首页 / 国际专利分类库 / 电学 / 其他类目不包含的电技术 / 等离子体技术 / H05H9/00,H01H11/00,H05H13/00各组包含的各种装置的零部件 / .磁体系统如{例如波纹收报机,摇动器 (自由电子激光器入 H01S3/0903)};其激励
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 Single-coil superconducting miniundulator US13063772 2009-09-14 US08369911B2 2013-02-05 Herbert O. Moser; Caozheng Diao
A miniundulator that includes a first bobbin and a second bobbin parallel to and spaced from the first bobbin, and a superconductive wire wound around the outer surfaces of the first bobbin and the second bobbin, and method for the assembly of the miniundulator are disclosed.
162 Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron US12552079 2009-09-01 US08368038B2 2013-02-05 Vladimir Balakin
The invention comprises intensity control of a charged particle beam acceleration, extraction, and/or targeting method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Particularly, intensity of a charged particle stream of a synchrotron is described. Intensity control is described in combination with turning magnets, edge focusing magnets, concentrating magnetic field magnets, winding and control coils, and extraction elements of the synchrotron. The system reduces the overall size of the synchrotron, provides a tightly controlled proton beam, directly reduces the size of required magnetic fields, directly reduces required operating power, and allows continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
163 SYSTEMS AND METHODS FOR ACHROMATICALLY BENDING A BEAM OF CHARGED PARTICLES BY ABOUT NINETY DEGREE DURING RADIATION TREATMENT US13183943 2011-07-15 US20130015364A1 2013-01-17 Barry A. MacKinnon; Roger H. Miller
Embodiments of the invention provide systems and methods for achromatically bending beam of charged particles by about 90° during radiation treatment. A system may include first, second, third, and fourth bending magnets serially arranged along the particle beam path. The first and fourth bending magnets are configured to generate a positive field gradient that defocuses the particle beam in the bend plane. The second and third bending magnets are configured to generate a negative field gradient that focuses the particle beam in the bend plane. The first, second, third, and fourth bending magnets collectively bend the particle beam by about 90°, e.g., by about 22.5° each.
164 APPARATUS AND METHOD FOR ENERGY STORAGE WITH RELATIVISTIC PARTICLE ACCELERATION US13468027 2012-05-09 US20120286702A1 2012-11-15 Gaurav Bazaz
An energy storage device is proposed that utilizes acceleration of particles to near relativistic velocities to store energy in the kinetic energy of accelerated particles. Designs and models are provided for a commercially feasible device that implements the concept. The device allows tremendous performance capabilities across many parameters including energy density. Multiple innovations are also proposed for methods to reconvert the kinetic energy of accelerated particles back to electricity. In addition, certain innovations are proposed for accelerated particle beam control, beam particle designs and beam confinement rings. The device is different from existing particle collider storage rings in that it maximizes total beam energy, not energy per particle by accelerating particles to velocities substantially less than the speed of light. In addition, it includes innovations to meet the requirements of the commercial market with specific applications in markets such as grid level storage and energy storage for vehicles.
165 DOUBLE HELIX CONDUCTOR US13213604 2011-08-19 US20120223800A1 2012-09-06 David G. SCHMIDT
An electrical system having an underlying structure resembling the double helix most commonly associated with DNA may be used to produce useful electromagnetic fields for various applications.
166 Planar-helical undulator US12516508 2007-11-16 US08134440B2 2012-03-13 Max Beckenbach; Theo Schneider; Bernd Lott; Marion Klaeser; Matthias Eisele; Pauline Leys
A planar-helical undulator for emitting 360° electrically variable photo radiation, including a first coil and a second coil disposed relative to an undulator axis, an axis of the first coil and an axis of the second coil and the undulator axis being parallel to each other, and the undulator axis forming a portion of a synchrotron beam axis. Further, each of the first and second coils includes a helical section and a planar section. The windings of each respective section are connected in series, so that the planar section generates, when energized, a first magnetic field, and so that the helical section generates, when energized, a second magnetic field. Each planar section is disposed around the corresponding helical section, and at least one of the helical section and the planar section of at least one of the coils includes variable windings changing symmetrically over a length of the respective section towards a middle of the respective section.
