序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
221 폐유리를 이용한 지오폴리머의 제조방법 및 그 지오폴리머를 이용한 지오콘크리트 조성물 KR1020110052940 2011-06-01 KR101078336B1 2011-11-01 김종영; 이현주; 이충로; 허수현
PURPOSE: A method for manufacturing a geopolymer and a geoconcrete composition using the waste glass are provided to recycle the waste glass as an inorganic binder for the geoconcrete composition and to improve the treating efficiency of wastes. CONSTITUTION: A method for manufacturing a geopolymer using waste glass includes the following: Waste glass is washed, dried, and pulverized. An alkaline component is introduced into the pulverized waste glass to adjust the mixing ratio of the pulverized waste glass. The waste glass with the adjusted mixing ratio is stirred to be dissolved at 60-80 rpm and at a pressure of 15-20kgf/cm^2 in order to obtain a liquid geopolymer. The waste glass with the adjusted mixing ratio includes 17.5-19.5 weight% of Na_2O+K_2O, 28-30 weight% of SiO_2, 0.5-1.2 weight% of Al_2O_3, 0.8-1.4 weight% of CaO, and 0.4-0.8 weight% of MgO. A geoconcrete composition includes 1-30 weight% of the geopolymer.
222 지오폴리머계 균열 주입재 조성물 KR1020110066587 2011-07-05 KR101067891B1 2011-09-28 김태현; 신동구; 정재운
본 발명은 콘크리트 구조물의 균열 보수에 있어 작업성이 우수하며 미세한 균열에도 용이하게 침투될 뿐만 아니라 지수성이 우수한 특성을 나타내는 지오폴리머계 콘크리트 구조물의 균열 보수보강재 조성물에 관한 것으로, 지오폴리머 70-90중량%, 고유동화제 3-8중량%, MgO 2-5중량%, 소포제 0.1-2중량%, 및 방수제 0.1-2중량%로 구성되는 분말상과, 물 1-20중량%, 가성 알칼리 1-10중량%, 규산염 30-70중량%, 실란 1-10중량%, 및 액상수지 5-30중량%의 액상으로 구성되는 본 발명의 콘크리트 구조물의 균열주입재 조성물은 물리적, 화학적인 환경조건에 의해 콘크리트 구조물에 발생한 균열의 보수를 위해 사용되며, 균열폭에 관계없이 구조물에 발생되는 모든 균열에 적용되며, 신/구 콘크리트의 접착력이 증대되고, 균열 보수 보강에 따른 내구성을 증진하며, 산업부산� ��을 주원료로 사용하므로 기존의 에폭시 주입 공법에 비해 원가가 저렴하다. 또한 본 발명의 지오폴리머계 균열주입재는 콘크리트와 본질적으로 동일한 물성을 구비하므로 건조수축이나 열팽창에 의한 부가적인 응력이나 균열의 발생이 없어 내구성이 증진되고, 화재 발생 시, 내화성능이 저하되지 않고, 취급이 용이하여 시공성이 우수한 장점이 있어 당 분야에서 유용하게 사용될 수 있을 것으로 기대된다.
223 고강도 규석 모르타르 조성물 및 그 제조방법 KR1020080023404 2008-03-13 KR1020090098181A 2009-09-17 김영도; 손세구; 홍승엽; 정수복
A high intensity quartz mortar composition and a preparing method thereof are provided to recover waste resources causing pollution problems. A high intensity quartz mortar composition is composed of 15-35 parts of polymerization controlling agent with specific gravity of 1.3-1.5 on a basis of 100 part of mixed mortar powder of 30-70wt% of quartz and 40-70wt% of blast furnace slag. The quartz comprises quartz powder with a size of 212mum or less and quartz particles with a size of 212mum~2mm in a mixing ratio of 4 to 6. The blast furnace slag exhibits particles size degree of 6,000cm^2/g or greater. The polymerization controlling agent comprises Al-Dross and NaOH.
224 PROCEDE DE DETERMINATION PREDICTIVE DU COMPORTEMENT D'UN MELANGE REACTIF DESTINE A L'OBTENTION D'UN GEOPOLYMERE, PROCEDE D'OPTIMISATION DUDIT GEOPOLYMERE EP16797468.2 2016-10-27 EP3368888A1 2018-09-05 GHARZOUNI, Ameni; VIDAL, Laëticia; ROSSIGNOL, Sylvie; PRUD'HOMME, Elodie; AUTEF, Alexandre; JOUSSEIN, Emmanuel
The invention relates to a method for determining the behaviour of a reactive mixture intended for obtaining a geopolymer, said reactive mixture including at least one aluminosilicate material, characterised in that it includes the following steps: determining the amorphous phase content of the at least one aluminosilicate material; determining the wettability rate of the at least one aluminosilicate material, and if the amorphous content range is higher than 45% and if the wettability rate is in a range from 300 µg/l to 1400 µg/l, then the reactive mixture formed by the reaction of the at least one aluminosilicate material with an alkaline solution is a geopolymer.
