序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 刚性多孔结构材料、其制法、用法及含该结构材料的产品 CN97196476.9 1997-05-15 CN1211199C 2005-07-20 D·莫伊; C·M·牛; H·藤南特
发明涉及刚性多孔结构材料及其制备方法。该刚性多孔结构材料具有高表面积,它基本上不含微孔。用于改进该碳结构材料刚性的方法包括使纳米级纤维在纤维交叉处形成连接或与其它纳米级纤维形成胶合。通过加入“胶粘”剂和/或通过热解该纳米级纤维,从而在相互连接点处形成熔合或连接,由此而通过将纳米级纤维的表面化学改性以促进连接以而引起该连接。
2 材料加工方法 CN01820421.X 2001-12-11 CN1479671A 2004-03-03 彼得·里兹代尔·霍恩斯比; 西沃恩·奥利芙·马修斯
发明使用超临界和近超临界流体技术来加工不诱导发泡的聚合物和含聚合物的配方,其益处是可降低熔融粘度和/或降低熔融温度。其应用特别有益于难加工的材料,包括未增塑的PVC,聚酸酯,PTFE,UHMWPE和含有高装载量无机或有机源填料的聚合物。使用该方法还可以加工剪切和热敏感性材料,而降解的危险性较小,因为需要较低的剪切输入和降低的加工温度。还公开了采用这种方法生产发泡陶瓷材料和金属元件。
3 材料加工方法 CN01820421.X 2001-12-11 CN1292890C 2007-01-03 彼得·里兹代尔·霍恩斯比; 西沃恩·奥利芙·马修斯
发明使用超临界和近超临界流体技术来加工不诱导发泡的聚合物和含聚合物的配方,其益处是可降低熔融粘度和/或降低熔融温度。其应用特别有益于难加工的材料,包括未增塑的PVC,聚酸酯,PTFE,UHMWPE和含有高装载量无机或有机源填料的聚合物。使用该方法还可以加工剪切和热敏感性材料,而降解的危险性较小,因为需要较低的剪切输入和降低的加工温度。还公开了采用这种方法生产发泡陶瓷材料和金属元件。
4 气凝胶及金属组合物 CN02826258.1 2002-12-20 CN1617765A 2005-05-18 肯·Dr·厄克; 海洛克·S·哈拉
公开了含有气凝胶,如RF或气凝胶的金属气凝胶组合物,金属颗粒分散于其表面。该气凝胶组合物均一地分布有小的金属颗粒,如平均颗粒直径1纳米。还公开了制备此气凝胶组合物的方法,包括让气凝胶接触金属化合物的超临界流体。气凝胶组合物非常有用,例如可用于制造燃料电池电极
5 一种改进固化泥产品的方法 CN96194546.X 1996-06-03 CN1046690C 1999-11-24 R·H·琼斯
固化泥基质与高压密相或超临界CO2接触,超临界CO2通过基质通道进入基质,中和水泥固有的度,使不耐碱材料可加入水泥。CO2将水泥中氢转变成酸钙和水,而密相或超临界CO2的高压形成圆形紧密堆积排列的晶粒,其间很少或没有可见的孔和毛细管,增强了固化水泥的均匀性,强度和其与未涂布的增强玻璃纤维的结合。超临界CO2可将溶解或悬浮的有机或无机材料,包括粉末化金属,传递入水泥基质的内部,改变其化学和/或物理特性。
6 刚性多孔结构、其制法、用法及含该结构的产品 CN97196476.9 1997-05-15 CN1225603A 1999-08-11 D·莫伊; C·M·牛; H·藤南特
发明涉及刚性多孔结构及其制备方法。该刚性多孔结构具有高表面积,它基本上不含微孔。用于改进该碳结构刚性的方法包括使纳米级纤维在纤维交叉处形成连接或与其它纳米级纤维形成胶合。通过加入“胶粘”剂和/或通过热解该纳米级纤维,从而在相互连接点处形成熔合或连接,由此而通过将纳米级纤维的表面化学改性以促进连接以而引起该连接。
7 用高压CO2处理的 CN96194546.X 1996-06-03 CN1187179A 1998-07-08 R·H·琼斯
固化泥基质与高压密相或超临界CO2接触,超临界CO2通过基质通道进入基质,中和水泥固有的度,使不耐碱材料可加入水泥。CO2将水泥中氢转变成酸钙和水,而密相或超临界CO2的高压形成圆形坚密堆积排列的晶粒,其间很少或没有可见的孔和毛细管,增强了固化水泥的均匀性,强度和其与未涂布的增强玻璃纤维的结合。超临界CO2可将溶解或悬浮的有机或无机材料,包括粉末化金属,传递入水泥基质的内部,改变其化学和/或物理特性。
8 Microporous ceramic materials and the producing method of the same US10462810 2003-06-17 US07008576B2 2006-03-07 Hai-Doo Kim; Young-Wook Kim; Chul Bum Park
Microporous ceramic materials used in structural materials, high-temperature filters, electrode materials or preform materials for infiltration by homogeneously mixing and molding a ceramic precursor powder polymer. The powder is saturated by introducing fluid to a pressure vessel. The fluid is super saturated by adjusting pressure in the vessel. Micropores are formed in the molded bodies by evolving the fluid from the molded bodies by heating and hardening the molded bodies. The hardened molded bodies are heated to pyrolysis. Pore characteristics (e.g., pore size and pore size distribution) suitable to target materials are controlled by adjusting pressure at a non-critical state without requiring additional processes or devices.
