序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 溶剂凝固方法 CN200480011333.9 2004-04-28 CN1780670A 2006-05-31 W·J·W·巴克; R·M·吉尔特曼; M·F·里迪耶克; J·J·M·巴尔图森; G·巴格曼; C·E·J·范拉尔
发明涉及一种反溶剂凝固方法,其中将含有至少一种待凝固的有机或无机化合物的液体介质强制通过膜进入一种或多种反溶剂中,或者其中将一种或多种反溶剂强制通过膜进入含有至少一种待凝固的有机或无机化合物的液体介质中,产生包含含有所述有机和/或无机化合物的固体颗粒的组合物。
2 无机物的结晶方法和设备 CN89106365.X 1989-07-29 CN1021635C 1993-07-21 莱昂·尼南; 莱奥波德·迪特里
本文介绍无机物的结晶方法和设备,其中,迫使该物质的过饱和溶液穿过分布器(12)后,通过流态化床(14)反应器(2)循环。该分布器保持在某一温度,在该温度下,过饱和溶液的浓度低于或等于相应的饱和溶液浓度。本发明适于氯化钠结晶。
3 无机物的结晶方法和设备 CN89106365.X 1989-07-29 CN1039972A 1990-02-28 莱昂·尼南; 莱奥波德·迪特里
本文介绍无机物的结晶方法和设备,其中,迫使该物质的过饱和溶液穿过分布器(12)后,通过流态化床(14)反应器(2)循环。该分布器保持在某一温度,在该温度下,过饱和溶液的浓度低于或等于相应的饱和溶液浓度。本发明适于氯化钠结晶。
4 一种高活性均一氟化的制备方法 CN201710558878.0 2017-07-11 CN107381602A 2017-11-24 于如军; 苗志伟; 刘爽; 李明党; 潘科峰; 张振; 陈艳艳; 王召滨
发明涉及一种高活性均一氟化的制备方法,属于氟化钾的制备方法技术领域。一种制备高活性均一氟化钾的方法,包括溶液的配制,真空蒸发结晶,晶种和表面活性剂的添加,产品减压抽滤和干燥。本方法的制备过程为配置一定浓度的氟化钾溶液,加热,调节真空度、转速及pH值,然后加入晶种和表面活性剂,当有80%的晶体析出时,抽滤及干燥,得到氟化钾产品。本制备方法所得到的氟化钾颗粒均一,活性高,呈现正方形或长方形,长时间存放不易板结,并且氟化钾晶体不需要洗涤工艺,降低了生产成本,具有良好的应用前景。
5 一种获得高纯NaCl晶粒的熔融提纯方法 CN201710160188.X 2017-03-17 CN106629780A 2017-05-10 张继森; 段维江; 徐增山
发明公开了一种获得高纯NaCl晶粒的熔融提纯方法,该工艺技术方法没有排放,设备简单以及生产能耗低和效率高,获得的NaCl产品纯度能够达到99.99%以上,产品收率大于80%。该方法能够显著提高大规模工业化制备高纯NaCl材料的生产效率,预计其经济效益和社会效益可观。
6 一种微米级超细球形氯化钠的制备方法 CN201610802007.4 2016-09-05 CN106430251A 2017-02-22 马运柱; 刘超; 刘文胜; 史政; 刘阳; 龙路平
发明涉及一种微米级超细球形氯化钠的制备方法,特指以甘酸作为控制剂,基于雾化干燥设备采用喷雾离心干燥法制备造孔用微米级超细球形氯化钠的方法。本发明所述制备方法为:往饱和氯化钠溶液中加入甘氨酸,搅拌均匀后,通过雾离心干燥的方式,制得微米级超细球形氯化钠;所述甘氨酸的加入质量为饱和氯化钠水溶液总质量的2%-5%。本发明制备工艺简单,粒径更小,超细氯化钠的产率较高,可以适用于造孔用微米级超细球形氯化钠粉末的批量制备,操作简单灵活,便于大规模的工业化应用。本发明制备的微米级超细氯化钠适用作造孔剂使用。
7 通过蒸发结晶制备的自由流动的盐组合物 CN201380034842.2 2013-07-10 CN104411639A 2015-03-11 F·斯皮雅克曼; R·A·G·M·伯格沃尔特
制备盐组合物的蒸发结晶方法,所述方法包括其中形成包含、待结晶的盐和基于母液重量为1-5ppm添加剂的母液的步骤,其中所述添加剂为水溶性丙烯酸聚合物,和蒸发水以形成结晶盐的另一步骤。
8 一种利用空气鼓泡法洗涤粗粒盐提高盐质的装置及其方法 CN201610866668.3 2016-09-30 CN106268473A 2017-01-04 张红宇; 杨进兵; 左敏
