序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 导电糊、制备方法和使用其的太阳能电池电极 CN201610677971.9 2016-08-17 CN106469581A 2017-03-01 大和田宽人; 松村和之; 菅原秀树; 坂诘功晃
发明涉及导电糊、制备方法和使用其的太阳能电池电极。本发明的导电糊包括导电颗粒、粘结剂、有机溶剂、玻璃粉末和特定量的至少部分地表面涂覆有有机磷化合物并且具有特定的平均粒径的无机化物颗粒。通过将该导电糊烧成而形成的太阳能电池电极具有增加的与衬底的接合强度。
2 用于热绝缘的毫微复合材料 CN98804996.1 1998-05-13 CN1255149A 2000-05-31 赫尔穆特·施密德特; 马丁·门尼格; 格哈特·琼施克尔
发明涉及用于热绝缘,特别是用于防火的毫微复合材料,该复合材料可通过组合(A)(B)(C)组分而制得。(A)至少35重量%的毫微量级的任意表面改性的无机化合物颗料;(B)10~60重量%的具有至少二个能与毫微级颗粒(A)的表面基团反应和/或相互反应的化合物;(C)1~40重量%的和/或没有或仅有一个在(B)中定义的官能基团的有机溶剂,其中,上述百分比基于组分(A)、(B)和(C)之总和,以及(D)=0~10重量%(基于毫微复合材料)的添加剂。
3 纤维增强玻璃、玻璃-陶瓷基复合材料的制造工艺 CN93117961.0 1993-09-29 CN1049416C 2000-02-16 罗伍文; 周嶅; 王晓光; 黄幼榕; 周孟佩; 汪惠娟; 汪笑松; 邹小兴
发明涉及一种制备纤维增强纤维、玻璃-陶瓷基复合材料的泥浆法结衙溶胶-凝胶法新工艺。其特征在于溶胶-凝胶法制得基体玻璃微粉,并配制起粘结剂作用的溶胶,玻璃微粉分散悬浮于溶胶中,纤维浸渍该悬浮体排丝在鼓上,借助热压烧结使复合材料致密化,选择合适的溶胶化物组成,可调整纤维一基体界面组成,控制界面反应、改善界而结构,获得了高温学性能良好的纤维增强玻璃-陶瓷基复合材料。
4 气凝胶在吸附封存重金属上的应用 CN201611092126.1 2016-12-01 CN106746692A 2017-05-31 王天赋; 彭战军; 蔡宏强
气凝胶在吸附封存重金属上的应用,包括如下步骤:S1、将源与去离子混合获得硅溶胶;再将含重金属离子的溶液加入硅溶胶内,搅拌均匀后,加入性催化剂、干燥控制化学添加剂后搅拌,静置获得湿凝胶;S2、将步骤S1获得的湿凝胶切,加入反应釜内,常温下加入极性溶剂,置入搅拌器内搅拌,溶剂交换,将交换后的溶液回收,循环使用;S3、加入表面改性剂至步骤S2进行溶剂交换后的湿凝胶内进行表面改性;S4、将步骤S3进行改性后的湿凝胶干燥,然后置于密闭容器内,烧结,以封闭重金属离子。其优点是:采用烧结的方法,高温加热凝胶,通过孔的坍塌使其烧结为化硅玻璃,封闭凝胶的多孔结构,从而可使重金属封闭在玻璃内。
5 用于热绝缘的毫微复合材料及其用途 CN98804996.1 1998-05-13 CN100352853C 2007-12-05 赫尔穆特·施密德特; 马丁·门尼格; 格哈特·琼施克尔
发明涉及用于热绝缘,特别是用于防火的毫微复合材料,该复合材料可通过组合(A)(B)(C)组分而制得。(A)至少35重量%的毫微量级的任意表面改性的无机化合物颗料;(B)10~60重量%的具有至少二个能与毫微级颗粒(A)的表面基团反应和/或相互反应的化合物;(C)1~40重量%的和/或没有或仅有一个在(B)中定义的官能基团的有机溶剂,其中,上述百分比基于组分(A)、(B)和(C)之总和,以及(D)=0~10重量%(基于毫微复合材料)的添加剂。
6 改进的溶胶-凝胶法、其产品及用其储存核材料的方法 CN200480028885.0 2004-09-11 CN1863743A 2006-11-15 富尔维奥·科斯塔; 露西亚·吉尼; 安德烈亚斯·吕克曼; 洛伦佐·科斯塔
用于制备气凝胶的溶胶-凝胶法,其包括:制备通式Xm-M-(OR)n-m化合物的溶液,使该化合物解以生成溶胶,凝胶化,干燥,稠化和烧结。该方法可用于通过放射性物质的水溶液处理放射性剩余物。
7 纤维增强玻璃、玻璃-陶瓷基复合材料的制造工艺 CN93117961.0 1993-09-29 CN1101027A 1995-04-05 罗伍文; 周嶅; 王晓光; 黄幼榕; 周孟佩; 汪惠娟; 汪笑松; 邹小兴
发明涉及一种制备纤维增强玻璃、玻璃-陶瓷基复合材料的泥浆法结合溶胶-凝胶法新工艺。其特征在于溶胶-凝胶法制得基体玻璃微粉,并配制起粘结剂作用的溶胶,玻璃微粉分散悬浮于溶胶中,纤维浸渍该悬浮体排丝在鼓上,借助热压烧结合复合材料致密化,选择合适的溶胶化物组成,可调整纤维一基体界面组成,控制界面反应、改善界面结构,获得了高温学性能良好的纤维增强玻璃-陶瓷基复合材料。
8 有机-无机混杂玻璃态材料及其制造方法 CN200580003655.3 2005-02-21 CN1914250B 2011-04-27 国吉稔; 横尾俊信; 高桥雅英
一种制造有机-无机混杂玻璃态材料的方法,其特征在于将具有可熔融性的原料熔融或熔融/老化之后,在比熔融原料的温度高100℃或更多的温度下对得到的材料进行热处理
