序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 智能机加工系统及其智能刀具夹具 CN200980116075.3 2009-03-17 CN102015203A 2011-04-13 克里斯托弗·A·苏普罗克; 杰弗·尼科尔斯; 罗伯特·杰拉德; 巴里·富塞尔
一种智能刀具夹具(10),为机床平台(8)所使用。所述智能刀具夹具(10)包括具有第一端(14)和相对第二端(16)的主体(12)、所述主体(12)中配置的处理器(20)以及所述主体(12)中配置的并与所述处理器(20)通信的收发器(22)。所述收发器(22)被构造为与外部接收设备(28)通信。所述主体(12)的第一端(14)被构造为耦接到所述机床平台(8),而所述相对第二端(16)被构造为选择性地耦接到具有许多传感器(26)的切削组件(18)。所述处理器(20)被构造为在所述切削组件(18)耦接到所述主体(12)时与所述许多传感器(26)通信。所述处理器(20)可以使用基于模型的数据分析、数字滤波和其他技术执行数据分析任务。所述智能刀具夹具(10)可以基于与机床控制器经由接收器或接口设备的双向通信对机加工工艺建议改变。
2 工作机械的主轴装置 CN200880010739.3 2008-03-27 CN101646520A 2010-02-10 井上淳司; 吉川睦; 田内拓至
发明提供一种工作机械的主轴装置,设置有检测驱动装置(25)对杆件(18)的推压的压力传感器(31)、检测杆件(18)的位移的位移传感器(32)、根据该杆件(18)的推压力和杆件(18)的位移来检测筒夹(20)对工具(19)的夹紧力的工具夹紧力检测部(33)、以及根据该工具的夹紧力和预先设定的碟形弹簧(24)的作用力特性值来判断该碟形弹簧(24)的更换时期的弹簧更换时期判断部(36),由此,能够恰当地检测出工具夹紧力而高精度地判断施力装置的更换时期。
3 用于工具或工件的夹紧装置及利用该夹紧装置机加工工件的方法 CN200780015074.0 2007-03-02 CN101432097B 2013-05-01 H·达尔奎斯特
发明涉及一种具有用于测量夹盘和工具夹具或工件夹具之间的距离的装置的夹紧装置。其中,所述夹紧装置(1)包括夹盘(2)和与夹盘(2)匹配的工具夹具或工件夹具(3),夹盘(2)具有柱(7),它具有支承面(13),用于沿X和Y方向对所述工具或工件进行定向,并且具有端面(6),用于建立垂直于所述Z方向的平面,其中,用于测量夹盘(2)和工具夹具或工件夹具(3)之间的距离的装置(5)是在支承面(13)和端面(6)上形成的。
4 工作机械的主轴装置 CN200880010739.3 2008-03-27 CN101646520B 2011-04-27 井上淳司; 吉川睦; 田内拓至
发明提供一种工作机械的主轴装置,设置有检测驱动装置(25)对杆件(18)的推压的压力传感器(31)、检测杆件(18)的位移的位移传感器(32)、根据该杆件(18)的推压力和杆件(18)的位移来检测筒夹(20)对工具(19)的夹紧力的工具夹紧力检测部(33)、以及根据该工具的夹紧力和预先设定的碟形弹簧(24)的作用力特性值来判断该碟形弹簧(24)的更换时期的弹簧更换时期判断部(36),由此,能够恰当地检测出工具夹紧力而高精度地判断施力装置的更换时期。
5 具有用于测量夹盘和工具夹具或工件夹具之间的距离的装置的夹紧装置 CN200780015074.0 2007-03-02 CN101432097A 2009-05-13 H·达尔奎斯特
发明涉及一种具有用于测量夹盘和工具夹具或工件夹具之间的距离的装置的夹紧装置。其中,所述夹紧装置(1)包括夹盘(2)和与夹盘(2)匹配的工具夹具或工件夹具(3),夹盘(2)具有柱(7),它具有支承面(13),用于沿X和Y方向对所述工具或工件进行定向,并且具有端面(6),用于建立垂直于所述Z方向的平面,其中,用于测量夹盘(2)和工具夹具或工件夹具(3)之间的距离的装置(5)是在支承面(13)和端面(6)上形成的。
6 工作機械 JP2016215105 2016-11-02 JP2017087416A 2017-05-25 MEISSNER MARKUS
【課題】工具に対する工作物の位置の可能な限り正確な測定が保証されている工作機械を提供する。【解決手段】互いに直交して配向された3つの並進軸に沿って位置決め可能な加工ヘッド2と、平旋回軸Sを中心にして旋回可能な旋回装置3と、前記旋回軸Sに対して垂直に配向された回転軸Dを中心にして回転可能な工作物位置決め装置4を有する工作機械において、前記旋回装置3に付設され、旋回装置3と一緒に旋回可能であり、熱的に及び/又は機械的に分離されて形成されている測定フレーム6が、第1位置測定システムの構成要素と第2位置測定システムの構成要素とを有し、前記加工ヘッド2の空間位置が、第1位置測定システムによって測定され、前記工作物位置決め装置4の空間位置が、第2位置測定システムによって測定される。【選択図】図2
7 Smart machining system and the smart tool holder used to it JP2011500893 2009-03-17 JP2011518048A 2011-06-23 エイ. サプロック,クリストファー; ジェラード,ロバート; ニコルス,ジェフ; フッセル,バリー
【解決手段】マシンツールプラットホーム(8)で用いられるスマートツールホルダー(10)である。 スマートツールホルダー(10)は、第1端部(14)及びその反対側に第2端部(16)を有する本体(12)と、該本体(12)に配置されたプロセッサ(20)と、本体(12)に配置され、プロセッサ(20)と通信可能な送受信装置(22)とを具えている。 送受信装置(22)は、外部受信装置(28)と通信可能に構成される。 本体(12)の第1端部(14)は、マシンツールプラットホーム(8)に選択的に連結可能に構成され、本体(12)の第2端部(16)は幾つかのセンサー(26)を有する切削アッセンブリ(18)に選択的に連結可能に構成される。 プロセッサ(20)は、切削アッセンブリ(26)が本体(12)に連結されたとき、前記幾つかのセンサー(26)と通信可能となるように構成される。 プロセッサ(20)は、モデルベースのデータ分析、デジタルフィルタリング及びその他技術を用いて、データの分析タスクを実行することができる。 スマートツールホルダー(10)は、受信装置又はインターフェース装置を通じて、マシンツールコントローラとの双方向通信に基づいて、機械加工プロセスの変化を告知することができる。
