一个连续相,该连续相是从一种水性混合物的固化产生的一个连续相,该水性混合物是:不存在粉、具有无机水泥粘合剂、具有约150-450微米的粒径的无机矿物填充剂、火山灰矿物填充剂、和基于聚羧酸酯的超增塑剂自流平试剂以及水。该混合物还可以包括烷醇胺、以及酸或酸式盐。该连续相可以在固化以形成面板之前使用分布在该连续相中的纤维增强。该面板可以使用例如通过一种粘合剂(例如环树脂)的叠层而附接到该内芯的至少一个表面上的一个纤维增强的表皮进行增强,以形成一种防冲击以及爆炸的水泥铠装面板。
6 硬化时具有受控的强度发展速度以及超高的抗压强度的自流平泥组合物以及由其制造的物品 CN200980107410.3 2009-02-27 CN101970372B 2013-07-17 A·迪比; C·陈; K·那特萨叶; B·P·德斯特; P·G·金尼布; T·K·康明斯; N·布恩; W·F·赫德; M·J·罗斯; T·斯劳森
一种具有优异的流动特性的自流平泥混合物,并且它以受控的强度发展速度硬化成一种超高抗压强度的复合组合物用于制造多种物品,例如具有防冲击和防爆破特性的水泥铠装面板,该混合物包括:从一种水性混合物的固化产生的一个连续相,该水性混合物不存在粉,该连续相具有:无机水泥粘合剂、具有约150-450微米的粒径的无机矿物填充剂、火山灰矿物填充剂、基于聚羧酸酯的自流平试剂以及水。这种水泥混合物可以包括烷醇胺,例如三乙醇胺,以及酸或酸式盐,例如酒石酸。这种水泥组合物可以使用增强纤维例如玻璃纤维来增强,其量值为按总的水泥组合物的体积计约0.5%-6.0%。这些纤维在水泥组合物固化而形成最终的水泥铠装面板之前被均匀地分散在该水泥组合物中。
7 基于泥的叠层铠装面板 CN200980107142.5 2009-02-27 CN101970975A 2011-02-09 T·D·托尼安; W·A·弗兰克; A·迪比; C·陈; B·P·德斯特; P·G·金尼布; T·K·康明斯; N·布恩; W·F·赫德; M·J·罗斯; J·L·戴维斯
一种具有防冲击和防爆破特性的泥面板,该面板具有超高抗压强度复合材料的一个内芯层以及至少一个表皮层。这些面板还可以用在要求用于防震的高抗压强度的墙壁天花板以及地板面板中,以及耐表面磨损(例如在监狱以及其他场所中)的表面中。这种面板内芯层具有一个连续的水泥相,该水泥相产生于一种水性混合物的固化,该水性混合物不存在粉、具有无机水泥粘合剂、具有约150-450微米的颗粒大小的无机矿物填充剂、一种火山灰矿物填充剂、基于聚羧酸酯的超增塑剂、烷醇胺以及酸或金属的酸式盐,以及水。该混合物可以使用在固化前所加入的纤维均匀地增强。然后将该水泥内芯层使用附接到至少一个面板表面上的表皮例如纤维增强的聚合物来增强。
8 硬化时具有受控的强度发展速度以及超高的抗压强度的自流平泥组合物以及由其制造的物品 CN200980107410.3 2009-02-27 CN101970372A 2011-02-09 A·迪比; C·陈; K·那特萨叶; B·P·德斯特; P·G·金尼布; T·K·康明斯; N·布恩; W·F·赫德; M·J·罗斯; T·斯劳森
一种具有优异的流动特性的自流平泥混合物,并且它以受控的强度发展速度硬化成一种超高抗压强度的复合组合物用于制造多种物品,例如具有防冲击和防爆破特性的水泥铠装面板,该混合物包括:从一种水性混合物的固化产生的一个连续相,该水性混合物不存在粉,该连续相具有:无机水泥粘合剂、具有约150-450微米的粒径的无机矿物填充剂、火山灰矿物填充剂、基于聚羧酸酯的自流平试剂以及水。这种水泥混合物可以包括烷醇胺,例如三乙醇胺,以及酸或酸式盐,例如酒石酸。这种水泥组合物可以使用增强纤维例如玻璃纤维来增强,其量值为按总的水泥组合物的体积计约0.5%-6.0%。这些纤维在水泥组合物固化而形成最终的水泥铠装面板之前被均匀地分散在该水泥组合物中。
9 制造基于泥的铠装面板的方法 CN200980107289.4 2009-02-27 CN101959675A 2011-01-26 W·A·弗兰克; A·杜贝
用于制造一种纤维增强的泥产品例如面板的方法,该产品硬化成一种超高抗压强度的复合材料,用来制造具有防冲击以及爆炸特性的面板。该面板具有一个连续相,该连续相是从一种水性混合物的固化产生的一个连续相,该水性混合物是:不存在粉、具有无机水泥粘合剂、具有约150-450微米的粒径的无机矿物填充剂、火山灰矿物填充剂、和基于聚羧酸酯的超增塑剂自流平试剂以及水。该混合物还可以包括烷醇胺、以及酸或酸式盐。该连续相可以在固化以形成面板之前使用分布在该连续相中的纤维增强。该面板可以使用例如通过一种粘合剂(例如环树脂)的叠层而附接到该内芯的至少一个表面上的一个纤维增强的表皮进行增强,以形成一种防冲击以及爆炸的水泥铠装面板。
10 ANTI-EXPLOSION TERRACE MATERIAL AND MANUFACTURING METHOD THEREFOR US15527326 2015-08-10 US20170335574A1 2017-11-23 Hongsheng CAO; Xinmin WANG
An anti-explosion flooring material is disclosed. The material is prepared by foaming, modification and rust prevention treatment of an iron alloy material and other auxiliary materials having components in percentage by weight: 85% of iron, 8% of manganese, 6% of silicon, and the rest amount of carbon. Because a foaming agent and rare earth are added, the static conducting performance of the flooring material is improved.