225 GEOPOLYMER AGGREGATES EP15807430 2015-06-11 EP3154917A4 2018-03-28 SEO DONG KYUN
A composition including porous aggregates. The porous aggregates include alumino silicate nanoparticles. The alumino silicate nanoparticles have an average particle size between about 5 nm and about 60 nm, and a majority of the porous aggregates have a particle size between about 50 nm and about 1 μm. In addition, a majority of the pores between the aluminosilicate nanoparticles in the porous geopolymer aggregates have a pore width between about 2 nm and about 100 nm.
226 PROCÉDÉ DE PRÉPARATION D'UNE COMPOSITION LIANTE INORGANIQUE EP13770945.7 2013-10-02 EP2903949B1 2016-11-30 CINAR, Eric; DESCAMPS, Philippe
227 UTILISATION D'AGENTS ANTI-CORROSION POUR LE CONDITIONNEMENT DE MAGNÉSIUM MÉTAL, MATÉRIAU DE CONDITIONNEMENT AINSI OBTENU ET PROCÉDÉ DE PRÉPARATION EP11710514.8 2011-03-29 EP2552849B1 2016-05-04 LAMBERTIN, David; FRIZON, Fabien; BLACHERE, Adrien; BART, Florence
228 UTILISATION D'AGENTS ANTI-CORROSION POUR LE CONDITIONNEMENT DE MAGNÉSIUM MÉTAL, MATÉRIAU DE CONDITIONNEMENT AINSI OBTENU ET PROCÉDÉ DE PRÉPARATION EP11710514.8 2011-03-29 EP2552849A1 2013-02-06 LAMBERTIN, David; FRIZON, Fabien; BLACHERE, Adrien; BART, Florence
The present invention relates to the use of at least one corrosion-inhibiting additive for decreasing the production of hydrogen by corrosion of magnesium metal conditioned in a cement matrix. The present invention also relates to a material for conditioning magnesium metal thus used and the process for preparing same.
229 HEAT CURABLE FOUNDRY BINDER SYSTEMS EP95913714 1995-03-16 EP0751917A4 2002-03-27 TWARDOWSKA HELENA J; LANGER HEIMO J
This invention relates to heat curable foundry binder systems comprising as separate components (a) a caustic solution of an alkali silicate and (b) hydrated aluminum silicate. The solution is mixed with sand to form a foundry mix. The resulting foundry mix is shaped and heated at an elevated temperature to form a cured foundry shape. Heat is applied by warm air, baking in an oven, microwave, or preferably from hot-box equipment.
230 INORGANIC BINDER COMPOSITION EP96941540.5 1996-12-18 EP0868406B1 2000-03-22 COMRIE, Douglas, C.
231 SEMELLE DE FER A REPASSER A VAPEUR COMPORTANT DES ZONES DISTINCTES DE VAPORISATION ET DE SECHAGE EP97906248.6 1997-02-25 EP0883709B1 2000-03-08 LOUISON, Bernard; DAULASIM, Denis
A steam iron soleplate (10) divided into at least one steaming area (20) having a plurality of steam outlets (13) and at least one drying area (30) having one or more grooves (33) but no steam outlets. The grooves are arranged in a network of furrows (33) defining a pattern of raised lands (34).
232 TECTOALUMOSILICAT-ZEMENT SOWIE VERFAHREN ZUR HERSTELLUNG DESSELBEN EP91914795.9 1991-08-24 EP0500840B1 1999-03-03 SCHWARZ, Wolfgang; LERAT, André
233 Alkaline aluminoferrosilicate hydraulic cement EP97890159.3 1997-08-08 EP0895972A1 1999-02-10 Krivenko, Pavel Vasilijevich, Kiev State Techn.; Lerat, André Marcel Jean, Ciments d'Obourg S.A.; Montani, Serge, "Holderbank"Managmt u.Beratung AG; Gebauer, Juraj Dr., "Holderbank" Managmt