【選択図】図2
8 Clamping device comprising a means for measuring and the chuck, the distance between the tool holder or workpiece holder JP2009506927 2007-03-02 JP2009534206A 2009-09-24 ダールクイスト ハカン
チャック(2)と、チャック(2)に適合する工具ホルダまたは加工部品ホルダ(3)を有しており、チャック(2)が、工具または加工部品をXおよびY方向に配向するための接触面(13)と、Z方向に対して垂直方向の平面を定めるための端面(6)とを備えた支柱を有する緊締装置が工具または加工部品のために提案される。 接触面(13)および端面(6)に、チャック(2)と、工具ホルダまたは加工部品ホルダ(3)との間の距離を測定するための距離測定手段(4)が形成されている。
9 Main spindle device of machine tool JP2007089274 2007-03-29 JP2008246610A 2008-10-16 INOUE JUNJI; YOSHIKAWA MUTSUMI; TAUCHI TAKUJI
PROBLEM TO BE SOLVED: To provide a main spindle device of a machine tool, which highly precisely determines changing timing of an urging means by properly detecting tool clamping force. SOLUTION: This main spindle device of the machine tool is provided with: a pressure sensor 31 to detect pressurizing force of a rod 18 by a drive 25; a displacement sensor 32 to detect displacement of the rod 18; a tool clamping force detection part 33 to detect clamping force of a tool 19 by a collet 20 in accordance with the pressurizing force of the rod 18 and the displacement of the rod 18; and a spring exchanging timing determination part 36 to determine exchanging timing of a disc spring 24 in accordance with the clamping force of the tool and a previously set urging force characteristic value of the disc spring 24. COPYRIGHT: (C)2009,JPO&INPIT
10 SAW BLADES AND METHODS OF MACHINING SAW BLADE TOOTH PROFILES OF SAW BLADES US15950840 2018-04-11 US20180229318A1 2018-08-16 Derek Clark; Clifton Koski, II; Larry McMaster
Saw blades and methods of machining saw blade tooth profiles of saw blades. The saw blades include a blade body and a plurality of teeth defined by the blade body. Each tooth includes a tooth back, a tooth tip, a tooth face, and a tooth gullet. In at least one tooth, a relief region extends toward the tooth back and separates the tooth face from the tooth gullet. The methods include supporting the saw blade with a blade support structure and advancing the saw blade with a blade advance structure. The methods also include dry-machining a finished tooth profile in a working portion of the saw blade in a single pass. The dry-machining includes dry-machining with an end mill by operatively translating the end mill relative to the saw blade and within a plane that is at least substantially perpendicular to an end mill rotational axis of the end mill.
11 System for identifying and duplicating master keys US15728074 2017-10-09 US09987715B2 2018-06-05 Richard L Gardner; Bradford Shayne Cooley; David Kortbawi