167 Niobium-tin superconducting coil US13033790 2011-02-24 US08111125B2 2012-02-07 Timothy A. Antaya; Joel Henry Schultz
A Nb3Sn superconducting coil can be formed from a wire including multiple unreacted strands comprising tin in contact with niobium. The strands are wound into a cable, which is then heated to react the tin and niobium to form a cable comprising reacted Nb3Sn strands. The cable comprising the reacted Nb3Sn strands are then mounted in and soldered into an electrically conductive channel to form a reacted cable-in-channel of Nb3Sn strands. The cable-in-channel of reacted Nb3Sn strands are then wound to fabricate a superconducting coil. The Nb3Sn superconducting coil can be used, for example, in a magnet structure for particle acceleration. In one example, the superconducting coil is used in a high-field superconducting synchrocyclotron.
168 Methods and Systems for Confining Charged Particles to a Compact Orbit During Acceleration Using a Non-Scaling Fixed Field Alternating Gradient Magnetic Field US13034931 2011-02-25 US20120013274A1 2012-01-19 William Bertozzi; Wilbur Franklin; Carol Johnstone; Robert J. Ledoux
A method is described wherein a beam of charged particles is confined to an orbit within a compact region of space as it is accelerated across a wide range of energies. This confinement is achieved using a non-scaling magnetic field based on the Fixed Alternating Gradient principle where the field strength includes non-linear components. Examples of magnet configurations designed using this method are disclosed.
169 Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system US12499669 2009-07-08 US08089054B2 2012-01-03 Vladimir Balakin
The invention comprises a charged particle beam acceleration and/or extraction method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. Novel design features of a synchrotron are described. Particularly, turning magnets, edge focusing magnets, and extraction elements are described that minimize the overall size of the synchrotron, provide a tightly controlled proton beam, directly reduce the size of required magnetic fields, directly reduces required operating power, and allow continual acceleration of protons in a synchrotron even during a process of extracting protons from the synchrotron.
170 Achromatic and uncoupled medical gantry US12403486 2009-03-13 US08063381B2 2011-11-22 Nicholaos Tsoupas; Dmitry Kayran; Vladimir Litvinenko; William W. MacKay
A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.
171 CHARGED PARTICLE CANCER THERAPY PATIENT POSITIONING METHOD AND APPARATUS US12994125 2009-05-21 US20110218430A1 2011-09-08 Vladimir Yegorovich Balakin
The invention comprises a patient positioning and/or repositioning system, such as a laying, semi-vertical, or seated patient positioning, alignment, and/or control method and apparatus used in conjunction with multi-axis charged particle radiation therapy. Patient positioning constraints optionally include one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are preferably movable and/or under computer control for rapid positioning, repositioning, and/or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the charged particle beam path to accurately and precisely target the tumor, and/or in system verification and validation.
172 Niobium-Tin Superconducting Coil US13033790 2011-02-24 US20110193666A1 2011-08-11 Timothy A. Antaya; Joel Henry Schultz
A Nb3Sn superconducting coil can be formed from a wire including multiple unreacted strands comprising tin in contact with niobium. The strands are wound into a cable, which is then heated to react the tin and niobium to form a cable comprising reacted Nb3Sn strands. The cable comprising the reacted Nb3Sn strands are then mounted in and soldered into an electrically conductive channel to form a reacted cable-in-channel of Nb3Sn strands. The cable-in-channel of reacted Nb3Sn strands are then wound to fabricate a superconducting coil. The Nb3Sn superconducting coil can be used, for example, in a magnet structure for particle acceleration. In one example, the superconducting coil is used in a high-field superconducting synchrocyclotron.
173 Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system US12567901 2009-09-28 US07943913B2 2011-05-17 Vladimir Balakin
The invention comprises a negative ion source method and apparatus used as part of an ion beam injection system, which is used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. The negative ion source preferably includes an inlet port for injection of hydrogen gas into a high temperature plasma chamber. In one embodiment, the plasma chamber includes a magnetic material, which provides a magnetic field barrier between the high temperature plasma chamber and a low temperature plasma region on the opposite side of the magnetic field barrier. An extraction pulse is applied to a negative ion extraction electrode to pull the negative ion beam into a negative ion beam path, which proceeds through a first partial vacuum system, through an ion beam focusing system, into the tandem accelerator, and into a synchrotron.