An alkaline aluminoferrosilicate hydraulic cement contains water, calcinated dolomite, portland cement clinker, metallurgical slag selected from nonferrous, blast furnace electrothermophosphorous, reactive silica, and alkali metal compounds. The calcinated dolomite essentially consists of, in % by weight, 50 to 55 CaO and 30 to 35 Mg0 and is obtained by sintering a dolomite CaMg(CO3)2 at a temperature of between 800° and 950°C until CaC03 and MgC03 have undergone full decomposition. The reactive silica is a silica fume, fly ash from coal combustion, amorphous silica or silicic acid. The alkali metal compound is a K, Na or Li compound causing an alkaline reaction in an aqueous medium, or a mixture thereof. A bonding matrix obtained from the blended alkaline aluminoferrosilicate hydraulic cement after mixing with water essentially consists of the molecular formula:



        (Li, K, Na)1-8Mg0-3Ca4-15[Al1-4Fe2+3-0Fe3+2-16Si6- 24O15-50](8-15)H20



The cement is produced by mixing in a certain sequence all of the components. The cement can be used as a neat cement or with fillers, such as sand, gravel, slags, crushed serpentinite rock to make mortars and concrete, standing out for a high abrasion resistance, good adhesion to metals and protective properties against gamma and neutron radiation.

234 Alkaline sulfoaluminosilicate hydraulic cement and process for its manufacture EP97890158.5 1997-08-08 EP0895971A1 1999-02-10 Krivenko, Pavel Vasiljevich c/o KSTUCA; Lerat, André Marcel Jean c/o Ciments d'Obourg S.A.; Montani, Serge c/o"Holderbank" M. & B. AG; Gebauer, Juraj c/o "Holderbank" M. & B. AG

An alkaline sulfoaluminosilicate hydraulic cement contains water, calcium magnesium aluminosilicate glass, portland cement clinker, sinter made from sodium zeolite and an SO42--containing component, metakaolin and alkali metal compounds. Used as zeolites may be either synthetic zeolite and zeolite-containing rock in which the main rock-forming minerals are clinoptilolite, mordenite, gmelinite and analcime at their total content in the rock not less than 40 % by weight. Used as a SO42--containing component is a technical product, Na2SO4 or natural raw materials, by-products or aluminopotassium alums. The sinter is obtained by thermal activation in the temperature range 500° to 800°C of sodium zeolite and SO42--containing component taken in a ratio ranging between 1:1 to 4:1. The metakaolin is obtained by sintering a kaolinite clay in the temperature range 700-800° C until its full dehydration. The alkali metal compound are compounds that create an alkaline reaction in an aqueous medium. A bonding matrix obtained from the alkaline sulfoaluminosilicate hydraulic cement upon mixing with water is characteristic of the presence of alkaline sulfoaluminate and sulfoaluminosilicate phases. The cement is produced by mixing in a certain sequence all the constituents and sets in both normal conditions and under heat curing. The cement can be used as a neat cement or with fillers, such as sand, crushed stone and gravel, to make mortars and concrete, that are characteristic of high sulfate resistance, stable strength characteristics under alternate wetting-drying as well as low shrinkage along with high compressive strength and rapid strength gain.

