序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种制盐精卤母液盐晶回收方法 CN201710332771.4 2017-05-12 CN107098361A 2017-08-29 方远西; 周福根; 林应南; 周高峰
发明公开了一种制盐精卤母液盐晶回收方法,包含以下步骤:1)井矿盐卤经过原卤澄清、加药反应和精卤澄清后进入离心机离心甩液,离心后盐浆进行增稠处理;2)盐浆增稠处理后静置,上层清液溢流进入母液池,沉积底部的盐浆入溶解桶,加水溶解充分后过滤获得过滤后液;3)将过滤后液经过离子交换树脂去除Ca2+、Mg2+和部分硫酸根离子,然后将溶液加热减压蒸发,出现晶体析出后保持温度和压不变,向溶液内加入双水和乙醇的混合溶液进行溶析;4)溶析后将溶液过滤,所得滤液泵入蒸发器内蒸发结晶形成盐晶。本发明节省成本,在100万吨/年的盐硝联产装置的基础上,每年新增产量可增加效益约为340万元,同时回收的盐晶显著地去除了Ca2+、Mg2+和SO42‑等杂质离子。
2 降低盐溶液中金属离子浓度的方法 CN99814905.5 1999-06-24 CN1331658A 2002-01-16 J·M·斯尔瓦
本方法降低含溶性金属螯合剂,如葡糖酸钠的盐水溶液中多价金属阳离子,如、镁、、镍和铬的浓度。该方法包括:使盐水经受初级盐水处理,然后调节盐水溶液的pH到约1.5~5.5,让盐水溶液与至少一种含螯合离子交换树脂的树脂床接触,一般接触温度为约10℃~90℃,流速为每小时约4~32树脂床体积,再回收盐水溶液。
3 降低盐溶液中金属离子浓度的方法 CN00814693.4 2000-07-25 CN1182036C 2004-12-29 J·M·斯尔瓦; D·F·福斯特; T·J·菲维
发明涉及一种从盐溶液中除去杂质的方法,该盐水溶液包含水溶性螯合剂,本方法包括如下步骤:a)调节盐水溶液pH值到pH值为从大约2至大约4;b)使盐水溶液通过第一官能化树脂;该第一官能化树脂有能从盐水溶液中除去多价金属阳离子的官能团;c)调节盐水溶液pH值到pH值为从大约9至大约11.5;和d)使盐水溶液通过第二官能化树脂;该第二官能化树脂有能从盐水溶液中除去土金属阳离子的官能团。
4 锂回收的热驱动离子交换方法 CN96117295.9 1996-10-24 CN1157800A 1997-08-27 F·W·利维
离子(如锂)可通过使用采用了离子交换材料的温度致动的,离子交换工艺从含这些离子。任选地含一种或多种其它离子(如其它的金属离子)的盐中去除或回收。该工艺有赖于离子交换材料对欲被回收的所需离子的,随温度变化的选择系数的变化,从而使所需离子在一种温度下被相对选择性地释放,而不需要的离子在另一温度下被相对选择性地释放。本发明的工艺可用于进行任何离子(或离子组)与另外离子或离子组的分离,其中,对一种离子(或离子组)的选择系数与对其它离子(或离子组)的选择系数相比基本上是温度依赖的。
5 从含卤有机废料的解处理生产和/或碱土金属的纯卤化物盐的方法 CN200680013047.5 2006-04-11 CN101163641A 2008-04-16 简·普罗西达
从用含卤有机废料,如PVC废料,在有和/或碱土金属氢化物存在下解(1)并接着分离(2)成固体水解产物部分(4)和液体水解产物部分(3)所获得的液体水解产物部分(3),生产碱和/或碱土金属或它们混合物的纯卤盐的方法。液体水解产物部分用氢卤酸如HCl中和(6),在其中加入絮凝剂(7),分离成含固体部分和含水部分(9)并纳米过滤(11)含水部分。来自纳米过滤的渗透物纯度高得以致能用传统蒸发(14)以满足真空盐纯度要求那样的令人惊讶的纯的形式获得卤化物盐晶体。
6 提纯盐的方法 CN02828453.4 2002-11-15 CN1622918A 2005-06-01 詹姆斯·M·西尔瓦; 保罗·W·巴克利
描述了一种提纯含有葡糖酸盐盐的方法,包括首先通过将此盐水通过第一离子交换树脂将过渡金属阳离子及其他杂质除去。然后将此盐水通过第二离子交换树脂以有效除去土金属阳离子。在第三步骤中,用含吸附剂处理盐水以除去从离子交换树脂引入的杂质,以及有效除去季铵盐如氯甲基三乙基氯化铵。也描述了含碳吸附剂再生的方法。
7 降低盐溶液中金属离子浓度的方法 CN99814905.5 1999-06-24 CN1144758C 2004-04-07 J·M·斯尔瓦
本方法降低含溶性金属螯合剂,如葡糖酸钠,的盐水溶液中多价金属阳离子,如、镁、、镍和铬的浓度。该方法包括:使盐水经受初级盐水处理,然后调节盐水溶液的pH到约1.5~5.5,让盐水溶液与至少一种含螯合离子交换树脂的树脂床接触,一般接触温度为约10℃~90℃,流速为每小时约4~32树脂床体积,再回收盐水溶液。
8 降低盐溶液中金属离子浓度的方法 CN00814693.4 2000-07-25 CN1382106A 2002-11-27 J·M·斯尔瓦; D·F·福斯特; T·J·菲维
