首页 / 国际专利分类库 / 作业;运输 / 飞行器;航空;宇宙航行 / 飞机;直升飞机 / 边界层控制 / .通过使用电磁瓷砖,流体离子发生器,静电或等离子
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 GAS TURBINE ENGINES HAVING PLASMA FLOW-CONTROLLED INTAKE SYSTEMS US13898275 2013-05-20 US20140338333A1 2014-11-20 Mark Matwey
Embodiments of a Gas Turbine Engine (“GTE”) are provided, as are embodiments of a plasma flow-controlled intake system for deployment on a GTE. In one embodiment, the GTE includes a turbine section, a combustion section upstream of the turbine section, a compressor section upstream of the combustion section, and intake section upstream of the compressor section. The intake section includes a plenum, a first inlet fluidly coupled to the plenum, and a flow-obstructing structure projecting into the plenum and having an outer surface impinged by the airflow directed into the plenum through the first inlet during operation of the GTE. A first array of plasma actuators is disposed on flow-obstructing structure and, when activated, suppresses vortex shedding of the air flowing over the outer surface of the flow-obstructing structure.
142 RAIL PLASMA ACTUATOR FOR HIGH-AUTHORITY FLOW CONTROL US13962721 2013-08-08 US20140144517A1 2014-05-29 Laxminarayan RAJA; Jayant SIROHI; Mark CRAWFORD; Francesco STEFANI
Apparatus and methods for forming and propagating a plurality of plasma armatures along electrodes. In particular embodiments, the electrodes are flush mounted to the surface and the plasma armatures are formed and propagated at a high frequency and velocity.
143 System and method for aerodynamic flow control US13056042 2009-07-31 US08640995B2 2014-02-04 Thomas Corke; Flint Thomas; David Shatzman; Tommie Wood
A vortex generator system comprises one or more plasma streamwise vortex generators (PSVGs) or plasma wedge vortex generators (PWVGs). The PSVGs and PWVGs each comprises a first electrode and a second electrode separated by a dielectric layer. The first electrode extends in a longitudinal direction. The PSVGs and PWVGs can be installed on a surface arranged to receive airflow in a certain flow direction. The PSVGs have a rectangular first electrode is exposed and extends at least somewhat parallel to the expected flow direction, whereas the first electrode of the PWVGs is more triangular in shape. When an AC voltage is applied to the first and second electrodes, a plasma forms along edges of the first electrode. The plasma imposes a body force in a cross-flow direction, which induces a cross-flow velocity that, in combination with the mean flow, produces streamwise-oriented counter-rotating vortices.
144 PLASMA-ENHANCED ACTIVE LAMINAR FLOW ACTUATOR SYSTEM US13821196 2010-09-15 US20130291979A1 2013-11-07 Pontus Nordin; Göte Strindberg
The invention regards a plasma-enhanced active laminar flow actuator system (1) adapted to an aerodynamic surface (3) which has a nano-engineered composite material layer(5) comprising a set of electrodes arranged (7′, 7″) in at least an upper (P1) and a lower (P2) plane extending parallel with the aerodynamic surface (3); the electrodes (7′, 7″) comprising nano filaments (9); the electrodes (7′) of the upper plane (P1) are arranged in the aerodynamic surface (3) such that they define a smooth and hard aerodynamic surface (3);conductors (11, 11′) of nano filaments (9″) arranged for electrical communication between a control unit (13) and each of the electrodes (7′, 7″), wherein the control unit (13) is adapted to address current between cooperating electrodes (7′, 7″) of the upper and lower plane (P1, P2) from a current supply depending upon air flow characteristic signals fed from air flow sensor means (19).
145 METHOD OF PROCESSING ACOUSTIC WAVES EMITTED AT THE OUTLET OF A TURBO ENGINE OF AN AIRCRAFT WITH A DIELECTRIC-BARRIER DISCHARGE DEVICE AND AIRCRAFT COMPRISING SUCH A DEVICE US13643382 2011-04-18 US20130043343A1 2013-02-21 Alexandre Alfred Gaston Vuillemin
A method of processing acoustic waves emitted at an outlet of a turbo engine of an aircraft with a dielectric barrier discharge device, and an aircraft including such a device. The method includes activating the dielectric barrier discharge device so as to emit an electric wind in a direction of acoustic waves so as to attenuate the acoustic waves. An aircraft can include such a dielectric barrier discharge device.