11 Spall-Resistant Cementitious Material US13832198 2013-03-15 US20140080942A1 2014-03-20 Joshua V. Brien
Disclosed is an essentially shaped cementitious product wherein the direct tensile strength of the product as determined by ASTM C307 is at least 120% of a predicted direct tensile strength of the product per an equation selected from the group consisting of f′dt=0.06*f′c, f′dt=0.07*f′c, f′dt=0.08*f′c and f′dt=0.11*f′c, and wherein the flexural strength of the product as determined by ASTM C348 is at least 150% of a predicted flexural strength of the product per an equation selected from the group consisting of f′r=0.1*f′c, f′r=0.17*f′c, f′r=9.5*((f′c)̂0.5) and f′r=7.5*((f′c)̂0.5).
12 Cementitious compositions US12843260 2010-07-26 US08627769B2 2014-01-14 Peter Shelley Mills; Rory John Michael Harris
The invention provides a method of preparing a blast hole which method comprises the steps of: drilling a blast hole; placing explosives in the blast hole; filling the blast hole with a stemming material comprising a cement composition and water wherein the weight ratio of water to solids content of the stemming material is at least about 1:1.
13 INERT FILLER FOR EXPLOSIVE DEVICE AND METHOD FOR MAKING AND LOADING SAME US11930994 2007-10-31 US20120180701A1 2012-07-19 Tim R. Benson
An inert filler for a munition is disclosed. The inert filler includes a mixture of gypsum, fatty acid and inorganic sodium. A coloring agent may also be included in the mixture. A method of forming the inert filler and a method of loading the inert filler in a munition are also disclosed.
14 SELF-LEVELING CEMENTITIOUS COMPOSITION WITH CONTROLLED RATE OF STRENGTH DEVELOPMENT AND ULTRA-HIGH COMPRESSIVE STRENGTH UPON HARDENING AND ARTICLES MADE FROM SAME US12394448 2009-02-27 US20090239977A1 2009-09-24 Ashish Dubey; Cesar Chan; Kumar Natesaiyer; Bartley P. Durst; Pamela G. Kinnebrew; Toney K. Cummins; Nicholas Boone; William F. Heard; Michael J. Roth; Thomas Slawson
A self-leveling cementitious mixture with excellent flow properties and which hardens with a controlled rate of strength development to an ultra-high compressive strength composite composition for use in making articles such as cementitious armor panel with ballistic and blast resistant properties including: a continuous phase resulting from the curing of an aqueous mixture, in the absence of silica flour, of inorganic cement binder, inorganic mineral filler having a particle size of about 150-450 microns, pozzolanic mineral filler, polycarboxylate based self-leveling agent and water. The cementitious mixture may include alkanolamine, such as triethanolamine, and acid or acid salt, such as tartaric acid. The cementitious composition may be reinforced with reinforcing fibers, e.g. glass fibers, in an amount of about 0.5-6.0% by volume of the overall cementitious composition. The fibers are uniformly dispersed in the cementitious composition before it is cured to form a final cementitious armor panel.