9 矿物聚合物复合材料及由其形成的结构物 CN200680015652.6 2006-05-02 CN101370748A 2009-02-18 G·H·比尔; L·R·平克尼; P·D·特珀谢; S·A·蒂切
公开了具有低热膨胀系数的矿物聚合物复合材料。由于它们的低热膨胀系数和高强度,这些材料用于高温应用。也公开了一种能够与陶瓷颗粒材料(诸如堇青石和熔凝石)相兼容的改性的玻璃矿物聚合物复合材料。这种矿物聚合物复合材料可以挤出形成诸如蜂巢状整体制品、流量过滤器之类的结构物或者用作堵塞或成皮的接合剂,也可以在1100℃或低于1100℃烧制。这些结构和接合剂有高的生坯强度和烧制强度、低的热膨胀系数和好的耐酸性。与通常的以堇青石为基础的物体的生产方法相比,用本发明的材料制造物体的成本由于显著缩短了烧制时间而大大降低。
10 有机-无机混杂玻璃态材料及其制造方法 CN200580003655.3 2005-02-21 CN1914250A 2007-02-14 国吉稔; 横尾俊信; 高桥雅英
一种制造有机-无机混杂玻璃态材料的方法,其特征在于将具有可熔融性的原料熔融或熔融/老化之后,在比熔融原料的温度高100℃或更多的温度下对得到的材料进行热处理
11 复合材料 CN97199644.X 1997-11-14 CN1237187A 1999-12-01 格哈德·琼希克; 马丁·曼尼格; 赫尔穆特·施米特; 雷纳·安杰南特
一种复合材料,其特征为基于玻璃纤维、矿物纤维或木制品衍生物的基质,和可与所述基质进行功能性接触的毫微复合材料,该复合材料是通过使用(b)一种或多种结构式为(Ⅰ)的烷对(a)无机胶体粒子进行表面改性而得到,Rx-Si-A4-x(Ⅰ)其中,基团A可以相同或不同的,代表羟基或除甲基外解可除去的基团;基团R可以是相同或不同的并且是水解无法除去的基团,X为0、1、2或3,至少50mol%的硅烷中的x≥1;该改性是在形成溶胶-凝胶过程的条件下,以可水解基团为基础,加入低于化学剂量的水,形成毫微复合溶胶,如果需要,在与基质相互接触前,进一步进行水解和缩合,然后熟化。
12 다결정성 연마 컴팩트 KR1020087026346 2007-03-29 KR101410154B1 2014-06-19 모츄벨르안나에멜라; 칸안티오네트; 데이비스지오프리존; 마이버그요하네스로드위쿠스
본 발명은 마이크론, 마이크론 미만 또는 나노 크기의 매트릭스 물질에 분산된, 마이크론, 마이크론 미만 또는 나노-크기의 초강성 연마제로 구성된 다결정성 연마 요소의 제조 방법에 관한 것이다. 친유리질(vitreophilic) 표면을 갖는 다수의 초강성 연마 입자를 정제된 콜로이드 공정에서 매트릭스 전구체 물질로 피복한 후 소결에 적합하도록 처리한다. 매트릭스 전구체 물질은 옥사이드, 나이트라이드, 카바이드, 옥시나이트라이드, 옥시카바이드 또는 카보나이트라이드, 또는 이의 원소 형태로 전환될 수 있다. 코팅된 초강성 연마 입자를 결정학적으로 또는 열역학적으로 안정한 압력 및 온도에서 통합시키고 소결시킨다.
13 실리카겔,합성석영유리분말및석영유리의성형품 KR1019970060864 1997-11-18 KR100364309B1 2003-01-24 우쓰노미야아끼라; 다까자와아끼히로; 모리야마다까시; 가쓰로요시오
A synthetic quartz powder obtained by calcining a powder of silica gel, characterized in that white devitrification spots having sizes of larger than 20 mu m in diameter formed in an ingot obtained by vacuum melting the synthetic quartz powder at a temperature of from 1780 to 1800 DEG C to form an ingot, followed by maintaining the ingot at a temperature of 1630 DEG C for 5 hours, are at most 10 spots/50 g.
14 Luminous nano-glass-ceramics used as white LED source and preparing method of luminous nano-glass-ceramics US13582501 2010-03-05 US09260340B2 2016-02-16 Mingjie Zhou; Yanbo Qiao; Wenbo Ma; Danping Chen
