序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 齿轮研磨 CN201480024093.X 2014-07-07 CN105163888B 2017-07-14 涂矢隆彦; 森冈彰一
发明提供一种能够容易地制作,无需修整等特别的整形作业而能够对齿轮齿面进行高精度研磨的齿轮用研磨体。齿轮用研磨体(4A)具有能够绕旋转轴线(S1)进行旋转运动且与作为研磨对象的齿轮(6)的齿(9)啮合螺纹状研磨部(8A),并通过该螺纹状研磨部(8A)的旋转运动而对齿轮(6)的齿面(9a)进行研磨,齿轮用研磨体(4A)具备多个具有挠性的研磨片(10A),研磨片(10A)具有从以螺纹状研磨部(8A)的螺纹底径(DA)为直径的假想圆(13)朝向径向外侧鼓起的鼓出部(10a),通过使研磨片(10A)的鼓出部(10a)绕旋转轴线(S1)彼此错开并且使研磨片(10A)在旋转轴线(S1)的轴线方向上重合,从而形成螺纹状研磨部(8A)。
2 螺纹状工具的制作方法 CN201280025377.1 2012-02-17 CN103582537B 2015-12-23 柳瀬吉言; 越智政志
提供一种螺纹状工具的制作方法,能够制作出可高精度地对面齿轮进行磨削加工的螺纹状工具。是如下的方法:用于制作螺纹状工具,该螺纹状工具以其直径从轴向端部朝轴向中间部逐渐变大的方式形成,并在被加工面齿轮的齿轮加工中使用,基于与上述被加工面齿轮啮合的规定的小齿轮来设定假想齿轮,该假想齿轮与上述规定的小齿轮啮合且具有比上述规定的小齿轮的齿数多的齿数,基于上述假想齿轮来设定假想内齿轮(15),该假想内齿轮(15)具有与上述假想齿轮的齿数相同的齿数且在内侧具有齿,基于上述假想内齿轮(15)来设定螺纹状磨具(10),该螺纹状磨具(10)具有在上述假想内齿轮(15)的齿轮加工中使用的各规格要素。
3 一种二齿渐开线螺旋圆柱齿轮快速制造方法及其装置 CN201610064373.4 2016-01-29 CN105562834A 2016-05-11 肖海荣; 高云; 余涛; 郭瑞松
发明公开了一种二齿渐开线螺旋圆柱齿轮快速加工方法及其装置,其通过在带有砂轮的数控磨削设备磨削加工二齿渐开线螺旋圆柱齿轮;该砂轮外周沿有两个呈直状且相对于砂轮的轴向中心面对称的磨料层;砂轮切削时分别与齿轮的基圆相切;砂轮随磨削进给轴上下移动的同时绕砂轮旋转轴旋转实现磨削量和回转磨削;二齿渐开线螺旋圆柱齿轮绕主轴作旋转运动的同时沿其轴线左右往返平移形成螺旋齿廓。本发明有效地解决了少齿数渐开线螺旋圆柱齿轮加工时的根切现象,同时确保加工过程的稳定性和准确性,提升了少齿数渐开线螺旋圆柱齿轮齿形面的加工精度和表面质量,也提高了加工效率,降低了加工成本,保证了产品质量要求。
4 用于不连续齿形磨削的刀具和方法 CN200810213611.9 2008-08-22 CN101372056A 2009-02-25 B·桑德; D·弗赛地克; I·富斯蒂切
齿轮磨削工具可以是校准和重整形的。各齿面沿刀具轴线方向的几何形状被设计成使刀具的至少两个以上齿面,最好是全部齿面用于工件齿面的粗加工,并在精加工过程中使仅用于粗加工的重整形齿面缩回足够距离,以使它们在精加工过程中不与工件齿面形成接触
5 连续展成式齿轮磨削方法 CN201480030852.3 2014-05-28 CN105263659B 2017-05-24 尾崎昌稔; 山崎彻; 堀见和广; 安田树由; 早川可久; 中岛圣
发明提供一种在连续展成式齿轮磨削中能够使用高气孔率陶瓷砂轮溶性磨削液来高效率地制造高精度的齿轮的连续展成式齿轮磨削方法。其中,使用陶瓷砂轮(12)和水溶性磨削液(GF),该陶瓷砂轮(12)是以在磨粒之间形成有气孔的状态利用陶瓷结合剂结合该磨粒而成的砂轮,该磨粒的粒度为F120~F180,该水溶性磨削液(GF)包含提高清洗性的界面活性剂以及提高润滑性的极压添加剂。由此,在连续展成式齿轮磨削中,通过降低陶瓷砂轮(12)的砂轮磨耗而延长修整间隔,磨削的中断时间变少,磨削作业效率提高,能够高效率地制造高精度的齿轮。
6 连续展成式齿轮磨削方法 CN201480030852.3 2014-05-28 CN105263659A 2016-01-20 尾崎昌稔; 山崎彻; 堀见和广; 安田树由; 早川可久; 中岛圣
发明提供一种在连续展成式齿轮磨削中能够使用高气孔率陶瓷砂轮溶性磨削液来高效率地制造高精度的齿轮的连续展成式齿轮磨削方法。其中,使用陶瓷砂轮(12)和水溶性磨削液(GF),该陶瓷砂轮(12)是以在磨粒之间形成有气孔的状态利用陶瓷结合剂结合该磨粒而成的砂轮,该磨粒的粒度为F120~F180,该水溶性磨削液(GF)包含提高清洗性的界面活性剂以及提高润滑性的极压添加剂。由此,在连续展成式齿轮磨削中,通过降低陶瓷砂轮(12)的砂轮磨耗而延长修整间隔,磨削的中断时间变少,磨削作业效率提高,能够高效率地制造高精度的齿轮。
7 齿轮研磨 CN201480024093.X 2014-07-07 CN105163888A 2015-12-16 涂矢隆彦; 森冈彰一