235 HEAT CURABLE FOUNDRY BINDER SYSTEMS EP95913714.0 1995-03-16 EP0751917A1 1997-01-08 TWARDOWSKA, Helena, J.; LANGER, Heimo, J.
This invention relates to heat curable foundry binder systems comprising as separate components (a) a caustic solution of an alkali silicate and (b) hydrated aluminum silicate. The solution is mixed with sand to form a foundry mix. The resulting foundry mix is shaped and heated at an elevated temperature to form a cured foundry shape. Heat is applied by warm air, baking in an oven, microwave, or preferably from hot-box equipment.
236 Résines minérales, leur procédé de préparation et matériaux pour la protection thermique EP94401440.6 1994-06-27 EP0633231A1 1995-01-11 Neel, Ludovic; l'Hernault, Claude

L'invention concerne de nouvelles résines minérales durcissables à base de boroaluminosilicates alcalins qui comprennent, avant durcissement, les éléments minéraux à l'état réactif, dans les proportions suivantes exprimées par leur rapport molaire d'oxydes :2 ≦ SiO₂/Al₂O₃ ≦ 41,3 ≦ X₂O/Al₂O₃ ≦ 3,810 ≦ H₂O/Al₂O₃ ≦ 280,5< B₂O₃/Al₂O₃ ≦ 2,0

X₂O représentant un ou plusieurs oxydes alcalins choisis parmi Na₂O, K₂O, Li₂O, et éventuellement des charges.

L'invention concerne également le procédé de préparation de ces nouvelles résines minérales.

Les résines durcies obtenues sont très utiles pour fabriquer des matériaux de protection thermique.