发明涉及一种从盐溶液中除去杂质的方法,该盐水溶液包含水溶性螯合剂,本方法包括如下步骤:a)调节盐水溶液pH值到pH值为从大约2至大约4;b)使盐水溶液通过第一官能化树脂;该第一官能化树脂有能从盐水溶液中除去多价金属阳离子的官能团;c)调节盐水溶液pH值到pH值为从大约9至大约11.5;和d)使盐水溶液通过第二官能化树脂;该第二官能化树脂有能从盐水溶液中除去土金属阳离子的官能团。
9 알킬아미노포스폰 킬레이트수지와 그들의 제법 및 염수 정제 방법. KR1019830000759 1983-02-24 KR1019910009112B1 1991-10-31 미쉘아르망지르베르꼬르네트-3
내용 없음.
10 염화나트륨의 공업수용액의 제조방법과, 수산화나트륨 수용액의 전해질 제조, 탄산나트륨의 제조 및 염화나트륨 결정체의 제조를 위한 여기서 얻은 염화나트륨 수용액의 용도 KR1019940700744 1992-08-31 KR100230100B1 1999-11-15 니나니레온; 아담진프랑코이스; 험브로트세드릭
염화수소를 함유하는 연기(2)를 중탄산나트륨(4)으로 건식 처리하여 수집된 고체생성물(8)을 물에 주입하여 염화나트륨과 다가금속의 수용액을 함유하는 수성 혼합물(12)을 제조하고, 이 수성매체(12)를 처리하여 이로부터 다가금속을 제거하여서 하는 염화나트륨의 공업적 수용액의 제조방법.
11 Method for producing an aqueous sodium chloride solution and use thereof US185934 1994-03-18 US5474581A 1995-12-12 Leon Ninane; Jean-Francois Adam
Method for producing an industrial aqueous sodium chloride solution (22) in which an aqueous solution of sodium chloride (20) containing polyvalent metals and constituting a mother liquor obtained from the precipitation (14) of hydroxides of said metals from an aqueous solution (6) of hydrochloric acid is obtained from washing (3,4) fumes (1) containing hydrogen chloride and originating from the oxidation of chlorinated products, is treated on a chelating Na-type resin. The aqueous sodium chloride solution obtained in this manner has applications in the production of aqueous sodium hydroxide solutions by means of electrolysis or electrodialysis and in the production of sodium chloride crystals by means of evaporation.
12 Ion exchange removal of impurities from chlorate process liquors US516397 1990-04-30 US5104500A 1992-04-14 Walter W. Ruthel
Disclosed is an improved method of operating a sodium chlorate crystal production system where a brine stream is electrolyzed to form sodium chlorate, the sodium chlorate is crystallized in a crystallizer, and the mother liquor from a crystallizer is recycled to the brine stream. The improvement comprises passing the mother liquor through a cationic chelating ion exchange column before it is returned to the brine stream, and operating the ion exchange column so that it removes, on the average, only the amount of calcium that enters the system in the brine stream.
