首页 / 国际专利分类库 / 作业;运输 / 塑料的加工;一般处于塑性状态物质的加工 / 与小类B29B,C或D联合使用的、涉及成型材料的引得表 / 用未特别指定的高分子化合物增强(用未特别指定的橡胶入B29K221/00){如c08l101 / 00}
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 METHOD FOR THE MANUFACTURE OF FIBROUS YARN, FIBROUS YARN AND USE OF THE FIBROUS YARN EP12829387.5 2012-09-10 EP2753738A1 2014-07-16 SALMELA, Juha; KIISKINEN, Harri; OKSANEN, Antti
The invention relates to a method for the manufacture of fibrous yarn comprising the steps, where an aqueous suspension (100) comprising fibers and at least one rheology modifier is provided, followed by directing said suspension (100) through at least one nozzle (20a, 20b, 20c, 30a, 30b, 30c, 40a, 40b, 40c), to form at least one yarn, and then dewatering said yarn.
102 Kunststoffrohr EP13176951.5 2013-07-18 EP2730829A1 2014-05-14 Hattaß, Dirk; Werth, Josef

Die vorliegende Erfindung betrifft ein Kunststoffrohr (100) mit einer Rohrwand (101), mit einer Schweißfläche (105) zum Verschweißen des Kunststoffrohrs (100) mit einem weiteren Kunststoffrohr (200), die ein inneres Schweißaustriebsreservoir (107) zum Aufnehmen eines nach Innen gedrückten Schweißaustriebs (117) umfasst; und einem Verstärkungsabschnitt (103) zum Verstärken der Rohrwand (101) im Bereich des Schweißaustriebsreservoirs (107), in dem ein Außendurchmesser (Ra) des Kunststoffrohres (100) zur Schweißfläche hin zunimmt.