A system for duplicating a master key includes a mechanism for receiving and positioning a master key. The master key defines a major key axis and an intermediate key axis along which a key blade variably extends, and a minor key axis along a key thickness. Optical path components direct a light beam along the minor key axis. The light beam impinges upon the key blade. A portion of the light beam traverses the key blade. A detector receives the portion of the light beam that traverses the key blade. An apparatus imparts relative motion along the major key axis between the light beam and the master key. The light beam scans along the major key axis of the master key. A processor receives a signal from the detector as the beam scans along the major key axis and generates information usable for defining the machining of a duplicate key.
12 System for identifying and duplicating master keys US15191071 2016-06-23 US09808900B2 2017-11-07 Richard L. Gardner; Bradford Shayne Cooley; David Kortbawi
A system for duplicating a master key includes a mechanism for receiving and positioning a master key. The master key defines a major key axis and an intermediate key axis along which a key blade variably extends, and a minor key axis along a key thickness. Optical path components direct a light beam along the minor key axis. The light beam impinges upon the key blade. A portion of the light beam traverses the key blade. A detector receives the portion of the light beam that traverses the key blade. An apparatus imparts relative motion along the major key axis between the light beam and the master key. The light beam scans along the major key axis of the master key. A processor receives a signal from the detector as the beam scans along the major key axis and generates information usable for defining the machining of a duplicate key.
13 System for Identifying and Duplicating Master Keys US15191071 2016-06-23 US20160377418A1 2016-12-29 Richard L. Gardner; Bradford Shayne Cooley; David Kortbawi
A system for duplicating a master key includes a mechanism for receiving and positioning a master key. The master key defines a major key axis and an intermediate key axis along which a key blade variably extends, and a minor key axis along a key thickness. Optical path components direct a light beam along the minor key axis. The light beam impinges upon the key blade. A portion of the light beam traverses the key blade. A detector receives the portion of the light beam that traverses the key blade. An apparatus imparts relative motion along the major key axis between the light beam and the master key. The light beam scans along the major key axis of the master key. A processor receives a signal from the detector as the beam scans along the major key axis and generates information usable for defining the machining of a duplicate key.