9 Microporous ceramic materials and the producing method of the same US10462810 2003-06-17 US20040048731A1 2004-03-11 Hai-Doo Kim; Young-Wook Kim; Chul Bum Park
The present invention relates to microporous ceramic materials, and the production method thereof, which can be suitably used in various structural materials, high-temperature filters, electrode materials, preform materials for infiltration, etc., wherein said method comprises the steps of: producing molded bodies by homogeneously mixing a starting material of polymer ceramic precursor powder, and then forming the same; saturating the same by introducing fluid of a non-critical state to said molded bodies in a pressure vessel; super-saturating the fluid of a non-critical state saturated to molded bodies by adjusting pressure in said pressure vessel; forming micropores in said molded bodies by evolving said fluid of a non-critical state from said molded bodies by heating said molded bodies; hardening said molded bodies having micropores; and carrying out pyrolysis by heating said hardened molded bodies. Accordingly, the present invention allows easy control of pore characteristics (e.g., pore size and pore size distribution) suitable to target materials by adjusting pressure at a non-critical state, and without requiring additional processes or devices, the present invention allows production of microporous ceramic materials of enhanced strength, having uniform size and homogeneous distribution of pores over the entire material.
10 Aerogel and metal composition JP2003557714 2002-12-20 JP2006504508A 2006-02-09 エルキー,キャン,ドクター; ハラ,ヒロアキ,エス
【解決手段】 金属のエアロジェル組成物は、エアロジェル(例えば、RF又は炭素エアロジェル)を備え、エアロジェルの表面に金属の粒子が分散されることが開示されている。 エアロジェル組成物は、小さな金属粒子(例えば、1ナノメートルの平均粒径)の一様分布を有しうる。 さらに、エアロジェルを、金属化合物を含んでいる超臨界流体接触させることを備えるエアロジェル組成物を製造するための方法も開示している。 エアロジェル組成物は、例えば、燃料電池電極の製造に有用である。
11 Aerogel and metallic compositions US10327300 2002-12-20 US07378450B2 2008-05-27 Can Erkey; Hiroaki S. Hara
Metallic aerogel compositions comprising an aerogel, e.g., RF or carbon aerogel, having metallic particles dispersed on its surface are disclosed. The aerogel compositions can have a uniform distribution of small metallic particles, e.g., 1 nanometer average particle diameter. Also disclosed are processes for making the aerogel compositions comprising contacting an aerogel with a supercritical fluid containing a metallic compound. The aerogel compositions are useful, for example in the manufacture of fuel cell electrodes.
12 Rigid porous carbon structures, methods of making, methods of using and products containing same US11187906 2005-07-22 US20070290393A1 2007-12-20 Howard Tennent; David Moy; Chun-Ming Niu
This invention relates to rigid porous carbon structures and to methods of making same. The rigid porous structures have a high surface area which are substantially free of micropores. Methods for improving the rigidity of the carbon structures include causing the nanofibers to form bonds or become glued with other nanofibers at the fiber intersections. The bonding can be induced by chemical modification of the surface of the nanofibers to promote bonding, by adding “gluing” agents and/or by pyrolyzing the nanofibers to cause fusion or bonding at the interconnect points.
13 Rigid porous carbon structures, methods of making, methods of using and products containing same US10164682 2002-06-07 US06960389B2 2005-11-01 Howard Tennent; David Moy; Chun-Ming Niu
This invention relates to rigid porous carbon structures and to methods of making same. The rigid porous structures have a high surface area which are substantially free of micropores. Methods for improving the rigidity of the carbon structures include causing the nanofibers to form bonds or become glued with other nanofibers at the fiber intersections. The bonding can be induced by chemical modification of the surface of the nanofibers to promote bonding, by adding “gluing” agents and/or by pyrolyzing the nanofibers to cause fusion or bonding at the interconnect points.
14 Rigid porous carbon structures, methods of making, methods of using and products containing same US10164682 2002-06-07 US20030092342A1 2003-05-15 Howard Tennent; David Moy; Chun-Ming Niu
This invention relates to rigid porous carbon structures and to methods of making same. The rigid porous structures have a high surface area which are substantially free of micropores. Methods for improving the rigidity of the carbon structures include causing the nanofibers to form bonds or become glued with other nanofibers at the fiber intersections. The bonding can be induced by chemical modification of the surface of the nanofibers to promote bonding, by adding nullgluingnull agents and/or by pyrolyzing the nanofibers to cause fusion or bonding at the interconnect points.