103 DEVICE FOR PRODUCING TIRE AND METHOD OF PRODUCING TIRE EP10774855 2010-05-06 EP2431164A4 2013-05-01 HASEGAWA TAKASUMI
When an unvulcanized tire is formed, a tire constituting member having a joint portion is prevented from being triply overlapped and is wound around a body to be formed with high accuracy. When detection means (60) detects the joint portion in the vicinity of a position where the tire constituting member (G) is cut, the tire constituting member (G) is cut into a length shorter than a predetermined length while excluding the joint portion. A front end portion and a rear end portion of the wound tire constituting member (G) are held by front end holding attaching means (40) and rear end holding attaching means (50), both holding attaching means (40) and (50) are separated, the tire constituting member (G) is extended into a predetermined length and both holding attaching means (40) and (50) are moved to the side of the body to be formed (H). The front end portion of the tire constituting member (G) is attached to the body to be formed (H), a support member (2) is rotated, the tire constituting member (G) is wound around the body to be formed (H), the rear end holding attaching means (50) is moved to the side of the body to be formed (H) as the tire constituting member (G) is wound and the rear end portion of the tire constituting member (G) is joined to the front end portion.
104 METHOD OF ATTACHING COMPONENTS AND ARTICLE FORMED USING SAME EP06721127.6 2006-02-28 EP1855935A1 2007-11-21 NAUGHTON, Padraig, J.; RISTOSKI, Toni
The present invention includes methods of bonding two or more components to form a unitary article. The methods involve placing the components in their final assembled position to create a joint cavity, filling the cavity with an adhesive, and curing the adhesive so that it can be handled without dissociating the components. The invention also relates to articles formed by the disclosed methods.
105 IMPROVED PERFORMANCE OF VIBRATION WELDED THERMOPLASTIC JOINTS EP96938821.0 1996-11-08 EP0859698A1 1998-08-26 KAGAN, Valeriy; BEDNARCZYK, Caroline; LUI, Siu-Ching; SMITH, Gregory, R.
The invention provides an improved method of vibration welding of thermoplastic joints. Such welding is conducted by vibrating two fiber reinforced thermoplastic parts under pressure along their common interface to generate frictional heat to melt and fuse their surfaces together. Fibers from at least one surface penetrate both into the weld and into the other surface. As a result, the welded, fibre reinforced thermoplastic surfaces have increased tensile strength than heretofore achievable. Vibration welds of reinforced thermoplastic surfaces according to this invention achieve a maximum tensile strength as high as about 120 % of a weld formed by the unreinforced surfaces of corresponding thermoplastic materials.
106 CONNECTION BETWEEN COMPOSITES WITH NON-COMPATIBLE PROPERTIES AND METHOD FOR PREPARATION PCT/EP0304171 2003-04-22 WO2004078461A8 2005-11-10 BECH ANTON; HAHN FRANK A HOELGAARD
A connection between composites (10, 12) with non-compatible properties and a method of preparing of such connections are provided. The composites comprise first and second type fibres, respectively, as well as resin. The connection comprises a transition zone (52) between the composites (10, 12) having a layered structure. The transition zone may optionally comprise a transition member and the transition member may optionally be integrated with one or more of the composites. Examples of non-compatible properties where the present connection will be appreciated are great differences in stiffness, e.g. Young's modulus, or in coefficient of thermal expansion.
107 LOAD-BEARING STRUCTURES FOR AIRCRAFT ENGINES AND PROCESSES THEREOF PCT/US2012059844 2012-10-12 WO2013103426A3 2014-11-27 WOLFE JARED MATTHEW; KOSTKA JAMES MICHAEL
Load-bearing structures constructed from polymer matrix composite (PMC) materials, and processes for their production. The structures are produced from at least one shaped panel formed of a continuous fiber reinforcement in a thermoplastic resin matrix. The shaped panel has been thermoformed to have a substantially constant cross-sectional thickness and portions that lie in different planes and arc interconnected by one or more bends. The shaped panel is machined to alter its shape, and optionally to produce multiple separate subcomponents (10,12, 14, 16) therefrom. The machined shaped panel can constitute the entire structure, or the structure can be formed by joining the machined shaped panel with other shaped panels or by joining two or more of the subcomponents. The structure can be installed on an aircraft engine to secure components to the engine.
108 METHOD OF MAKING A SMOOTH ELASTIC NONWOVEN COMPOSITE PCT/IB2012050790 2012-02-21 WO2012137084A3 2012-12-27 WILSON LENOX; AMENDOLA MARCUS; KRUEGER JEFFREY; LAKE MATTHEW; MCCORMACK ANN
A method making an elastic nonwoven composite that contains an elastic film laminated to one or more nonwoven web materials is provided. The method includes forming an elastic film from a polymer composition and passing the film and a nonwoven web material, the nonwoven material having a basis weight from about 5 gsm to about 30 gsm,through a nip formed by at least one patterned roll. The patterned roll includes raised bonding elements repeating in the machine direction, the elements being spaced in the machine direction by less than about 760 micrometers. At the nip, the film and the nonwoven web material are concurrently melt fused while the film is under tension at a stretch ratio of about.5 or more in the machine direction.
109 부드러운 런아웃부들을 구비한 일체로 형성된 보강재들을 가진 복합 구조물들 및 이를 만드는 방법 KR1020137013813 2011-12-07 KR101900967B1 2018-09-20 푹,데이비드에이.; 로켓,피터제이.; 글린,앤드류
단위화된복합구조물은일체로형성된적어도하나의복합보강재를가진복합부재를포함한다. 보강재의적어도하나의단부는보강재와복합구조물사이에실질적으로부드러운변이를형성하는런아웃부를포함한다.
110 코드밴드용 중첩 스플라이싱 장치 KR1020130089711 2013-07-29 KR101504952B1 2015-03-23 호프만,베른트; 클레너,랄프; 게슬라인,디트마르; 플리거,월터
코드밴드 스트립을 이송하는 제1 이송부; 스플라이싱된 코드밴드 스트립을 배출하는 제2 이송부; 및 수직으로 이동 가능한 스플라이스 스트립을 포함하는 스플라이싱부;를 포함하는, 이송되는 코드밴드 스트립의 선행하는 모서리를, 배출되는 코드밴드의 후행하는 모서리에 중첩 스플라이싱하는, 코드밴드용 중첩 스플라이싱 장치로서, 상기 스플라이싱부(14)는 모서리(45)의 고정을 위해서 형성되는 스플라이싱 스트립 세그먼트(16a, 16b, 16c, 16d)들을 각각 포함하고 일렬로 배치되는 다수의 스플라이싱 세그먼트(15a, 15b, 15c, 15d)들을 포함하고, 상기 스플라이싱 세그먼트(15a, 15b, 15c, 15d)들은 서로에 대하여 상대적으로 회전가능하고 할당되는 조정 요소(26)에 의해서 서로에 대하여 위치가 변경 가능한 것을 특징으로 하는, 코드밴드용 중첩 스플라이싱 장치.
111 단일 나일론 6 복합재료의 제조 방법 KR1020157000087 2013-07-02 KR1020150027783A 2015-03-12 야오,동강; 왕,유지앙; 박민수; 조경훈; 르브,팡빙; 마,피포; 쥬,신펭
본 발명은 단일 나일론 6 복합재료의 반응 공정 방법에 관한 것으로, 상기 공정 방법은 카프로락탐의 음이온성 개환 중합 반응을 이용하여 나일론 6 강화재(reinforcement) 상에 나일론 6 기지(matrix)를 형성한다.
112 매끈한 탄성 부직 복합체 제조 방법 KR1020137028048 2012-02-21 KR1020140036165A 2014-03-25 윌슨레녹스; 아멘돌라마르쿠스; 크루에거제프리; 레이크맷튜; 맥코맥안
하나 이상의 부직 웹 물질에 적층된 탄성 필름을 함유하는 탄성 부직 복합체 제조 방법이 제공된다. 이 방법은 중합체 조성물로부터 탄성 필름을 형성하고, 필름 및 약 5 gsm 내지 약 30 gsm의 기초중량을 갖는 부직 웹 물질을 적어도 하나의 패터닝된 롤에 의해 형성된 닙을 통해 통과시키는 것을 포함한다. 패터닝된 롤은 기계 방향에서 반복되는 융기된 결합 요소를 포함하고, 요소들은 기계 방향에서 약 760 ㎛ 미만만큼 이격된다. 닙에서, 필름이 기계 방향에서 약 1.5 이상의 신장비로 인장력을 받는 동안에 동시에 필름 및 부직 웹 물질이 용융 융합된다.
113 부드러운 런아웃부들을 구비한 일체로 형성된 보강재들을 가진 복합 구조물들 및 이를 만드는 방법 KR1020137013813 2011-12-07 KR1020130141562A 2013-12-26 푹,데이비드에이.; 로켓,피터제이.; 글린,앤드류
단위화된 복합 구조물은 일체로 형성된 적어도 하나의 복합 보강재를 가진 복합 부재를 포함한다. 보강재의 적어도 하나의 단부는 보강재와 복합 구조물 사이에 실질적으로 부드러운 변이를 형성하는 런아웃부를 포함한다.
114 관 라이닝재의 제조 방법 KR1020090129769 2009-12-23 KR1020100084117A 2010-07-23 카미야마타카오; 카네타코지; 후지이켄지; 우에노마사오
PURPOSE: A manufacturing method for a pipe lining material is provided to prevent burns by excluding a tool for moving a tube and a tubular resin absorber. CONSTITUTION: A manufacturing method for a pipe lining material(1) is as follows. A tubular resin absorber(10) is inserted into a tube and expanded into a cylindrical shape to contact and cover the interior surface of the tube(11). A heater(20) is tightly wound around the exterior of the tube. The tube and the tubular resin absorber are heated by being connected to the heater, so that the tube is thermally fused to the tubular resin absorber.
115 ANORDNUNG MIT ZUMINDEST EINEM VERBUNDROHR EP15001848.9 2015-06-23 EP2966333B1 2018-10-03 Brülisauer, Urs; Peter, Manuel; Walker, Silvan; Schwendemann, Daniel
116 METALL-KUNSTSTOFF-VERBUNDTEIL EP16401024.1 2016-04-05 EP3228440A1 2017-10-11 Gubler, Ulrich; Keseberg, Jan; Rauschenberger, Jens; Vogler, Daniel