14 MACHINE TOOLS WITH NON-RIGID ROBOT DEVICE USING INERTIAL STIFFENING US12686905 2010-01-13 US20100178124A1 2010-07-15 Stephen Lang Dickerson
A representative machine comprises a non-rigid robotic device having a tool head; and a rigid inertial stiffening system that is part of a tool head and includes a mass to provide precise position of the tool head. The rigid inertial stiffening system achieves high positional precision of the tool head, in the face of large disturbing forces by locally accelerating the mass to counter the disturbing forces.
15 Improved key duplicating machine. EP12185923.5 2012-09-25 EP2581159B1 2014-09-10 Cettolin, Moreno; Pigatti, Giorgio
16 WERKZEUGZUSTANDS-ÜBERWACHUNGSSYSTEM EP06775163.6 2006-08-30 EP1924401A1 2008-05-28 SCHAFFNER, Georges; STIRNIMANN, Josef; KIRCHHEIM, Andreas; VESELOVAC, Drazen; SCHMITZ, René
The invention relates to a tool (1) comprising a tool element (2) which rotates in operation with at least one geometrically defined blade, in particular a material cutting tool element (2), said tool element (2) being subject to an operating parameter in the operating condition. A measuring device (3) is provided for determination and conversion of the operation parameter into a measured signal. A first measuring device (3, 31) cooperates with a first tool element (2, 21) in the operating condition such that essentially only a first operating parameter for the first tool element (2, 21) may be recorded by the first measuring device (3, 31).
17 System for Identifying and Duplicating Master Keys US15728074 2017-10-09 US20180065226A1 2018-03-08 Richard L. Gardner; Bradford Shayne Cooley; David Kortbawi
A system for duplicating a master key includes a mechanism for receiving and positioning a master key. The master key defines a major key axis and an intermediate key axis along which a key blade variably extends, and a minor key axis along a key thickness. Optical path components direct a light beam along the minor key axis. The light beam impinges upon the key blade. A portion of the light beam traverses the key blade. A detector receives the portion of the light beam that traverses the key blade. An apparatus imparts relative motion along the major key axis between the light beam and the master key. The light beam scans along the major key axis of the master key. A processor receives a signal from the detector as the beam scans along the major key axis and generates information usable for defining the machining of a duplicate key.
18 Manual clamp for key making machine US15284239 2016-10-03 US09895753B2 2018-02-20 James F. Huss; Robert J. Musil
A clamp is disclosed for use in a key making machine. The clamp may have a stationary head guide with a slot configured to receive a key, and a pressure pad configured to engage the head guide and sandwich the key therebetween. The clamp may also have at least a first spring configured to continuously generate a force biasing the pressure pad toward the stationary head guide, a plunger configured to selectively engage the pressure pad, and a second spring configured to bias the plunger toward the pressure pad. The clamp may further have a release lever manually operable to urge the plunger away from the pressure pad and to compress the second spring.
19 LIVE TOOL COLLAR HAVING WIRELESS SENSOR US15410218 2017-01-19 US20170209974A1 2017-07-27 Avigdor ANGEL; Ran BENEDIK
A live tool system having a live tool and a collar surrounding a rotating shaft or a rotating cutting tool of the live tool. The collar houses at least one sensor capable of monitoring an operating condition proximate to the cutting tool during a cutting operation. Example operating conditions including temperature and vibration. The system also includes a wireless transmitter in communication with the at least one sensor for transmitting a signal for use by a machining center controller.
20 MACHINE TOOLS US14805379 2015-07-21 US20150321268A1 2015-11-12 Stephen Lang Dickerson
A representative machine comprises a non-rigid robotic device having a tool head; and a rigid inertial stiffening system that is part of a tool head and includes a mass to provide precise position of the tool head. The rigid inertial stiffening system achieves high positional precision of the tool head, in the face of large disturbing forces by locally accelerating the mass to counter the disturbing forces.
QQ群二维码
意见反馈