序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 Structure de balun actif réciproque à large bande passante EP08168497.9 2008-11-06 EP2058947B1 2015-09-23 Plaze, Jean-Michel; Dueme, Philippe; Mallet-Guy, Benoît
162 Structure de balun actif réciproque à large bande passante EP08168497.9 2008-11-06 EP2058947A3 2013-07-03 Plaze, Jean-Michel; Dueme, Philippe; Mallet-Guy, Benoît

La présente invention concerne le domaine des dispositifs électroniques connus sous le nom de "baluns". Elle se rapporte à un dispositif constituant un balun actif, large bande c'est à dire couvrant plus d'une octave, et réciproque.

Le dispositif selon l'invention associe un élément balun diviseur actif (30) avec un élément balun combineur actif (40), ces éléments étant associés de façon à constituer trois lignes de transmission (55,56,57). Un premier couplage actif est réalisé entre la première (57) et la deuxième ligne de transmission (55) et un second couplage actif est réalisé entre la première (57) et la troisième ligne de transmission (56). Les couplages actifs sont réalisés au moyen de cellules amplificatrices (31,41,32,42) réparties le long des lignes de transmission. Le dispositif selon l'invention comporte également des moyens configurables pour polariser les différentes cellules amplificatrices de façon à induire un sens de couplage déterminé entre la première et la deuxième ligne de transmission d'une part et entre la première et la troisième ligne de transmission d'autre part. Le dispositif selon l'invention trouve son application dans le domaine des mélangeurs à large bande passante, employés notamment dans les chaînes d'émission et de réception radioélectriques.

163 PROGRAMMABLE MICROWAVE CIRCUIT EP06717087.8 2006-04-05 EP1875606B1 2011-08-03 OUACHA, Aziz; SAMUELSSON, Carl
The present invention relates to a programmable microwave circuit (1 ) four ports (3), and combinations of such circuits. Between each pair of ports there is at least one connection without amplification, at least one connection having amplification from a first port of the pair of ports to a second port of the pair of ports, and at least one connection having amplification from the second port to the first port. Further, there is control electronics (2) with the ability to open and close the respective connection and respective port, by which the microwave circuit could be configured for different purposes, such as amplifier, power splitter/power combiner and router.
164 SWITCH-LESS BIDIRECTIONAL AMPLIFIER EP06784123.9 2006-08-28 EP2062350A1 2009-05-27 BERG, Håkan; THIESIES, Heiko
A bi-directional amplifier, transceiver, integrated circuit, mobile unit, telecommunication infrastructure for amplification of signals received or signals to be transmitted in a communication circuit and a method for bi-directional amplification comprising amplifying signals in a bi-directional amplifier and directing a signal between two or more different paths comprising at least one first biased semiconductor amplification element (230, 340, 450, 550) connected to a at least one first impedance matching network (210, 310, 410, 510), at least one second biased semiconductor amplification element (240, 350, 460, 560) connected to a second impedance matching network (220, 330, 430, 530), a first device for biasing the at least one first biased semiconductor amplification element and a second device for biasing the at least one second biased semiconductor amplification element where the direction of signal amplification in said bi-directional amplifier is controlled by the first or second device for biasing the at least one first (230, 340, 450, 550) or second (240, 350, 460, 560) biased semiconductor amplification element.
165 Structure de balun actif réciproque à large bande passante EP08168497.9 2008-11-06 EP2058947A2 2009-05-13 Plaze, Jean-Michel; Dueme, Philippe; Mallet-Guy, Benoît

La présente invention concerne le domaine des dispositifs électroniques connus sous le nom de "baluns". Elle se rapporte à un dispositif constituant un balun actif, large bande c'est à dire couvrant plus d'une octave, et réciproque.

Le dispositif selon l'invention associe un élément balun diviseur actif (30) avec un élément balun combineur actif (40), ces éléments étant associés de façon à constituer trois lignes de transmission (55,56,57). Un premier couplage actif est réalisé entre la première (57) et la deuxième ligne de transmission (55) et un second couplage actif est réalisé entre la première (57) et la troisième ligne de transmission (56). Les couplages actifs sont réalisés au moyen de cellules amplificatrices (31,41,32,42) réparties le long des lignes de transmission. Le dispositif selon l'invention comporte également des moyens configurables pour polariser les différentes cellules amplificatrices de façon à induire un sens de couplage déterminé entre la première et la deuxième ligne de transmission d'une part et entre la première et la troisième ligne de transmission d'autre part. Le dispositif selon l'invention trouve son application dans le domaine des mélangeurs à large bande passante, employés notamment dans les chaînes d'émission et de réception radioélectriques.

