序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 CUTTER FOR SKIVING EP15800559.5 2015-04-13 EP3075481A1 2016-10-05 KIKUCHI, Toshimasa; NAKAMURA, Yozo; KOMATSU, Naotaka

This cylindrical cutter (10) for skiving comprises a plurality of cutting edge parts (11) in the circumferential direction by having tooth grooves (15) be formed between circumferentially adjoining cutting edge parts (11) with the tooth grooves (15) being formed into a helical shape twisting in the axial direction. Cutting edge grooves (16) are each formed in the cutting edge parts (11) so as to divide the cutting edge parts (11) into multiple sections in the length direction of the tooth grooves (15).

2 Gear shaper cutting method and apparatus EP98112597.4 1998-07-07 EP0890406A3 2000-11-22 Egawa, Tsuneo, c/o Mitsubishi Heavy Ind., Ltd.; Fujita, Masakatsu, c/o Mitsubishi Heavy Ind., Ltd.; Kubokawa, Hisashi, c/o Mitsubishi Heavy Ind., Ltd.; Kakutani, Akihide, c/o Mitsubishi Heavy Ind., Ltd.; Tonohara, Yoshiharu, Mitsubishi Heavy Ind., Ltd.

A gear shaper effects a gear shaper cutting method by dry cutting, using a pinion cutter made of high-speed tool steel at a high efficiency. The pinion cutter of the gear shaper is coated, at least on the flank thereof, with at least one layer of film having a composition comprising: (Ti(1-x) Alx )(Ny C(1-y) ), wherein 0.2≤x≤0.9 and 0.2≤y≤1.0.

Gear shaper cutting is performed at a cutting speed of 300m/min or less.

3 Gear shaper cutting method and apparatus EP98112597.4 1998-07-07 EP0890406A2 1999-01-13 Egawa, Tsuneo, c/o Mitsubishi Heavy Ind., Ltd.; Fujita, Masakatsu, c/o Mitsubishi Heavy Ind., Ltd.; Kubokawa, Hisashi, c/o Mitsubishi Heavy Ind., Ltd.; Kakutani, Akihide, c/o Mitsubishi Heavy Ind., Ltd.; Tonohara, Yoshiharu, Mitsubishi Heavy Ind., Ltd.

A gear shaper effects a gear shaper cutting method by dry cutting, using a pinion cutter made of high-speed tool steel at a high efficiency. The pinion cutter of the gear shaper is coated, at least on the flank thereof, with at least one layer of film having a composition comprising: (Ti(1-x) Alx )(Ny C(1-y) ), wherein 0.2≤x≤0.9 and 0.2≤y≤1.0.

Gear shaper cutting is performed at a cutting speed of 300m/min or less.

4 Step-like sharpened helical gear-shaped cutter EP81101905 1981-03-14 EP0037909A3 1982-05-26 Clarenbach, Johannes, Dipl.-Ing.
5 ZAHNRAD, VERFAHREN ZUM HERSTELLEN DER VERZAHNUNG EINES ZAHNRADES, SOWIE WERKZEUGZAHNRAD ZUM HERSTELLEN DER VERZAHNUNG EINES ZAHNRADES EP17177950.7 2017-06-26 EP3263261A1 2018-01-03

Die Erfindung betrifft ein Verfahren zum Herstellen der Verzahnung eines Zahnrades, die ein Modul aufweist, der kleiner als 0,5 mm ist oder der kleiner als 0,25 mm ist oder der kleiner als 0,15 mm ist, und die x Zähne und eine Zahnradteilung p aufweist, wobei von einem Zahnradrohling, der um eine erste Rotationsachse rotiert, Material mittels eines Werkzeugzahnrades abgetragen wird, das synchron zu dem Zahnradrohling um eine zweite Rotationsachse rotiert und das eine zur herzustellenden Verzahnung komplementäre Gegenverzahnung aufweist. Das Verfahren zeichnet sich dadurch aus, dass benachbarte Zähne der Gegenverzahnung auf dem Teilkreis jeweils um n·p (n multipliziert mit p) voneinander beabstandet sind, wobei n eine natürliche Zahl größer 1 ist und wobei x und n teilerfremd sind. Insbesondere kann vorteilhaft vorgesehen sein, dass das Abtragen mittels Wälzschälen oder Wälzschälschleifen erfolgt, wobei der Vorschub des Werkzeugs in Richtung der ersten Rotationsachse im Vergleich zu einem herkömmlichen Wälzschälprozess oder Wälzschälschleifprozess um den Faktor n reduziert ist.