发明公开了一种利用空气鼓泡法洗涤粗粒盐提高盐质的装置及其方法,目的在于解决在粗盐粒生产过程中,需要采用搅拌装置来完成物料的混合传质,由于搅拌装置浆叶旋转、剪切等机械原因,会形成很大程度的破碎,导致晶体形状发生很大变化,从需要的立方晶形变为不规则的近似球形形状,甚至造成晶体破碎,而失去市场价值,同时晶体表面光泽变暗的问题。该装置包括洗涤器反应体、进气件、洗涤液进液管;洗涤器反应体包括圆筒状筒体、倒锥形体。本发明进行了全面的创新和优化,利用清洁的压缩空气通过喷咀均匀地分布在洗涤器反应体(卧式洗盐槽)的底部,通过气流鼓泡的上升带动粗粒盐不断地上升和下降,进而使得粗盐粒与洗涤液充分混合。
9 溶剂凝固方法 CN200480011333.9 2004-04-28 CN100434133C 2008-11-19 W·J·W·巴克; R·M·吉尔特曼; M·F·里迪耶克; J·J·M·巴尔图森; G·巴格曼; C·E·J·范拉尔
发明涉及一种反溶剂凝固方法,其中将含有至少一种待凝固的有机或无机化合物的液体介质强制通过膜进入一种或多种反溶剂中,或者其中将一种或多种反溶剂强制通过膜进入含有至少一种待凝固的有机或无机化合物的液体介质中,产生包含含有所述有机和/或无机化合物的固体颗粒的组合物。
10 制备高纯度湿盐的方法、可由此得到的湿盐及其在电解方法中的用途 CN02813736.1 2002-06-07 CN1233558C 2005-12-28 M·J·J·迈尔; R·L·M·德默尔
发明涉及一种制备盐组合物的蒸发结晶方法,该方法包括在其中形成母液的步骤,该母液含有有效量的晶体生长抑制剂以形成具有(111)晶面的盐晶体,所述抑制剂选自寡肽、多肽和带有两个或更多个羧酸基团或羧基烷基以及任选进一步带有磷酸根、膦酸根、膦基、硫酸根和/或磺酸根的聚合物,如带有磷酸根的羧甲基纤维素。该盐可以用降低量的洗涤洗涤,然而仍含有较低量的K、Br、SO4和/或Ca。湿盐可以通过部分干燥所形成的盐晶体而得到。
11 制备高纯度盐的方法及其在电解方法中的用途 CN03818991.7 2003-07-16 CN1674966A 2005-09-28 M·J·J·迈尔; R·M·吉尔特曼; R·L·M·德默尔
发明涉及一种制备盐组合物的蒸发结晶方法,该方法包括其中形成含有有效量的包含至少一种糖或糖衍生物的晶体生长抑制剂的母液的步骤,以形成高纯度盐。所述盐可以用降低量的洗涤洗涤,同时仍然含有较少量的K、Br、S04和/或Ca。将形成的盐晶体干燥后,可以得到高纯度盐。可以通过部分干燥所述盐晶体获得湿盐。
12 制备高纯度湿盐的方法、可由此得到的湿盐及其在电解方法中的用途 CN02813736.1 2002-06-07 CN1525941A 2004-09-01 M·J·J·迈尔; R·L·M·德默尔
发明涉及一种制备盐组合物的蒸发结晶方法,该方法包括在其中形成母液的步骤,该母液含有有效量的晶体生长抑制剂以形成具有(111)晶面的盐晶体,所述抑制剂选自寡肽、多肽和带有两个或更多个羧酸基团或羧基烷基以及任选进一步带有磷酸根、膦酸根、膦基、硫酸根和/或磺酸根的聚合物,如带有磷酸根的羧甲基纤维素。该盐可以用降低量的洗涤洗涤,然而仍含有较低量的K、Br、SO4和/或Ca。湿盐可以通过部分干燥所形成的盐晶体而得到。
13 Production of rounded salt particles US15607338 2017-05-26 US10093548B2 2018-10-09 David J. Schuessler; Alberto J. Flores-Pujol
The present disclosure generally relates to methods of preparing spherical salt particles for industrial, medical, and other uses. The methods can include combining the angular salt particles with a quantity of finishing media, for example, into a receptacle. Thereafter, the angular salt particles and the finishing media can be moved or agitated until the angular salt particles have a desired sphericity.