发明提供一种能够容易地制作,无需修整等特别的整形作业而能够对齿轮齿面进行高精度研磨的齿轮用研磨体。齿轮用研磨体(4A)具有能够绕旋转轴线(S1)进行旋转运动且与作为研磨对象的齿轮(6)的齿(9)啮合螺纹状研磨部(8A),并通过该螺纹状研磨部(8A)的旋转运动而对齿轮(6)的齿面(9a)进行研磨,齿轮用研磨体(4A)具备多个具有挠性的研磨片(10A),研磨片(10A)具有从以螺纹状研磨部(8A)的螺纹底径(DA)为直径的假想圆(13)朝向径向外侧鼓起的鼓出部(10a),通过使研磨片(10A)的鼓出部(10a)绕旋转轴线(S1)彼此错开并且使研磨片(10A)在旋转轴线(S1)的轴线方向上重合,从而形成螺纹状研磨部(8A)。
8 齿轮磨削用螺纹状磨石及齿轮磨削方法 CN201280018463.X 2012-02-20 CN103476528B 2015-12-09 柳瀬吉言; 越智政志
发明提供一种齿轮磨削用螺纹状磨石及齿轮磨削方法,能够以简单的结构对齿轮进行高精度磨削。通过与工件(W1)啮合并旋转而对该工件(W1)进行磨削的齿轮磨削用的螺纹状磨石(20)中,由对工件(W1)进行磨削的螺纹状磨石(21)和与该螺纹状磨石(21)同轴地连接、并对被该螺纹状磨石(21)磨削后的工件(W1)进行磨削的螺纹状磨石(22)构成,对该螺纹状磨石(21、22)设定沿磨石宽度方向以规定长度划分而得到的多个磨削范围(L1、L2),将该螺纹状磨石(21、22)的各磨削范围(L1、L2)作为每一个工件(W1)的使用范围。
9 螺纹状工具的制作方法 CN201280025377.1 2012-02-17 CN103582537A 2014-02-12 柳瀬吉言; 越智政志
提供一种螺纹状工具的制作方法,能够制作出可高精度地对面齿轮进行磨削加工的螺纹状工具。是如下的方法:用于制作螺纹状工具,该螺纹状工具以其直径从轴向端部朝轴向中间部逐渐变大的方式形成,并在被加工面齿轮的齿轮加工中使用,基于与上述被加工面齿轮啮合的规定的小齿轮来设定假想齿轮,该假想齿轮与上述规定的小齿轮啮合且具有比上述规定的小齿轮的齿数多的齿数,基于上述假想齿轮来设定假想内齿轮(15),该假想内齿轮(15)具有与上述假想齿轮的齿数相同的齿数且在内侧具有齿,基于上述假想内齿轮(15)来设定螺纹状磨具(10),该螺纹状磨具(10)具有在上述假想内齿轮(15)的齿轮加工中使用的各规格要素。
10 齿轮磨削用螺纹状磨石及齿轮磨削方法 CN201280018463.X 2012-02-20 CN103476528A 2013-12-25 柳瀬吉言; 越智政志
发明提供一种齿轮磨削用螺纹状磨石及齿轮磨削方法,能够以简单的结构对齿轮进行高精度磨削。通过与工件(W1)啮合并旋转而对该工件(W1)进行磨削的齿轮磨削用的螺纹状磨石(20)中,由对工件(W1)进行磨削的螺纹状磨石(21)和与该螺纹状磨石(21)同轴地连接、并对被该螺纹状磨石(21)磨削后的工件(W1)进行磨削的螺纹状磨石(22)构成,对该螺纹状磨石(21、22)设定沿磨石宽度方向以规定长度划分而得到的多个磨削范围(L1、L2),将该螺纹状磨石(21、22)的各磨削范围(L1、L2)作为每一个工件(W1)的使用范围。
11 用于不连续齿形磨削的刀具和方法 CN200810213611.9 2008-08-22 CN101372056B 2013-07-24 B·桑德; D·弗赛地克; I·富斯蒂切
齿轮磨削工具可以是校准和重整形的。各齿面沿刀具轴线方向的几何形状被设计成使刀具的至少两个以上齿面,最好是全部齿面用于工件齿面的粗加工,并在精加工过程中使仅用于粗加工的重整形齿面缩回足够距离,以使它们在精加工过程中不与工件齿面形成接触
12 CONTINUOUS-GENERATION GEAR-WHEEL GRINDING METHOD US14893723 2014-05-28 US20160107291A1 2016-04-21 Masatoshi OZAKI; Toru YAMAZAKI; Kazuhiro HORIMI; Tatsuyoshi YASUDA; Yoshihisa HAYAKAWA; Sho NAKAJIMA
A continuous-generation gear grinding method of conducting a gear grinding process such that while a thread-shaped grinding wheel is rotated around an axial center thereof and fed in an axial center direction, a position coming into contact with abrasive grains is constantly changed in the presence of a water-soluble grinding fluid by performing a grinding feed in a direction parallel to an axial center of a gear blank and by serially rotating the gear blank around the axial center, the grinding wheel being a vitrified grinding wheel having abrasive grains bonded by a vitrified bond with pores formed among the abrasive grains, and the abrasive grains having a grain size of F120 to F180.