13 Method for separating sodium and potassium by ion exchange US578415 1990-09-07 US5066404A 1991-11-19 Yu Komatsu; Yoshinori Fujiki; Takayoshi Sasaki
A method for separating sodium and potassium from an aqueous solution containing such metals, which comprises selectively ion-exchanging sodium and potassium with titania hydrate (TiO.sub.2 .multidot.nH.sub.2 O where n=1 to 2) obtained by treating potassium titanate to remove potassium therefrom, followed by a reaction at a temperature of from 25.degree. to 80.degree. C. to desorb and purify sodium and potassium.
14 Sodium removal from brines US127819 1987-12-02 US4859343A 1989-08-22 Teresita C. Frianeza-Kullberg; Darrish W. Barnette
A method for removing 99% of the sodium ions from a natural or industrial brine containing dissolved salts of metals of Group 1A of the periodic chart and in which brine sodium ions are not the predominant metal ions by contacting the brine at pH 11 to 12 with an ion exchanger selected from crystalline antimonic acid and polyantimonic acid, and removing from contact with the ion exchanger the brine with greater than 99% of the sodium ions removed.
15 Removal of metals from solutions US776347 1985-09-16 US4747954A 1988-05-31 Walter L. Vaughn; Rafael E. Guerra
Particles, fibers, or filaments of ethylene/carboxylic acid copolymers or terpolymers, especially in highly porous or microporous form, are employed in removing contaminants from solution in aqueous and/or organic liquids, especially metal contaminants. The porous polymers, having a surface area/weight ratio of at least about 0.5 m.sup.2 /gm, are useful alone, but may also be used in conjunction with, or in tandem with, previously known ion exchange resins such as polyacrylic acid crosslinked with divinylbenzene.
16 Removal of Mg.sup.++ and Ca.sup.++ ions from NaCl brine US533682 1983-09-19 US4522951A 1985-06-11 John M. Lee; William C. Bauman
Alkaline earth metal ions, e.g., Mg.sup.++ and/or Ca.sup.++, are removed from alkali metal brines, e.g., NaCl, by use of a particulate, macroporous, anion exchange resin containing the in-situ reaction product of polymeric, amorphous, hydrous zirconium oxide and a source of PO.sub.4.sup.--- ions, e.g., H.sub.3 PO.sub.4.
17 Removal of sulfate ions from brine US533713 1983-09-19 US4488949A 1984-12-18 John M. Lee; William C. Bauman
Macroporous cation exchange resins with sulfonic acid functional groups having polymeric hydrous zirconium oxide and polyacrylic acid contained therein are useful in substantially removing sulfate, borate, bicarbonate and/or phosphate ions from alkali metal salt solutions.
18 Process for removing available halogen from anolyte brine US600678 1984-04-16 US4470891A 1984-09-11 Sanders H. Moore; Ronald L. Dotson
A process is disclosed for substantially reducing the dissolved halogen and hypohalite ion concentration in a recycled brine from a membrane electrolytic cell with a closed loop brine system comprising the addition of a non-sulfate generating reducing agent to the brine in a less than conventional stoichiometric molar quantity in relation to each mole of available halogen and hypohalite present in the brine after the steps of dehalogenation, precipitation and pH adjustment.
19 Magnesium aluminate anion exchangers US360716 1982-03-22 US4392979A 1983-07-12 John M. Lee; William C. Bauman
Preparations and uses are shown for novel crystalline aluminates which conform generally to the empirical formulaMgA.sub.a.sup.v Z.sub.b.sup.v.nAl(OH).sub.3.mH.sub.2 Owhere A and Z represent negative-valence ions or radicals selected from the group comprising hydroxyl, halide, inorganic acid, and organic acid,n is a value of from about 1 to about 2,v is a negative valence of 1, 2, or 3,a and b each have values of from zero to 2,with (va)+(vb) equal to 2, andwith m being a value of zero or more.
20 Magnesium aluminate anion exchangers US360717 1982-03-22 US4392961A 1983-07-12 John M. Lee; William C. Bauman
Preparations and uses are shown for novel crystalline aluminates which conform generally to the empirical formulaMgA.sub.a.sup.v Z.sub.b.sup.v.nAl(OH).sub.3.mH.sub.2 OwhereinA and Z represent negative-valence ions or radicals selected from the group comprising hydroxyl, halide, inorganic acid, and organic acid,n is a value of from about 1 to about 2,v is a negative valence of 1, 2, or 3,a and b each have values of from zero to 2, with (va)+(vb) equal to 2, and withm being a value of zero or more.
QQ群二维码
意见反馈