146 Disbanded cascaded array for generating and moving plasma clusters for active airflow control US12273650 2008-11-19 US08251318B2 2012-08-28 Vyacheslav Khozikov; Shengyi Liu
An array of electrodes for selectively generating plasma is described herein. The array includes a first electrode disposed along a first dielectric, and at least a second electrode. A second electrode is sandwiched between the first dielectric and the second dielectric. A power supply provides electrical power to at least the first and second electrodes. In turn, a power supply controller controls the power supply, so as to regulate the electrical power supplied to at least the first and the second electrodes, and to cause the first and second electrodes to generate and move plasma to modify different airflow patterns.
147 Over-wing traveling-wave axial flow plasma accelerator US11562777 2006-11-22 US08006939B2 2011-08-30 Paul D. McClure; Charles J. Chase
A method to manipulate a fluid flow over a surface is provided. This method may be used to reduce drag, improve the lift to drag (L/D) ratio, attach fluid flow, or reduce flow noise at the surface. This involves flowing a fluid over the surface wherein the fluid contains positively charged ions and electrons. An electric field accelerates ions and electrons in directions parallel to the electric field. A magnetic field at the surface redirects ions and electrons based on their velocity and charge. The magnetic field imparts little force on the relatively heavy and slow moving positive ions but has a significant impact on the relatively fast moving, light weight electrons. This results in a non-zero net change in the total momentum of the positive ions and electrons allowing thrust to be realized. This thrust may be sufficient for vehicle propulsion or manipulation of the fluid flow around the vehicle. Pulsed and traveling wave implementations of this body force enable exploitation of frequencies to which the flow is sensitive, improving effectiveness of this method.
148 REDUCING THE BOUNDARY LAYER OF AERODYNAMIC EFFECTS US12672483 2007-08-08 US20110116202A1 2011-05-19 Francois Giry; Claude Annie Perrichon; Pierre Piccaluga; Jose Buendia
Aerodynamic effects are found when air flows over objects such as aircraft and motor cars moving through ambient air. The flow of air through the objects involves issues concerned with aerodynamics. Forced circulation of air through pipes presents numerous problems of aerodynamics because of the variable behavioural modes of operation generally in subsonic mode. Opposing forces then come into play and throttle the flows, thus reducing the effectiveness of a given diameter or cross section under particularly critical conditions in the flow of gases, generally air. The flow of gases or liquids close to the walls is slowed and opposes the overall flow, creating differential flow gradients between the centre of the flow and the peripheral edges thereof. This electronic component known as an eCRT “electron convector real time” which is made up of a very fine mixture of various silica powders to which there are added metal powders, for example titanium powder, aluminium powder, these being added in very precise ratios by those skilled in the art, attracts the electrons and converts them into a vibrational mechanical mode simply through electronic affinity which attracts, transforms and directs the energy of the electrons. The method and devices of this patent can be used to correct and regulate all agitated electrons and free ions, also involved in moving fluids and gases, which devices can be used in the mechanical, aeronautical, space and marine industries and in the field of computers, food stuffs and also the sphere of medicine.
149 Method and Apparatus for Multibarrier Plasma Actuated High Performance Flow Control US12598993 2008-05-08 US20100127624A1 2010-05-27 Subrata Roy
Embodiments of the invention relate to a method and apparatus for plasma actuated high performance flow control. A specific embodiment of a plasma actuator can incorporate a power source; a first electrode in contact with a first dielectric layer and connected to the power source; a second electrode in contact with a second dielectric layer and connected to the power source; and a ground electrode. The power source drives the first electrode with a first ac voltage pattern with respect to the ground electrode and drives the second electrode with a second ac voltage pattern with respect to the ground electrode such that application of the first voltage pattern produces a first plasma discharge in a flow region, and a first electric field pattern in the flow region, and application of the second voltage pattern produces a second plasma discharge in the flow region and a second electric field pattern in the flow region. The first and second electrodes are offset along the direction of flow in the flow region and the first voltage pattern and the second voltage pattern have a phase difference such that the first and second electric fields drive flow in the flow region in different portions of the flow region at different times.
