序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
61 一种发泡镍渣地质聚合物及其制备方法 CN201610213936.1 2016-04-08 CN105837066A 2016-08-10 刘福田; 刘云; 刘梁友
发明涉及一种发泡镍渣地质聚合物材料及其制备方法,属于无机非金属材料及工业固体废弃物回收利用技术领域。原料包括:镍铁渣100份、性激发剂5?20份、发泡剂0.1?1.5份,20?40份。所述碱性激发剂是由水玻璃100份、水滑石0.1?1.0份、松香酸钠0.1?1.0份和脂肪醇聚乙烯醚硫酸钠0.1?1.0份组成;所述发泡剂是由双氧水20?40份,十二烷基苯磺酸钠1?5份,水60?70份组成;本发明还提供了其制备方法。本发明的发泡镍铁渣地质聚合物孔径均匀,固化速度快,强度高,耐久性好,生产效率高,是一种防火、耐久、高效绝热的地质聚合物发泡材料。同时,本发明以固体废弃物镍铁渣为主要原料,制备工艺简单,成本低,有利于节约资源、能源和保护环境。
62 一种非泥基快凝早强混凝土及其制备方法与应用 CN201610172073.8 2016-03-23 CN105776915A 2016-07-20 张海燕; 袁振生; 吴波; 徐浩
发明公开了一种非泥基快凝早强混凝土及其制备方法与应用。该方法包括以下步骤:包括以下步骤:将偏高岭土灰固体粉末混合,然后加入冷却的水玻璃溶液,在搅拌机中搅拌均匀后,再加入砂和石子,再次搅拌均匀,制得快凝早强的非水泥基混凝土,即地聚物混凝土;其中,偏高岭土和粉煤灰固体粉末、钾水玻璃溶液、砂和石子按质量份计,其加入量如下:偏高岭土和粉煤灰固体粉末100份,钾水玻璃溶液90?130份,砂120?160份,石子310?350份。本发明材料具有良好的学性能,尤其是早期强度高,凝结快,能够使新浇筑的混凝土快速顺利投入使用,其4小时混凝土抗压强度可达18 MPa以上,适用施工气温在5℃以上时的工程抢险修复。
63 一种铅锌冶炼渣基地聚合物胶凝材料及其制备方法 CN201510970662.6 2015-12-21 CN105565691A 2016-05-11 孙双月
一种铅锌冶炼渣基地聚合物胶凝材料及其制备方法,属于地聚合物技术领域。原料组分及其质量百分含量为:铅锌冶炼渣65~72wt.%、灰5~10wt.%、复合激发剂8~15wt.%、硫酸盐激发剂3~6wt.%、酸盐激发剂1~3wt.%、去离子10~14wt.%。制备方法为:将铅锌冶炼渣和粉煤灰分别进行干燥、粉磨,然后再与硫酸盐激发剂和铝酸盐激发剂混合均匀后共同粉磨,得到球磨混合料;然后在球磨混合料中加入复合碱激发剂溶液,搅拌均匀,成型,养护,制得铅锌冶炼渣基地聚合物胶凝材料。本发明制备工艺简单,能耗较小,制备过程无污染;地聚合物胶凝性能良好,学性能、耐腐蚀耐磨性好,抗干缩性强。
64 聚合物基保温砂浆干粉及其制备方法 CN201511025322.2 2015-12-30 CN105541203A 2016-05-04 汪海风; 徐意; 张鹤; 丁新更; 杨辉
发明公开了一种地聚合物基保温砂浆干粉,其由以下重量含量的成分组成:胶凝材料40~50%、轻骨料40~50%、助剂5~12.5%;胶凝材料为地聚合物材料。地聚合物材料是以酸钠和NaOH的混合物为源,在碱源中掺和硅酸盐类物质制备而成,所述硅酸钠模数2~4,硅酸钠与NaOH重量比为1~3:1,所述碱源与铝硅酸盐类物质重量比为1:5~10。本发明还公开了上述地聚合物基保温砂浆干粉的制备方法。本发明的保温砂浆干粉加拌合后,按常规保温砂浆施工工艺施工,硬化后砂浆的各项指标均符合要求。
65 一种地聚合物注浆材料及其制备方法与应用 CN201510980670.9 2015-12-23 CN105541140A 2016-05-04 崔新壮; 侯飞; 金青; 黄丹; 刘泽群; 汤维泽; 李莉; 楼俊杰; 张炯; 崔社强; 郑英杰
发明公开了一种地聚合物注浆材料及其制备方法与应用,组分配比为:灰50-80份,沸石粉16-50份,粘土4-10份,性激发剂5-15份,速凝剂0.5-2份,玻璃3-8份,水灰比为0.75-1.5;1)将碱性激发剂溶于水中,配制碱性激发剂溶液;2)将粉煤灰、沸石粉和其他组分混合均匀,得到混合物;3)将所述碱性激发剂溶液与所述混合物混合,搅拌后得到目标地聚合物注浆材料。以沸石粉、粉煤灰及粘土为原料的地聚合物胶凝材料类似水泥却优于水泥的特性决定了其可作为一种优质的注浆材料,对处理工程中的路基加固、防渗等问题具有优良的效果。
66 聚合物及其前体的制作方法、产品和应用 CN201510980753.8 2015-12-23 CN105481272A 2016-04-13 崔新壮; 侯飞; 金青; 黄丹; 刘泽群; 张炯; 崔社强; 郑英杰; 李莉; 汤维泽; 楼俊杰
发明涉及一种地聚合物及其前体的制作方法、产品和应用,地聚合物前体的制作方法包括:将矸石和赤泥的混合物粉碎,获得混合物微粒,所述煤矸石和赤泥的质量比不小于3:1;将所述混合物微粒和氢化钠一同置于高温600-900℃下煅烧设定时间,冷却后过筛,得到地聚合物前体,所述混合物微粒与所述氢氧化钠的质量比为1:9-1:5。本发明地聚合物的制备过程简单,可被大量生产,具有广泛的应用价值。将地聚合物应用于搅拌桩中,成本低廉,节能环保,且有较高的强度和较好的耐化学腐蚀的性能。