A luminous nano-glass-ceramics used as white LED source and the preparing method of nano-glass-ceramics are provided. The glass is a kind of non-porous compact SiO2 glass in which luminous nano-microcrystalites are dispersed. The luminous nano-microcrystalite has the chemical formula of YxGd3-xAl5O12:Ce, wherein 0≦x≦3. The stability of the said glass is good and its irradiance is uniform. The preparing method comprises the following steps: dissolving the compound raw materials in the solvent to form mixed solution, dipping the nano-microporous SiO2 glass in the solution, taking it out and air drying, sintering at the temperature of 1100-1300° C. for 1-5 hours by stage heating, and obtaining the product. The method has a simple process, convenient operation and low cost.
15 Hybrid organic-inorganic material constituted by a silica network having photochromic agents and optical power limiting agents as a doping agent in the material US13638778 2011-04-12 US08901185B2 2014-12-02 Frédéric Chaput; Stéphane Parola; César Lopes; Denis Chateau; Cédric Desroches
The invention concerns a preparation process of a hybrid organic-inorganic material including the following successive steps: a) preparation of a neutral organosilicon sol in at least one organic solvent, b) incorporation of a doping agent into the neutral organosiliconsol, and production of a doped sol, c) incorporation into the doped sol, of an accelerating agent in order to activate the subsequent gelation of the sol, d) condensation of the sol in order to obtain a crosslinked gel, e) drying of the gel and production of a stable doped gel. and the material obtainable by such a method.
16 Polycrystalline Abrasive Compacts US13764369 2013-02-11 US20130145698A1 2013-06-13 Antionette Can; Anna Emela Mochubele; Geoffrey John Davies; Johannes Lodewikus Myburgh
A method of manufacturing polycrystalline abrasive elements consisting of micron, sub-micron or nano-sized ultrahard abrasives dispersed in micron, sub-micron or nano-sized matrix materials. A plurality of ultrahard abrasive particles having vitreophilic surfaces are coated with a matrix precursor material in a refined colloidal process and then treated to render them suitable for sintering. The matrix precursor material can be converted to an oxide, nitride, carbide, oxynitride, oxycarbide, or carbonitride, or an elemental form thereof. The coated ultrahard abrasive particles are consolidated and sintered at a pressure and temperature at which they are crystallographically or thermodynamically stable.