174 Conductor assembly having an axial field in combination with high quality main transverse field US12133760 2008-06-05 US07893808B2 2011-02-22 Rainer Meinke
A conductor assembly of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In one series of embodiments a plurality of coil rows comprise conductor in a helical wiring pattern formed about an axis. One of the coil rows is positioned a radial distance R from the axis. For each of the coil rows the helical pattern comprises conductor loops each exhibiting a tilt in the same direction with respect to a plane transverse to the axis, the assembly capable of generating an axial field component and a transverse field component.
175 Conductor assembly including a flared aperture region US12133645 2008-06-05 US07880578B2 2011-02-01 Rainer Meinke
A conductor assembly of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. A helical wiring pattern is positioned along an axis a radial distance R from the axis. The wiring pattern is formed about an aperture region extending from the axis toward the wiring pattern, the distance R varying along a portion of the axis.
176 Micro free electron laser (FEL) US11411129 2006-04-26 US07876793B2 2011-01-25 Jonathan Gorrell; Mark Davidson; Michael E. Maines
A charged particle beam including charged particles (e.g., electrons) is generated from a charged particle source (e.g., a cathode or scanning electron beam). As the beam is projected, it passes between plural alternating electric fields. The attraction of the charged particles to their oppositely charged fields accelerates the charged particles, thereby increasing their velocities in the corresponding (positive or negative) direction. The charged particles therefore follow an oscillating trajectory. When the electric fields are selected to produce oscillating trajectories having the same (or nearly the same) frequency as the emitted radiation, the resulting photons can be made to constructively interfere with each other to produce a coherent radiation source.
177 Undulator US10597352 2005-01-18 US07872555B2 2011-01-18 Hideo Kitamura; Toru Hara; Takashi Tanaka; Tsutomu Kohda; Yutaka Matsuura
An undulator comprises a first magnetic circuit (11) for forming a periodic magnetic field, a first support body (21) for supporting the first magnetic circuit (11), a second magnetic circuit (12) arranged opposite to the first magnetic circuit (11), for forming a periodic magnetic field, a second support body (22) for supporting the second magnetic circuit (12), a space (13) formed between the oppositely arranged first magnetic circuit (11) and the second magnetic circuit (12), for passing an electron beam, a vacuum chamber (1) for vacuum-sealing the first magnetic circuit (11) and the second magnetic circuit (12), and a refrigerant passing tube (30) for cooling a permanent magnet (m) constituting the first magnetic circuit (11) and the second magnetic circuit (12) below the room temperature.
178 Deflecting a beam of electrically charged particles onto a curved particle path US12249531 2008-10-10 US07868301B2 2011-01-11 Dirk Diehl
A device for deflecting a beam of electrically charged particles onto a curved particle path is provided. The device includes at least one beam guidance magnet having a coil system which has at least one coil that is curved along the particle path for the purpose of deflecting the beam onto a curved particle path, and at least one scanner magnet for variably deflecting the beam in a y,z plane at right angles to the particle path, characterized in that the device has at least one correction system which is embodied to influence the particle path in a regulated or controlled manner with the aid of electric and/or magnetic fields as a function of the position of the beam in the y,z plane. The invention also relates to a corresponding method for deflecting a beam of electrically charged particles onto a curved particle path.
179 Techniques for controlling a charged particle beam US11865336 2007-10-01 US07821213B2 2010-10-26 Piotr R. Lubicki; Russell J. Low; Stephen E. Krause; Frank Sinclair
Techniques for controlling a charged particle beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as a charged particle acceleration/deceleration system. The charged particle acceleration/deceleration system may comprise an accelerator column, which may comprise a plurality of electrodes. The plurality of electrodes may have apertures through which a charged particle beam may pass. The charged particle acceleration/deceleration system may also comprise a voltage grading system. The voltage grading system may comprise a first fluid reservoir and a first fluid circuit. The first fluid circuit may have conductive connectors connecting to at least one of the plurality of electrodes. The voltage grading system may further comprise fluid in the first fluid circuit. The fluid may have an electrical resistance.
180 Achromatic and Uncoupled Medical Gantry US12403486 2009-03-13 US20100230620A1 2010-09-16 Nicholaos Tsoupas; Dmitry Kayran; Vladimir Litvinenko; William W. MacKay
A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.
QQ群二维码
意见反馈