150 Wingless Hovering Of Micro Air Vehicle US12342583 2008-12-23 US20100102174A1 2010-04-29 Subrata Roy
Embodiments of the subject invention relate to a Wingless Hovering Micro Air Vehicle (WHOMAV) and its Power Source Unit (PSU). Embodiments can operate at reasonable power levels for hovering and withstanding expected wind gusts. Embodiments of the subject invention can have a diameter less than 15 cm. Embodiments can have one or more smooth (continuous curvature) surface and can be operated using electromagnetic and electrohydrodynamic principles. The wingless design of specific embodiments can allow operation with no rotating or moving components. Additional embodiments can allow active response to the surrounding flow conditions. The issue of low lift to drag ratio and degradation of airfoil efficiency due to the inability of laminar boundary layers attachment can also be significantly reduced, or eliminated. The electromagnetic force can be generated by applying a pulsed (alternating/rf) voltage between a set of grounded and powered electrodes separated by a polymer insulator, dielectric, or other material with insulating properties.
151 Method of controlling aircraft, missiles, munitions and ground vehicles with plasma actuators US11415535 2006-05-02 US07624941B1 2009-12-01 Mehul Patel; Tom Corke
The present invention relates to a method of controlling an aircraft, missile, munition or ground vehicle with plasma actuators, and more particularly to controlling fluid flow across their surfaces or other surfaces, which would benefit from such a method. The method includes the design of an aerodynamic plasma actuator for the purpose of controlling airflow separation over a control surface of a aircraft, missile, or a ground vehicle, and more particularly to the method of determining a modulation frequency for the plasma actuator for the purpose of fluid flow control over these vehicles. The various embodiments provide the steps to increase the efficiency of aircraft, missiles, munitions and ground vehicles. The method of flow control provides a means for reducing aircraft, missile's, munition's and ground vehicle's power requirements. These methods also provide alternate means for aerodynamic control using low-power hingeless plasma actuator devices.
152 SYSTEMS AND METHODS FOR CONTROLLING FLOWS WITH PULSED DISCHARGES US12339674 2008-12-19 US20090173837A1 2009-07-09 Joseph S. Silkey; Philip Smereczniak
Systems and methods for controlling air vehicle boundary layer airflow are disclosed. Representative methods can include applying electrical energy bursts and/or other energy bursts in nanosecond pulses in the boundary layer along a surface of an air vehicle. In a particular embodiment, electrical energy is discharged into the boundary layer to reduce the tendency for the boundary layer to separate and/or to reduce the tendency for the boundary layer to transition from laminar flow to turbulent flow. In other embodiments, energy can be discharged via pulses having a pulse width of about 100 nanoseconds or less, and an amplitude of about 10,000 volts or more. Actuators discharging the energy can be arranged in a two-dimensional ray of individually addressable actuators. Energy can be delivered to the boundary layer via a laser emitter, and energy can be received in a receiver after having transited over at least a portion of the airflow surface. In another embodiment, high energy electrons can be injected into the boundary layer using a hollow cathode array at the airflow surface. In still another embodiment, energy can be introduced at the surface of the air vehicle at a rate sufficient to heat the flow and cause shock waves to propagate into the flow.
153 Laser-based flow modification to remotely conrol air vehicle flight path US12289262 2008-10-23 US20090173836A1 2009-07-09 Kevin Kremeyer
Systems, equipment, and methods to deposit energy to modify and control air flow, lift, and drag, in relation to air vehicles, and methods for seeding flow instabilities at the leading edges of control surfaces, primarily through shockwave generation through deposition of laser energy at a distance.
154 ROTARY WING SYSTEM WITH ION FIELD FLOW CONTROL US11960126 2007-12-19 US20090159754A1 2009-06-25 Alan B. Minick
A rotary-wing system which generates a directed ion field to propel a fluid along a rotary-wing to control at least one boundary layer characteristic.