17 METHOD FOR PREPARING HYBRID MATERIALS OBTAINED BY FAST CONDENSATION OF AN ORGANOSILICON SOL US13638778 2011-04-12 US20130131203A1 2013-05-23 Frédéric Chaput; Stéphane Parola; César Lopes; Denis Chateau; Cédric Desroches
The invention concerns a preparation process of a hybrid organic-inorganic material including the following successive steps: a) preparation of a neutral organosilicon sol in at least one organic solvent, b) incorporation of a doping agent into the neutral organosiliconsol, and production of a doped sol, c) incorporation into the doped sol, of an accelerating agent in order to activate the subsequent gelation of the sol, d) condensation of the sol in order to obtain a crosslinked gel, e) drying of the gel and production of a stable doped gel. and the material obtainable by such a method.
18 LUMINOUS NANO-GLASS-CERAMICS USED AS WHITE LED SOURCE AND PREPARING METHOD OF LUMINOUS NANO-GLASS-CERAMICS US13582501 2010-03-05 US20120319045A1 2012-12-20 Mingjie Zhou; Yanbo Qiao; Wenbo Ma; Danping Chen
A luminous nano-glass-ceramics used as white LED source and the preparing method of nano-glass-ceramics are provided. The glass is a kind of non-porous compact SiO2 glass in which luminous nano-microcrystalites are dispersed. The luminous nano-microcrystalite has the chemical formula of YxGd3-xAl5O12:Ce, wherein 0≦x≦3. The stability of the said glass is good and its irradiance is uniform. The preparing method comprises the following steps: dissolving the compound raw materials in the solvent to form mixed solution, dipping the nano-microporous SiO2 glass in the solution, taking it out and air drying, sintering at the temperature of 1100-1300° C. for 1-5 hours by stage heating, and obtaining the product. The method has a simple process, convenient operation and low cost.
19 POLYCRYSTALLINE ABRASIVE COMPACTS US13428949 2012-03-23 US20120180401A1 2012-07-19 Antionette Can; Anna Emela Mochubele; Geoffrey John Davies; Johannes Lodewikus Myburgh
A method of manufacturing polycrystalline abrasive elements consisting of micron, sub-micron or nano-sized ultrahard abrasives dispersed in micron, sub-micron or nano-sized matrix materials. A plurality of ultrahard abrasive particles having vitreophilic surfaces are coated with a matrix precursor material in a refined colloidal process and then treated to render them suitable for sintering. The matrix precursor material can be converted to an oxide, nitride, carbide, oxynitride, oxycarbide, or carbonitride, or an elemental form thereof. The coated ultrahard abrasive particles are consolidated and sintered at a pressure and temperature at which they are crystallographically or thermodynamically stable.
20 Nanocrystal oxide/glass composite mesoporous powder or thin film, process for producing the same, and utilizing the powder or thin film, various devices, secondary battery and lithium storing device US10595856 2004-11-16 US20070027015A1 2007-02-01 Haoshen Zhou; Itaru Homma
The present invention aims to realize (1) manufacture of a mesoporous composite powder or thin film composed of nanocrystalline metal oxide-glass having a three-dimensional structure with a large specific surface area, (2) construction of a porous structure framework with nanocrystalline metal oxide crystal and a slight amount of glass phase (SiO2 or P2O5, B2O3), (3) control of crystal growth of metal oxide with a slight amount of glass phase (SiO2 or P2O5, B2O3), (4) simplification of the manufacturing process, and (5) use thereof in manufacture of a lithium intercalation electric device, photocatalytic device, solar battery and energy storage device. Provided are a nanocrystal oxide-glass mesoporous composite powder or thin film having a three-dimensional structure with regularly arranged mesopores, and a secondary battery comprising the same.
QQ群二维码
意见反馈