67 高岭土性悬浮液及其制备方法和应用及油田固井用水泥 CN201410641932.4 2014-11-13 CN104312558A 2015-01-28 符军放; 张浩; 赵琥; 王永松; 罗宇维; 马春旭; 王云庆; 王清顺
发明提供了一种偏高岭土性悬浮液,其包括偏高岭土、分散剂、悬浮稳定剂、杀菌剂以及去离子水,其中,基于所述偏高岭土的重量,所述分散剂的含量为0.1-1重量%,所述悬浮稳定剂的含量为0.1-0.5重量%,所述杀菌剂的含量为0.1-0.3重量%,所述去离子水的含量为100-112重量%。本发明还提供了制备上述偏高岭土水性悬浮液的方法以及一种油田固井用水泥浆。本发明提供的偏高岭土水性悬浮液固含量高、粘度低、储存稳定。
68 生产地质聚合物的方法 CN201080056935.1 2010-11-09 CN102725242A 2012-10-10 E·加萨非; K·东布罗夫斯基-道贝
发明涉及由页岩和/或源自利用油页岩产油的矿物残渣生产地质聚合物的方法。为了将油页岩燃烧中留下的残渣用于生产地质聚合物,燃烧油页岩和/或源自利用页岩产油的矿物残渣,和随后粉碎,之后将它们与性活化剂和混合并固化
69 一种土壤聚合物固化体的养护方法 CN200810163845.7 2008-12-25 CN101445390B 2011-02-02 金漫彤; 王珂; 黄立维
发明提供了一种土壤聚合物固化体的养护方法,所述养护在相对湿度50~70%的条件下进行。所述养护尤其适用于SiO2与Al2O3的物质的量之比为4.5~5.0∶1、Na2O与SiO2的物质的量之比为0.1~0.5∶1的土壤聚合物。本发明有益效果主要体现在:在本发明给出的养护湿度下对土壤聚合物固化体进行养护,无论是养护1d、3d还是7d,固化体的抗压强度都是相对最大的,即土壤聚合物在该养护湿度下进行养护,可达到最优性能。
70 一种高灰地聚合物胶凝材料及其制备方法 CN201010155902.4 2010-04-23 CN101830654A 2010-09-15 郭晓潞; 施惠生
发明公开了一种高灰地聚合物胶凝材料及其制备方法,该地聚合物胶凝材料以高钙粉煤灰为主要原料,以氢化钠和液体状的钠玻璃制得的溶液为复合化学外加剂,本发明确定了复合化学外加剂的模数和掺量,并在一定的养护环境中使该体系具有较好的性能。该发明利用的是排放量巨大且难以处置的工业废弃物高钙粉煤灰,给废弃物的利用提供了途径,减轻了环境的负担,也降低了成本,减少了资源消耗。该发明提供的地聚合物胶凝材料具有免烧和无熟料的特点,是一种零排放的绿色环保型地聚合物,极大地降低了能源消耗,符合当前社会发展的趋势,具有良好的经济效益与社会效益。
71 锰渣基地质聚合物胶凝材料的制备方法 CN200810073692.7 2008-07-18 CN101328029B 2010-08-04 陈平; 刘荣进; 马帅; 贾韶辉; 安庆锋; 李海东; 王一靓
发明公开了一种锰渣基地质聚合物胶凝材料的制备方法。(1)原料固体组分为锰渣和高岭土;液体组分为玻璃、水和激发剂。(2)将锰渣烘干至含水率小于1%,放入球磨机中粉磨至比表面积400~600m2/Kg;取高岭土在900℃煅烧至偏高岭土,并粉磨至比表面积为500~700m2/Kg。(3)将激发剂掺入水玻璃中,并将其与水混合均匀,得到水玻璃模数为1.5~3.5,水玻璃波美度35~45°的水玻璃溶液。(4)将步骤(3)配置好的混合溶液加入到锰渣与偏高岭土微粉的混合粉料中,搅拌,混合均匀后成型,经养护即可。本发明使用工业废渣,制备工艺简单,制备过程无污染,产品胶凝性能良好,抗海水侵蚀能强。
72 锰渣基地质聚合物胶凝材料的制备方法 CN200810073692.7 2008-07-18 CN101328029A 2008-12-24 陈平; 刘荣进; 马帅; 贾韶辉; 安庆锋; 李海东; 王一靓
发明公开了一种锰渣基地质聚合物胶凝材料的制备方法。(1)原料固体组分为锰渣和高岭土;液体组分为玻璃、水和激发剂。(2)将锰渣烘干至含水率小于1%,放入球磨机中粉磨至比表面积400~600m2/kg;取高岭土在900℃煅烧至偏高岭土,并粉磨至比表面积为500~700m2/kg。(3)将激发剂掺入水玻璃溶液中,并将其与水混合均匀,得到水玻璃模数为1.5~3.5,水玻璃波美度35~45°的水玻璃溶液。(4)将步骤(3)配置好的混合溶液加入到锰渣与偏高岭土微粉的混合粉料中,搅拌,混合均匀后成型,经养护即可。本发明使用工业废渣,制备工艺简单,制备过程无污染,产品胶凝性能良好,抗海水侵蚀能强。
73 METHOD OF PRODUCING GEOPOLYMER CEMENT UTILIZING DESULFURIZED RED MUD US15612677 2017-06-02 US20180346380A1 2018-12-06 Qingke Nie; Wei Hu; Baoshan Huang; Tao Ai; Qiang He; Xiang Shu