6 WÄLZSCHÄLVERFAHREN UND SCHNEIDWERKZEUG ZUR ERZEUGUNG ZUMINDEST TEILVERRUNDETER ZAHNKÖPFE EP15804137.6 2015-12-03 EP3233343A1 2017-10-25 ZIMMERMANN, Jonathan
The invention relates to a method for providing teeth on working gears by means of a cutting tool (2) having cutting teeth (3), wherein the working gear and the cutting tool (2) are driven in rotation at a predetermined speed ratio to one another, a workpiece spindle axis and a tool spindle axis are oriented at an axis intersection angle to one another. The tooth flanks (6, 6') of the cutting teeth (3) form, on the front ends thereof, cutting edges having flank cutting sections which are arranged on the edges of a gap (20) between two adjacent cutting teeth (3) and extend along a first contour line, and which as a result of an advance in the direction of the toothing of the working gear engage in the working gear in a cutting manner to produce teeth having a tooth flank contour predetermined by the shape of the cutting edge. According to the invention each of the two flank cutting sections is adjoined by a tip cutting section which extends along a second contour line in the region of the base of the cutting tooth gap (20), wherein the second contour line is curved having a foot corner curvature, and at least partially rounded tooth tips are produced on the teeth by the tip cutting sections. Thus teeth having rounded tips can be produced.
7 Gear shaper cutting method and apparatus EP98112597.4 1998-07-07 EP0890406B1 2004-10-06 Egawa, Tsuneo, c/o Mitsubishi Heavy Ind., Ltd.; Fujita, Masakatsu, c/o Mitsubishi Heavy Ind., Ltd.; Kubokawa, Hisashi, c/o Mitsubishi Heavy Ind., Ltd.; Kakutani, Akihide, c/o Mitsubishi Heavy Ind., Ltd.; Tonohara, Yoshiharu, Mitsubishi Heavy Ind., Ltd.
8 Schrägschneidrad mit Treppenscharfschliff EP81101905.8 1981-03-14 EP0037909A2 1981-10-21 Clarenbach, Johannes, Dipl.-Ing.

Jeder Zahn eines Schrägschneidrades hat eine Zahnkopffläche (16) und eine tiefe Flanke (18) sowie eine hohe Flanke (20). Über die Lebensdauer des Schrägschneidrades müssen diese Flanken immer wieder nachgeschärft werden. Infolge des Nachschärfens in Form eines Treppenscharfschliffes treten dabei üblicherweise Treppenschliffehler auf. Mit Hilfe spezieller Korrekturmethoden läßt sich der Einfluß dieser Treppenschliffehler wesentlich mindern. In der oberen Darstellung ist das unkorrigierte, genaue Evolventenprofil der tiefen Zahnflanke (18) und der hohen Zahnflanke (20) jeweils mit dicken Linien dargestellt, und zwar in der oberen Figur für einen ersten Stirnschnitt und in der unteren Figur für einen zweiten Stirnschnitt. Zwischen diesen beiden Stirnschnitten liegt eine sogenannte Abnützungsphase. Mit dünnen Linien sind schematisch und unmaßstäblich die zugehörigen Korrekturen dargestellt, welche die Flankenprofile in den betreffenden Stirnschnitten aufweisen müssen, damit sich die erwünschte Korrektur des Treppenschliffehlers ergibt.