155 Single dielectric barrier aerodynamic plasma actuation US10994029 2004-11-16 US07380756B1 2008-06-03 Carl L. Enloe; Thomas E. McLaughlin; Eric J. Jumper; Thomas C. Corke
A single dielectric barrier aerodynamic plasma actuator apparatus based on the dielectric barrier discharge phenomenon is disclosed and suggested for application to aerodynamic uses for drag reduction, stall elimination and airfoil efficiency improvement. In the plasma actuator apparatus non-uniform in time and space, partially ionized gasses are generated by one or more electrode pairs each having one electrically encapsulated electrode and one air stream exposed electrode and energization by a high-voltage alternating current waveform. The influence of electrical waveform variation, electrode polarity, electrode size and electrode shape on the achieved plasma are considered along with theoretical verification of achieved results. Light output, generated thrust, ionizing current waveform and magnitude and other variables are considered. Misconceptions prevailing in the present day plasma generation art are addressed and are believed-to-be corrected. The influence of electrostatic shielding effects of the developed plasma on the applied electric field are also considered.
156 METHODS AND APPARATUS FOR REDUCING DRAG VIA A PLASMA ACTUATOR US11934272 2007-11-02 US20080122252A1 2008-05-29 Thomas C. Corke; Richard Spivey
A vehicle includes a surface over which airflow passes. A plasma actuator is configured to generate plasma above the surface, the plasma coupling a directed momentum into the air surrounding the surface to reduce separation of the airflow from the surface. A method of reducing separation of airflow from a surface of the vehicle includes generating plasma in air surrounding the surface at a position where the airflow would separate from the surface in the absence of the plasma.
157 METHOD AND APPARATUS FOR MITIGATING TRAILING VORTEX WAKES OF LIFTING OR THRUST GENERATING BODIES US11852753 2007-09-10 US20080061192A1 2008-03-13 Steven Sullivan
This patent provides for a method and apparatus for mitigating the formation of concentrated wake vortex structures generated from lifting or thrust-generating bodies and maneuvering control surfaces wherein the use of contour surface geometries promotes vortex-mixing of high and low flow fluids. The method and apparatus can be combined with various drag reduction techniques, such as the use of riblets of various types and/or compliant surfaces (passive and active). Such combinations form unique structures for various fluid dynamic control applications to suppress transiently growing forms of boundary layer disturbances in a manner that significantly improves performance and has improved control dynamics.
158 Rotor blade with an electrical field US11085630 2005-03-21 US07311490B2 2007-12-25 Aloys Wobben
The invention concerns a rotor blade, in particular a rotor blade of a wind power installation. The object of the present invention is to provide measures for still further improving the CR-value and also the level of acoustic power of rotor blades of wind power installations. A rotor blade for a wind power installation includes a high pressure side and a low pressure side. A substantially constant, area-covering electrostatic field is provided on the low pressure side.
159 Surface flow diverting and static charging ducted pores on wing or blade tip to reduce wake and BVI noise US11509780 2006-08-25 US20070252047A1 2007-11-01 Anadish Kumar Pal
Air pressure distribution for airfoil lower and upper surfaces is utilized to divert airflow using ducts formed in space-curve shapes placed inside the airfoil volume, through span-wise located inlets from high pressure areas on the airfoil lower surface near the leading edge and through chord-wise spaced inlets on the side face of the airfoil wing tip correspondingly to the side face of the airfoil wing tip through chord-wise spaced outlets on the side face of the airfoil wing tip and to span-wise located outlets to the low pressure areas on the airfoil upper surface. Triboelectric materials on the wing surfaces are employed to static charge the air in drag. Inside the ducts, the employment of either triboelectric linings and materials, or HV-supplied electrodes, or both, help to static charge the diverted air flow to and from the airfoil wing tip side face to diffuse wing tip vortex core early.
160 Plasma actuator US11581932 2006-10-17 US20070089795A1 2007-04-26 Jamey Jacob
An actuator including a first and second conductor on a dielectric, wherein application of a voltage to the first conductor creates a plasma, thereby modifying a fluid flow in communication with the actuator. Related systems and methods are also provided.
QQ群二维码
意见反馈