13 SCREW-SHAPED GRINDSTONE FOR GRINDING GEARS AND METHOD FOR GRINDING GEARS US14114780 2012-02-20 US20140141699A1 2014-05-22 Yoshikoto Yanase; Masashi Ochi
Provided are: a screw-shaped grindstone for grinding gears that has a simple configuration and is capable of grinding gears with high precision; and a method for grinding gears. The screw-shaped grindstone (20) for grinding gears, which grinds a workpiece (W1) by rotating while meshing with the workpiece (W1), comprises a screw-shaped grindstone (21) that grinds the workpiece (W1), and a screw-shaped grindstone (22) that is linked to the screw-shaped grindstone (21) on the same axis, and grinds the workpiece (W1), which has been ground by the screw-shaped grindstone (21). A plurality of grinding ranges (L1, L2) that are sectioned at prescribed lengths in the width direction of the grindstone are established with respect to the screw-shaped grindstones (21, 22), and each grinding range (L1, L2) of the screw-shaped grindstones (21, 22) serves as the range of use per workpiece (W1).
14 Gear grinding tool US12892552 2010-09-28 US08641482B2 2014-02-04 Tatsuya Ito; Naoki Iwasa; Hiroshi Ogawa; Keisuke Takahashi; Yuichi Tomizawa; Yasutaka Matsuo; Masahiro Izumida
A gear grinding tool, which includes a helical tooth with grinding faces on surfaces thereof, grinds tooth faces of a gear as a workpiece with the grinding faces. The grinding face includes a rough grinding face for performing a rough grinding process. The grinding face includes a rough grinding face for performing a rough grinding process, and the rough grinding face includes a forming line for performing a finishing process.
15 GEAR GRINDING TOOL AND METHOD OF USING GEAR GRINDING TOOL US12892552 2010-09-28 US20110076926A1 2011-03-31 Tatsuya Ito; Naoki Iwasa; Hiroshi Ogawa; Keisuke Takahashi; Yuichi Tomizawa; Yasutaka Matsuo; Masahiro Izumida
A gear grinding tool, which includes a helical tooth with grinding faces on surfaces thereof, grinds tooth faces of a gear as a workpiece with the grinding faces. The grinding face includes a rough grinding face for performing a rough grinding process. The grinding face includes a rough grinding face for performing a rough grinding process, and the rough grinding face includes a forming line for performing a finishing process.