237 PROCEDE DE PREPARATION D'UN CIMENT DU TYPE SPHEROSILICATE ET CIMENT AINSI OBTENU EP91914369.0 1991-08-24 EP0507895A1 1992-10-14 LERAT, André
On prépare un ciment du type sphérosilicate en poudre, durcissant à froid et développant au bout de 4 heures à 20 °C une résistance à la compression supérieure ou égale à 15 MPa avec un rapport eau/liant compris entre 0,20 et 0,27, en utilisant les trois éléments réactifs suivants: a) un oxyde alumino-silicate (2SiO2, Al2O3) ayant le cation Al en coordination (IV-V) comme déterminé par le spectre d'analyse en Résonance Magnétique Nucléaire MASS-NMR pour 27Al; b) un disilicate alcalin de sodium et/ou de potassium, (Na2, K2)(H3SiO4); c) un silicate de calcium caractérisé en ce que les rapports molaires entre les trois éléments réactifs sont égaux ou compris entre (Na2, K2)(H3SiO4)2/(2SiO2, Al2O3) 0,40 et 0,60; Ca++/(2SiO2, Al2O3) 0,60 et 0,40; de telle sorte que (Na2, K2)(H3SiO4)2 + Ca++/(2SiO2, Al2O3) = 1,0 avec Ca++ désignant l'ion calcium appartenant à un silicate de calcium faiblement basique dont le rapport atomique Ca/Si est inférieur à 1.
238 PROCEDE D'OBTENTION D'UN LIANT GEOPOLYMERIQUE PERMETTANT LA STABILISATION, LA SOLIDIFICATION ET LA CONSOLIDATION DE DECHETS OU DE MATERIAUX TOXIQUES EP91914914.0 1991-08-26 EP0500845A1 1992-09-02 Davidovits, Joseph
Le procédé décrit dans l'invention permet l'obtention d'un liant géopolymérique en poudre, employé pour le traitement ultra-rapide de matériaux, sols ou décharges minières, contenant des déchets toxiques. Ce dit liant géopolymérique possède un temps de prise égal ou supérieur à 30 minutes à la température de 20 °C et une vitesse de durcissement permettant d'obtenir des résistances à la compression (Rc) égales ou supérieures à 15 MPa, après seulement 4 heures à 20 °C, lorsqu'elles sont testées selon la norme standard appliquée aux mortiers de liants hydrauliques avec un rapport liant/sable égal à 0,38 et un rapport eau/liant compris entre 0,22 et 0,27. Le procédé de préparation inclut les trois éléments réactifs suivants: a) un oxyde alumino-silicate (Si2O5,Al2O2) ayant le cation Al en coordination (IV-V); b) un disilicate alcalin, de sodium et/ou de potassium, (Na2,K2)(H3SiO4)2; c) un silicate de calcium; les rapports molaires entre les trois éléments réactifs sont égaux ou compris entre (Na2,K2)(H3SiO4)2/(Si2O5,Al2O2) = 0,40 et 0,60, Ca++/(Si2O5,Al2O2) = 0,60 et 0,40 de telle sorte que (Na2,K2)(H3SiO4)2 + Ca++/(Si2O5,Al2O2) = 1,0 avec Ca++ désignant l'ion calcium appartenant à un silicate de calcium faiblement basique dont le rapport atomique Ca/Si est inférieur à 1.
239 COMPOSE POLYMERIQUE MINERAL SYNTHETIQUE DE LA FAMILLE DES SILICOALUMINATES ET PROCEDE DE PREPARATION; OBJETS MOULES CONTENANT CE COMPOSE POLYMERIQUE ET PROCEDE D'OBTENTION EP81902468.8 1981-09-02 EP0066571B1 1985-07-03 DAVIDOVITS, Joseph
Mineral polymer compound of the silicoaluminates family, comprised of a solid solution comprising a potassium polysilicate phase having the composition (y-1)K<u2>uO:(x-2)SiO<u2>u:(w-1)H<u2>uO, wherein "w" is a value which is, at the most, equal to 4, "x" is a value comprised between 3.3 and 4.5, "y" is a value comprised between 0.9 and 1.6, and a potassium polysialate polymer phase having the formula: (FORMULA) said potassium polysialate polymer having a diagram to X-rays close to that of a natural mineral known as Kaliophilite KAlSiO<u4>u. Process for producing such polymer and the mineral polymer compound, comprising the preparation of a reaction mixture based on potassium silicate, on potassium hydroxide KOH and on aluminosilicate oxide (Si<u2>uO<s5>s, Al<u2>uO<u3>u)n, such that the molar ratios of the reaction products expressed in terms of oxides are either comprised or equal to the following values: K<u2>uO/SiO<u2>u : 0.23 to 0.48 SiO<u2>u/Al<u2>uO<u3>u : 3.3 to 4.5 H<u2>uO/Al<u2>uO<u3>u : 10 to 25 K<u2>uO/Al<u2>uO<u3>u : 0.9 to 1.60 and hardening said reaction mixture at a temperature lower than 120`C. Utilization in the manufacture of molded articles containing at least a mineral load. Utilization as a binder or a ciment. Manufacture of articles resisting to thermal shocks, art objects, moulds and tools.
240 STRUCTURAL MATERIALS WITH NEARLY ZERO CARBON EMISSIONS EP08864380.4 2008-12-16 EP2222611B1 2018-09-26 SEAL, Sudipta; HENCH, Larry, L.; KRISHNA MOORTHY, Suresh, Babu; REID, David; KARAKOTI, Ajay
Processes and methods of making and preparing, compositions and structural products therefrom are provided, whereby the surface area of alumino-silicate based powders is greatly increased and rendered chemically active so that when the functionalized powders are mixed with water poly-condensation reactions occur between the surfaces binding the powders together to form a structural material with negligible emission of carbon compounds. In another embodiment, the surface functionalized powders can be mixed with an additive; a dry aggregate, such as sand and water to make a slurry that can be poured or cast into any desired shape and rapidly cured to a hardened shape suitable for use as a structural material with the mechanical strength equivalent to Portland-cement based concrete products. In additional embodiments, the alumino-silicate based powders are nano-functionalized and foam functionalized to provide light weight and structurally strong materials that can also be used in combination with or as replacement for Portland-cement.
QQ群二维码
意见反馈