Red mud-based geopolymer compositions and methods of their preparation are described. The red mud-based geopolymer compositions can be cured at ambient temperatures using alkaline solutions of relatively low alkaline compound concentration compared to other geopolymer compositions. In particular, the use of a red mud previously utilized in a flue gas desulfurization process can provide high strength geopolymer compositions.
74 Hyaloclastite, sideromelane or tachylite pozzolan, cement and concrete using same and method of making and using same US15817469 2017-11-20 US10047005B1 2018-08-14 Romeo Ilarian Ciuperca
The invention comprises a composition comprising a natural pozzolan selected from hyaloclastite, sideromelane or tachylite, wherein the natural pozzolan has a volume-based mean particle size of less than or equal to 40 μm. The invention also comprises a cementitious material comprising a hydraulic cement and a natural pozzolan selected from hyaloclastite, sideromelane, tachylite or combination or mixtures thereof, wherein the natural pozzolan has a volume-based mean particle size of less than or equal to approximately 40 μm. The invention further comprises a cementitious-based material comprising aggregate, a cementitious material comprising a hydraulic cement and a natural pozzolan selected from hyaloclastite, sideromelane, tachylite or combination or mixtures thereof, wherein the natural pozzolan has a volume-based mean particle size of less than or equal to approximately 40 μm and water sufficient to hydrate the cementitious material. A method of using the composition of the present invention is also disclosed.
75 METHOD FOR PRODUCING A MACROPOROUS AND MESOPOROUS GEOPOLYMER, WITH CONTROLLED POROSITY US15129037 2015-03-27 US20180215663A1 2018-08-02 David LAMBERTIN; Arnaud POULESQUEN; Fabien FRIZON; Adrien ROOSES; Frederic GOETTMANN
The present invention relates to a method for preparing a macroporous and mesoporous geopolymer and especially a geopolymer foam, comprising the following successive steps (1) preparing a composite material comprising a geopolymer matrix and an organic liquid; then (2) eliminating said organic liquid by a treatment selected from the group consisting of heat treatment, oxidation treatment, photodegradation treatment and extraction using a supercritical fluid or ultrasounds.