16 Tool and method for discontinuous profile grinding US12229400 2008-08-22 US20090053977A1 2009-02-26 Dragan Vucetic; Bjorn Sandler; Ingo Faulstich
A gear grinding tool can be trued and re-profiled. The geometry of the individual profiles in the direction of the tool axis is designed so that at least more than two, preferably all, flanks of the tool are used for rough machining of the work piece flanks, and that during finishing the re-profiled flanks provided only for roughing are set back far enough so that during finishing they do not come into contact with the work piece flanks.
17 Chamfering cutting tool or grinding wheel and method of making and use thereof US11657897 2007-01-25 US07377731B1 2008-05-27 Joseph L. Arvin
A work piece having edges comprising teeth, slots, dovetail, keyway or other irregularly shaped artifacts, can be provided with a uniform chamfer around the periphery of the work piece by bringing a grinding wheel or cutter in one single down feed at indexed intervals. The shape or profile of the grinding wheel or cutter is formed from an algorithm depending on the shape and dimensions of the work piece artifacts, such as gear teeth, etc., to provide the uniform chamfer at each slot of, for example, an internal or external gear wheel. A method of providing such a chamfer on irregularly shaped artifacts comprises forming a gear grinding wheel from the dimensions of the desired chamfer, and providing a chamfering tool or grinding wheel in accordance with an algorithm desired for the required chamfer, then bringing the gear chamfering tool in proximity to, and in contact with the edges of the work piece so as to produce a uniform chamfer on the sides and back edge. The method may include a step of moving of the cutter or grinding wheel from one side to another and tilting the cutter or grinding wheel to chamfer the back side.
18 Method and mechanism for the grinding of groove-shaped external profiles on work pieces US302904 1994-09-20 US5624301A 1997-04-29 Sieghart Lenz; Hans-Joachim Ulrich; Jurgen Ruhle
The invention covers a method and a mechanism for the simultaneous machining of profile sections of one and the same work piece by two grinding wheels. Acc. to the method first the finish-grinding positions of the two grinding wheels (4.1 and 4.2) are calculated. After moving the two grinding wheels (4.1 and 4.2) into these positions these two grinding wheels (4.1 and 4.2) are profiled by the dressing tool (1) to generate a surface/roughness suitable for rough-grinding. Then the two grinding wheels (4.1 and 4.2) are moved into the calculated rough-grinding positions and then this operation takes place. Then the two grinding wheels (4.1 and 4.2) are moved into the finish-grinding positions followed by dressing to generate the surface/roughness for finish grinding. Acc. to the mechanism the grinding slides (14.1 and 14.2) are arranged in such a way that the two grinding wheels (4.1 and 4.2) have a common axis of rotation (15). The rotating dressing tool (1) located on a dresser (16) to be traversed in two planes is arranged parallel to this axis (15). By means of this dressing tool (1) all profile sections of the two grinding wheels (4.1 and 4.2) can be profiled. The generated profiles are transferred onto the work piece (2) without error.
19 Gear finishing process US819899 1992-01-13 US5140781A 1992-08-25 William L. Marsh; Kenneth L. Kaufman
Reduction of index undulation errors associated with helical gear teeth caused by the grinding process during the manufacture of the gears without degrading other gear accuracies (e.g. profile, tooth spacing) below levels required for precision (AGMA16 or DIN1) gears. A mold of the space between several gear teeth is obtained, with the mold having a length equal to or greater than the wavelength of the undulation error to be reduced. A microfinishing film is affixed to the mold and the mold is placed relative to a gear tooth so that the microfinishing film rests against a tooth surface having the undulation error. The grit size of the microfinishing film is such as to remove approximately 2 to 3 millionths of gear material with each pass through the teeth by the mold. Multiple passes are made by hand until the undulation error is reduced to an acceptable value. During the process the microfinishing film is replaced after approximately 3 or 4 passes and the process is repeated for each tooth of the gear.
20 Method and device for fine profiling tools coated with super-hard materials US461157 1983-01-26 US4533812A 1985-08-06 Manfred Lorenz
A method and device for fine profiling or shaping tools coated with super-hard material, for example cubic crystalline boron nitride or diamond, especially tools coated with a single layer and having a prescribed or predetermined profile or shape. The rotatably driven tool is profiled or shaped in the region of the cutting surface by a clustered electron or laser beam which is controlled in a course corresponding to the prescribed shape or contour of the tool, and is oriented tangential to the tool; the profiling is accomplished by vaporization of the crystal tips or points which project from the desired profile. The cutting surface may be roughened in conformity to the desired profile after the fine profiling or shaping thereof. The rotatably drivable tool, and the device which produces the electron or laser beam, are mounted in such a way that a relative movement can be carried out along a prescribed path or course between the tool and the electron or laser beam, which is oriented tangential to the tool.
QQ群二维码
意见反馈