15 Pressure-assisted molding and carbonation of cementitious materials US09829892 2001-04-10 US20010023655A1 2001-09-27 F. Carl Knopf; Kerry M. Dooley
A method is disclosed for rapidly carbonating large cement structures, by forming and hardening cement in a mold under high carbon dioxide density, such as supercritical or near-supercritical conditions. The method is more reliable, efficient, and effective than are post-molding treatments with high-pressure CO2. Cements molded in the presence of high-pressure CO2 are significantly denser than otherwise comparable cements having no CO2 treatment, and are also significantly denser than otherwise comparable cements treated with CO2 after hardening. Bulk carbonation of cementitious materials produces several beneficial effects, including reducing permeability of the cement, increasing its compressive strength, and reducing its pH. These effects are produced rapidly, and extend throughout the bulk of the cementnullthey are not limited to a surface layer, as are prior methods of post-hardening CO2 treatment. The method maybe used with any cement or concrete composition, including those made with waste products such as fly ash or cement slag. Surface carbonation is almost instantaneous, and bulk carbonation deep into a form is rapid. By combining molding, curing, and carbonation into a single step, carbon dioxide is better distributed throughout the entire specimen or form, producing a uniform product.
16 MATERIAL PROCESSING EP01270419.3 2001-12-11 EP1341663B1 2006-02-22 HORNSBY, Peter, Ridsdale, c/o Brunel University; MATTHEWS, Siobhan, Olive, c/o Reg. Developm. Ctr
The present invention uses supercritical and near supercritical fluid technology for the processing of polymer-containing formulations without induced foaming, giving benefits of either reduced melt viscosity and/or lower melt temperatures. Its application is particlarly beneficial to difficult to process materials, including unplasticised PVC, polycarbonate, PTFE, UHMWPE and polymers containing high loadings of fillers of organic origin. Shear and thermally sensitive materials can also be processed using this method with less risk of degradation, due to the lower shear input and reduced processing temperatures necessary. The production of foamed ceramic materials and metallic components by such a method is also disclosed.
17 CEMENT TREATED WITH HIGH-PRESSURE CO 2? EP96917166 1996-06-03 EP0840713A4 1999-10-27 JONES ROGER H JR
Cured cement matrices are exposed to high pressure dense-phase orsupercritical CO2 which enters the matrix through passages therein to neutralize the natural alkalinity of the cement so that alkali-intolerant materials can be incorporated in the cement. The CO2 converts calcium hydroxide in the cement to calcium carbonate and water, and the high pressure of the dense-phase or supercritical CO2 forms rounded, closely packed and aligned crystals with few or no visible pores or capillaries to enhance the homogeneity and strength of the cured cement and its bonding with, for example, uncoated reinforcing glass fibers. The supercritical CO2 can be used to transport other organic or inorganic materials, including pulverized metal, in solution or suspension into the interior of the cement matrix to alter its chemical and/or physicalcharacteristics.
18 High pressure co2 treated with cement JP50132897 1996-06-03 JP3261384B2 2002-02-25 ロジャー エイチ ジュニア ジョーンズ
19 Rigid porous carbon structure, a method of manufacturing the same, how to use, and products containing it JP54114097 1997-05-15 JP2000511864A 2000-09-12 テネント,ハワード; ニウ,チュン―ミン; モイ,デビッド
(57)【要約】 本発明は、堅い多孔質炭素構造体及びその製造方法に関する。 堅い多孔質構造体は、実質的にミクロポアを含まない大きな表面積を有する。 炭素構造体の堅さを改良する方法は、ナノファイバーを他のナノファイバーと繊維交点で結合を形成させるか、又は接着させることを含む。 結合は、接着剤を添加し、且つ(又は)ナノファイバーを熱分解して接触点で融着又は結合を起こさせることにより、ナノファイバーの表面を化学的に変性して結合を促進することにより引き起こすことができる。
20 High pressure co ▲ under 2 ▼ treated with cement JP50132897 1996-06-03 JPH10511073A 1998-10-27 ロジャー エイチ ジュニア ジョーンズ
(57)【要約】 硬化したセメントマトリックスは高圧の稠密相ないし超臨界CO 2にさらされ、このCO 2はマトリックス内の通路を通ってマトリックス内に入り、セメントの自然のアルカリ度を中性化して、アルカリ不耐性の材料がセメント内に含ませることができる。 CO 2はセメント内の酸化カルシウムを炭酸カルシウムと水に変換し、また高圧の稠密相あるいは超臨界CO 2は、視覚可能な細孔あるいは毛細管が殆どなく、丸い、緊密に詰め込まれ隣接した結晶を形成し、硬化したセメントの均質性および強度並びにその例えば被覆されない補強ガラス繊維との結合が増大する。 超臨界CO 2は、微粉化された金属を含む、他の有機あるいは無機の材料を、セメントマトリックスの内部に溶液あるいは懸濁液で運搬してその化学的および物理的な特性を変えるために使用することができる。
QQ群二维码
意见反馈