Für einen festen Verbund eines Metall-Kunststoff-Schichtverbundteils (1) schlägt die Erfindung einen faserverstärkten Thermoplast und eine in den Kunststoff (3) eingebettete und in eine Faserverstärkung (10) des Kunststoffs (3) eindringende Oberflächenstruktur (9) mit beispielsweise Stiften (5) des Metalls (2) vor.

117 Kunststoffrohr EP13176951.5 2013-07-18 EP2730829B1 2017-09-06 Hattaß, Dirk; Werth, Josef
118 VERFAHREN ZUR HERSTELLUNG EINES LAGERELEMENTS SOWIE LAGERELEMENT EP16184077.2 2016-08-12 EP3135463A3 2017-06-14 Martin, Ulrich; Kehr, Andreas; Spatzig, Wolfgang

Verfahren zur Herstellung eines Lagerelements (1) umfassend die Bereitstellung eines zumindest ein erstes Elastomermaterial umfassenden Hauptkörpers (3), Bereitstellung zumindest eines zumindest einen ersten Faserverbundwerkstoff aufweisenden ersten Beschichtungselements (7) und Aufbringen des ersten Beschichtungselements (7) auf zumindest einen Bereich einer ersten Oberfläche (5) des Hauptkörpers (3), wobei der erste Faserverbundwerkstoff des ersten Beschichtungselements (7) vor dem Aufbringen auf den Hauptkörper zumindest teilweise und/oder zumindest bereichsweise ausgehärtet wird und mittels zumindest eines zumindest ein erstes Adhäsionsmaterial umfassenden ersten Verbindungselements (9) zumindest bereichsweise mit dem Hauptkörper (3) verbunden wird.

119 METHOD FOR THE MANUFACTURE OF FIBROUS YARN EP12829387.5 2012-09-10 EP2753738B1 2016-11-09 SALMELA, Juha; KIISKINEN, Harri; OKSANEN, Antti
120 FIBER-REINFORCED EPOXY COMPOSITES AND METHODS OF MAKING SAME WITHOUT THE USE OF OVEN OR AUTOCLAVE EP13895066.2 2013-10-18 EP3052565A1 2016-08-10 BARNELL, Thomas J.; RAUSCHER, Michael D.; STIENECKER, Rick D.; NICKERSON, David M.; TONG, Tat H.
Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite with a glass transition temperature of at least about 100°C by curing the fiber reinforcement infused with the reactive mixture by utilizing the exothermically generated heat, wherein curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.
QQ群二维码
意见反馈