9 CUTTER FOR SKIVING AND GEAR MANUFACTURING METHOD USING SAME US15776458 2016-08-04 US20180326520A1 2018-11-15 Tetsuji MONDEN
Provided is a cutter for skiving that includes cutting teeth that are disposed side by side in a longitudinal direction of tooth grooves and have tooth heights set so as to increase from a downstream side toward an upstream side in a cutting direction, and cutting teeth that are disposed side by side in a longitudinal direction of cutting edge grooves and have tooth heights set so as to incrementally increase from a downstream side toward an upstream side in a rotational direction for each number M of tooth trace patterns (where M is the smallest natural number of at least 2) derived by Equation (1) below. St:Sc=M:N (1), where St is a number of the tooth grooves, Sc is a number of the cutting edge grooves, and N is a number of patterns (where N is the smallest natural number) on a cutting face.
10 GEAR CUTTER MACHINING APPARATUS, GEAR CUTTER MACHINING METHOD, TOOL PROFILE SIMULATION APPARATUS, AND TOOL PROFILE SIMULATION METHOD US15880965 2018-01-26 US20180221976A1 2018-08-09 Katsuhito YOSHINAGA; Hideki SHIBATA
A controller of a gear cutter machining apparatus includes a rotation control unit and a movement control unit. The rotation control unit rotates a gear cutter about a central axis of the gear cutter, and rotates a grinding wheel about a central axis of the grinding wheel. The movement control unit gradually changes a crossed axes angle when relatively moving the grinding wheel in a direction of the central axis of the gear cutter, and moves the grinding wheel in a translating direction that is a rotational tangent direction of the gear cutter.
11 Modified tooth proportion gear cutter US14689260 2015-04-17 US10016827B2 2018-07-10 Benjamin S. Sheen; Carlos H. Wink
An exemplary modified tooth proportion gear cutter includes a gear cutter that has a plurality of cutting teeth, and each one of the cutting teeth has a pair of cutting edges configured to cut a gear in a blank orientation so as to provide the gear in a final orientation. The gear in its final orientation has an involute tooth profile including a plurality of cut teeth and a plurality of valleys therebetween. The cutting edges are configured to cut the gear in the blank orientation, such that the gear in the final orientation includes the involute tooth profile with an active profile section and an operating pitch diameter that is spaced apart from the active profile section.
12 GEAR CUTTING MACHINE AND METHOD US15570454 2016-06-15 US20180141142A1 2018-05-24 Junji USUDE
A gear cutting machine for gear cutting a workpiece (W) using a gear shaped cutter (17), by engaging and rotating the workpiece (W) that can rotate around a workpiece axis and a gear shaped cutter (17) that can rotate around a cutter axis, while cutting and feeding the gear shaped cutter (17), including: rough cutting at a cross axis angle to the cutter axis, then moving the cutter axis by moving a predetermined angle around the workpiece axis, and performing finish cutting such that the cutter axis has an angle with regard to the workpiece axis in a plane that includes the feeding axis direction and the cutting direction after moving.
13 Gear shaping tool reconstruction US372959 1982-04-29 US4465411A 1984-08-14 Clarence A. Boyce, Jr.; Harold E. Voetsch
A gear shaper or shaver cutter which has broken or damaged teeth is salvaged by removing good teeth from an identical cutter which is otherwise unsalvagable. The removal of damaged teeth from the salvagable cutter, and removal of good teeth from the unsalvagable cutter, is done by electrical discharge machining (EDM) wire. The good teeth are removed as an integral group which is snugly fitted into and plugs the slot where the damaged teeth were removed from the salvageable cutter. The group is locked in place by a lock pin in an aperture made by EDM electrode procedure, the lock pin being welded in place by electron beam welding, and or any other suitable state of the art.
14 Spline cutting mechanism US28476272 1972-08-29 US3915059A 1975-10-28 PINE MACDONALD
A spline cutting mechanism according to the present invention comprises a generally frusto-conical cutter having a cutting edge and a trailing edge. A plurality of teeth are defined in the periphery of the cutter at the cutting edge, each having a clearance at the cutting edge and behind the cutting edge. The cutter is supported by a cutter shaft that is freely supported for sympathetic rotation in a cutter housing by a plurality of bearings. The cutter housing is adapted for mounting on a conventional compound slide of a lathe in such manner as to dispose the axis of the cutter in angular relation with work that is rotatably supported by a lathe chuck. The freely rotatable cutter is advanced into the rotating work by the lead screw of the lathe to cut either external or internal longitudinal splines into the work.
15 Method of re-sharpening pinion tools US33006573 1973-02-06 US3842546A 1974-10-22 RAMOND P
A method of re-sharpening pinion tools using a grinding wheel shaped as a pair of conical frustums having a common major base, and grinding the leading face of a tooth of the pinion tool with one of the conical faces of the wheel while the other conical face forms a continuous connecting face with the next tooth of the pinion tool, and the radius of the major base of the wheel being coincident with the radius of the pinion tool which passes through the apex of one of the edge angles of the tooth bottom of the pinion tool.
16 Gear cutting methods US3720989D 1970-05-25 US3720989A 1973-03-20 RAMOND P
Method of manufacturing teeth, notably of gearings having their outline cut integrally by means of a pinion-tool, wherein an apparent outline of theoretical pinion-tool for different states of wear of said tool is calculated from the outline of the desired workpieces and of its generating rack ; from the surfaces of the teeth of the theoretical pinion-tool a theoretical hob is calculated for generating said surfaces ; a simplified hob is then made from said theoretical hob, and used for milling piniontools adapted to produce rough-cut gears after sharpening the leading faces of said pinion-tools ; the outlines of these gears are then compared with the desired outline for any possible correction of the simplified hob outline and the resultant correction of the pinion-tools and workpieces ; this method is applicable to the cutting of spur or helical teeth, whether of the involute type or not, for both internally toothed and externally toothed gears, by using milled pinion-tools.
17 Gear-shaped cutter US52854466 1966-02-18 US3371395A 1968-03-05 ERNEST WILDHABER
18 Face and side cutter US40882564 1964-11-04 US3298084A 1967-01-17 JOHANNES LOOMAN
19 Cutting tool for gear shaping US3560948 1948-06-28 US2644223A 1953-07-07 PRAEG WALTER S
20 Gear cutter US17628237 1937-11-24 US2202407A 1940-05-28 SYKES WILLIAM E
QQ群二维码
意见反馈