76 APPARATUS AND METHOD FOR PRODUCING AND ANALYZING A PLURALITY OF SAMPLE MATERIALS US15535501 2015-12-15 US20170363552A1 2017-12-21 Michael Enders
An apparatus for producing and analyzing sample materials may comprise a milling device for milling material components, a first metering device for metering a material component into the milling device, a second metering device for metering an activator liquid into the milled material component, a homogenization device for homogenizing the material components and the activator liquid to produce a sample material, a control device that is connected to the milling device and is configured to vary a parameter characteristic for milling intensity of the milling device so that particle size of the material components is altered, and a measuring device for determining a reactivity of the sample material. The present disclosure further concerns a process for producing and analyzing a plurality of sample materials. The process may involve varying at least one parameter characteristic for milling intensity for each sample material produced.
77 CORE MATERIAL FOR VACUUM INSULATION PANEL INCLUDING POROUS ALUMINOSILICATE, AND VACUUM INSULATION PANEL PROVIDED WITH THE SAME US15514318 2015-10-15 US20170297001A1 2017-10-19 Sang Yun JUNG; Cheol-Hee PARK; Shin Hee JUN; Won Bae BYUN
Provided are a core material for a vacuum insulation panel including porous aluminosilicate, and a vacuum insulation panel provided with the same. The core material for the vacuum insulation panel according to the present disclosure has superior long-term durability and improved gas adsorption ability (particularly, superior water absorption ability) while requiring a low raw material cost. The vacuum insulation panel including the core material may exhibit more improved insulation performance by minimizing a reduction in the vacuum degree without an additional getter or absorbent.
78 DIMENSIONALLY STABLE GEOPOLYMER COMPOSITION AND METHOD US15452054 2017-03-07 US20170174570A1 2017-06-22 Ashish DUBEY
A method for making geopolymer cementitious binder compositions for cementitious products such as concrete, precast construction elements and panels, mortar, patching materials for road repairs and other repair materials, and the like is disclosed. The geopolymer cementitious compositions of some embodiments are made by mixing a synergistic mixture of thermally activated aluminosilicate mineral, calcium sulfoaluminate cement, a calcium sulfate and a chemical activator with water.
79 Geopolymer brick fabrication system US14450296 2014-08-04 US09597818B2 2017-03-21 Mohd Mustafa Al Bakri Abdullah; Muhammad Faheem Mohd Tahir; Kamarudin Hussin; Mohammad Tamizi Selimin; Wan Mastura Wan Ibrahim; Muhd Izzat Ahmad; Che Mohd Ruzaidi Ghazali; Khairul Nizar Ismail; Mohammed Binhussain
A geopolymer brick fabrication system comprising a mixer (100) having a tank (101) which comprises a closeable bottom outlet (102) and an inner surface coated with saturated polyester resin that is resistant against corrosive geopolymeric material for receiving the geopolymer raw material to be mixed by shaft (103) driven by a spindle motor (104) a molding section (200) to receive the mixed geopolymer raw material through a slanted conveyer (105) upon opening of the closeable outlet (102) for shaping the mixture under pressure inside a mold (201) to obtain a geopolymer brick and a curing section (300) having a moving platform (301) across a curing chamber (302) to simultaneously cure and transport the brick thereon.
80 ASSESSMENT METHOD US14778328 2014-03-20 US20160061806A1 2016-03-03 Andrew Wilfred Reid; Zuhua Zhang
The present invention relates, inter alia, to method of assessing the reactivity of a polymerizable material (especially an aluminosilicate) in forming a geopolymer. The present invention also relates to methods of forming a geopolymer, and to geopolymers formed by the method. The method of assessing the reactivity of the polymerizable material may include first assessing whether the polymerizable material is layered or particulate. Next, if the polymerizable material is layered, the method may include measuring the moles of polymerization network forming elements in an amount of polymerizable material, whereby the moles of polymerization network forming elements is indicative of the reactivity of the polymerizable material in forming a geopolymer. Alternatively, if the polymerizable material is particulate, the method may include measuring the molar charge of polymerization network modifiers in an amount of polymerizable material, whereby the molar charge of polymerization network modifiers is indicative of the reactivity of the polymerizable material in forming a geopolymer.
QQ群二维码
意见反馈