15 強度増加が制御された改良型セメント質組成物 JP2014164093 2014-08-12 JP5879406B2 2016-03-08 アシッシュ・デュービー; シーザー・チェン; クマ−・ナティサヤー; バートリー・ピー・ダースト; パメラ・ジー・カインブリュー; トニー・ケイ・カミンズ; ニコラス・ブーン; ウィリアム・エフ・ハード; マイケル・ジェイ・ロス; トーマス・スローソン
16 Cementitious armor panel system JP2010549764 2009-02-27 JP2011513187A 2011-04-28 アシッシュ・デュービー; ウィリアム・エー・フランク; ウィリアム・エフ・ハード; キャロル・エフ・ジョンソン; クマ―・ナティサヤー; ジェイムズ・エル・デイビス; ティモシー・ディー・トンヤン; トーマス・スローソン; トニー・ケイ・カミンズ; ニコラス・ブーン; バートリー・ピー・ダースト; パメラ・ジー・カインブリュー; マイケル・ジェイ・ロス; ライアン・スティンソン
A cementitious armor panel assembly including cementitious armor panel with ballistic and blast resistant properties attached to a frame structure to produce a protective structure. The cementitious armor panels have a continuous phase resulting from the curing of an aqueous mixture of an inorganic cement binder, an inorganic mineral filler having a particle size of about 150-450 microns, a pozzolanic mineral filler, a polycarboxylate based superplasticizer self-leveling agent, and water. The mixture may also contain alkanolamine, and acid or acid salt. Prior to curing, the continuous phase is reinforced with fiber uniformly distributed in the continuous phase before it is cured to form the panel. The panel may be reinforced with a skin attached to at least one surface of the panel.
17 ARMOUR PLATE US16316821 2017-07-07 US20190234712A1 2019-08-01 Malte MOELLER; Gilles ROSSIQUET
Antiballistic armour plate includes a ceramic body including a hard material, provided, on its inner face, with a back energy-dissipating coating. The ceramic body is monolithic. The constituent material of the ceramic body includes grains of ceramic material having a Vickers hardness that is higher than 15 GPa, and a matrix binding the grains, the matrix including a silicon nitride phase and/or a silicon oxynitride phase, the matrix representing between 5 and 40% by weight of the constituent material of the ceramic body. The maximum equivalent diameter of the grains of ceramic material is smaller than or equal to 800 micrometres. The constituent material of the ceramic body has an open porosity that is higher than 5% and lower than 14%. The metallic silicon content in the material, expressed per mm of thickness of the body, is lower than 0.5% by weight.
18 Process of manufacturing cement based armor panels US12394506 2009-02-27 US08137490B2 2012-03-20 William A. Frank; Ashish Dubey
A process for making a fiber reinforced cementitious product such as a panel which hardens to an ultra-high compressive strength composite for use in making panels with ballistic and blast resistant properties. The panel has a continuous phase resulting from curing an aqueous mixture, in the absence of silica flour, of inorganic cement binder, inorganic mineral filler having a particle size of about 150-450 microns, pozzolanic mineral filler, and polycarboxylate based superplasticizer self-leveling agent, and water. The mixture may also include alkanolamine and acid or acid salt. The continuous phase may be reinforced with fiber distributed in the continuous phase before curing to form a panel. The panel may be reinforced with a fiber reinforced skin attached to at least one surface of the core, e.g., by lamination with an adhesive, e.g., epoxy, to form a ballistic and blast resistant cementitious armor panel.
19 CEMENTITIOUS COMPOSITIONS US12843260 2010-07-26 US20110259228A1 2011-10-27 Peter Shelley MILLS; Rory John Michael HARRIS
The invention provides a method of preparing a blast hole which method comprises the steps of: drilling a blast hole; placing explosives in the blast hole; filling the blast hole with a stemming material comprising a cement composition and water wherein the weight ratio of water to solids content of the stemming material is at least about 1:1.
20 Self-leveling cementitious composition with controlled rate of strength development and ultra-high compressive strength upon hardening and articles made from same US12394448 2009-02-27 US08030377B2 2011-10-04 Ashish Dubey; Cesar Chan; Kumar Natesaiyer; Bartley P. Durst; Pamela G. Kinnebrew; Toney K. Cummins; Nicholas Boone; William F. Heard; Michael J. Roth; Thomas Slawson
A self-leveling cementitious mixture with excellent flow properties and which hardens with a controlled rate of strength development to an ultra-high compressive strength composite composition for use in making articles such as cementitious armor panel with ballistic and blast resistant properties including: a continuous phase resulting from the curing of an aqueous mixture, in the absence of silica flour, of inorganic cement binder, inorganic mineral filler having a particle size of about 150-450 microns, pozzolanic mineral filler, polycarboxylate based self-leveling agent and water. The cementitious mixture may include alkanolamine, such as triethanolamine, and acid or acid salt, such as tartaric acid. The cementitious composition may be reinforced with reinforcing fibers, e.g. glass fibers, in an amount of about 0.5-6.0% by volume of the overall cementitious composition. The fibers are uniformly dispersed in the cementitious composition before it is cured to form a final cementitious armor panel.
QQ群二维码
意见反馈