14 Antisolvent solidification process US10553211 2004-04-28 US20060182808A1 2006-08-17 Wridzer Bakker; Robert Geertman; Marianne Reedijk; Jozef Baltussen; Gerrald Bargeman; Cornelis Van Lare
The present invention relates to a antisolvent solidification process wherein a liquid medium comprising at least one organic or inorganic compound which is to be solidified is forced through a membrane into one or more antisolvents, or wherein one or more antisolvents are forced through a membrane into a liquid medium comprising at least one organic or inorganic compound which is to be solidified, yielding a composition comprising solid particles comprising said organic and/or inorganic compound(s).
15 Methods for controlling crystal growth, crystallization, structures and phases in materials and systems US10508462 2003-03-21 US20060037177A1 2006-02-23 Bentley Blum; Juliana Brooks; Mark Mortenson
This invention relates to novel methods for affecting, controlling and/or directing various crystal formation, structure formation or phase formation/phase change reaction pathways or systems by exposing one or more components in a holoreaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a crystallization reaction system. In a second aspect of the invention, at lest one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other (or all) crystallization reaction system participants being introduced into the reaction vessel.
16 Process to make high-purity wet salt, wet salt so obtainable, and the use thereof in an electrolysis process US10174846 2002-06-19 US20030009857A1 2003-01-16 Mateo Jozef Jacques Mayer; Rene Lodewijk Maria Demmer
The invention relates to an evaporative crystallization process to make salt compositions that includes a step wherein a mother liquor is formed that contains an effective amount of a crystal growth inhibitor that is selected from oligopeptides, polypeptides, and polymers bearing two or more carboxylic acid groups or carboxyalkyl groups and optionally further phosphate, phosphonate, phosphino, sulfate, and/or sulfonate groups, such as carboxymethyl cellulose with phosphate groups, to form salt crystals with a (111 ) face. The salt can be washed with a reduced amount of washing water while still containing lower amounts of K, Br, SO4, and/or Ca. A wet salt can be obtained by partially drying the salt crystals that are formed.
17 Aqueous ultra-dilute composite solution US456756 1989-12-26 US5030364A 1991-07-09 Shigeru Nakane; Kohichi Sugita; Hideyuki Kosaka
An aqueous ultra-dilute composite solution, which comprises 1.4.times.10.sup.-7 to 2.7.times.10.sup.3 ppm of a chlorine ion, and 4.times.10.sup.-12 to 4.times.10.sup.-3 ppm of a sodium ion or 7.times.10.sup.-8 to 1.3.times.10.sup.3 ppm of an iron ion, and is capable of forming sodium chloride having an oblate tetrahedral crystal form.
18 Sodium chloride in novel crystal form and aqueous solution containing the same US363733 1989-06-09 US5021079A 1991-06-04 Shigeru Nakane
Sodium chloride in a flat tetrahedronal crystal form and an aqueous solution containing (i) sodium chloride in a flat tetrahedronal crystal form or sodium chloride capable of converting to a flat tetrahedronal crystal form and (ii) iron chloride.
19 Steam treatment of compacted muriate of potash US35750564 1964-04-06 US3333920A 1967-08-01 ZANDON VICTOR A; KLEIN MILTON H; STEWART NORMAN R
20 Process for the preparation of common salt by the evaporation of solutions US66992057 1957-07-05 US3095281A 1963-06-25 GERRIT SCHINKEL
Common salt is prepared by evaporation of solutions to which have been added small amounts of a soluble salt of carboxy methyl cellulose, preferably in amounts between 1 and 100 mg. per litre of solution. The salt obtained is coarser and harder and less incrustation of the evaporator occurs. The hardness may be further increased by the addition of compounds supplying nitrilotriacetate ions (see Specification 790,457). Examples refer to the evaporation of brine to which has been added 30 mg. of sodium carboxy methyl cellulose per litre of brine and the addition of 30 mg. each of sodium nitrilotriacetate and sodium carboxy methyl cellulose. Specification 617,137 also is referred to.
QQ群二维码
意见反馈