166 Dispositif de couplage de signal haute fréquence EP07101542.4 2007-02-01 EP1821404A1 2007-08-22 Post, Georg; Meliani, Chafik

La présente invention concerne un dispositif de couplage de signal à haute fréquence entre un premier composant et un second composant, adapté à fournir une première paire tension courant de polarisation au premier composant et une seconde paire tension courant de polarisation au second composant.

167 A BIDIRECTIONAL AMPLIFIER EP95900566.1 1994-11-16 EP0729670B1 2004-01-21 BATCHELOR, Robert, Alexander; ARCHER, John, William
A bidirectional amplifier has first and second two-terminal ports (P1, P2) each capable of acting as either an input or an output for said amplifier. A field effect type transistor (FT1) is connected in common gate mode with the common (or grounded) terminal (T2, T4) of each of said ports (P1, P2) being at least AC connected with the gate (G) of said transistor (FT1), and the source (S) and drain (D) of said transistor (FT1) being respectively connected to a corresponding one of the other terminals (T1, T3) of said ports (P1, P2) via an impedance matching device (N1, L1, N3, L3).
168 DUAL FORWARD AND REVERSE TEST POINTS FOR AMPLIFIERS EP99953112.2 1999-10-08 EP1119983A1 2001-08-01 BRICKELL, John, W.
A communication system (100) processes forward signals generated by headend equipment (105) and reverse signals generated by subscriber equipment (135). A communication medium (110, 120), such as fiber optic cable or coaxial cable, couples the headend equipment (105) and the subscriber equipment (135), and amplifiers (400) are positioned at various locations along the medium (110, 120) to amplify the forward and reverse signals. The amplifiers (400) include a dual forward/reverse test circuit (FIG. 5) having a forward test point (406) coupled to the forward signal, a reverse test point (408) coupled to the reverse signal, and a single directional coupler (404) connected to the forward test point (406), for providing the forward signal thereto, and to the reverse test point (408), for providing the reverse signal thereto.
169 Wideband CATV amplifier with microprocessor-based slope and gain control EP98310811.9 1998-12-31 EP0928063A3 2001-05-09 Blount, Richard J., Jr.; Underkofler, Leon M.

A broadband amplifier has a microcontroller (20) having tables the entries of which correspond to desired variable slope and gain characteristics of the amplifier. The entries in the tables are derived from known temperature characteristics of a specific amplifier/cable combination; multiple tables are used to support multiple different configurations. The microcontroller (20) retrieves values from the tables based on temperature data supplied thereto via a serial bus; these values are output to digital-to- analog converters which generate slope and gain control signals to control slope and gain compensation circuits in a PIN diode attenuator in the amplifier.

170 Transmission control circuit for use in TDMA communication device EP93119551.5 1993-12-03 EP0600515B1 2001-01-24 Tanemura, Takeshi
171 A BIDIRECTIONAL AMPLIFIER EP95900566 1994-11-16 EP0729670A4 1999-11-24 BATCHELOR ROBERT ALEXANDER; ARCHER JOHN WILLIAM
A bidirectional amplifier has first and second two-terminal ports (P1, P2) each capable of acting as either an input or an output for said amplifier. A field effect type transistor (FT1) is connected in common gate mode with the common (or grounded) terminal (T2, T4) of each of said ports (P1, P2) being at least AC connected with the gate (G) of said transistor (FT1), and the source (S) and drain (D) of said transistor (FT1) being respectively connected to a corresponding one of the other terminals (T1, T3) of said ports (P1, P2) via an impedance matching device (N1, L1, N3, L3).
172 Bias voltage controlled parallel active components EP98660044.3 1998-05-15 EP0883241A1 1998-12-09 Järvinen, Esko; Varis, Jukka

The course of an oscillating signal is controlled in mutually alternative first active component (31) and second active component (32), both of which can be set into active state by a certain first value of a control signal brought to the component and which are in inactive state with a certain second value of the control signal. The signal is directed to pass through the first active component (31) by setting it into active state by a control signal (33) brought to it. At the same time, the second active component (32) is prevented from affecting the course of the signal by setting a control signal brought to it to a second value (107, 111).

173 A BIDIRECTIONAL AMPLIFIER EP95900566.0 1994-11-16 EP0729670A1 1996-09-04 BATCHELOR, Robert, Alexander; ARCHER, John, William
A bidirectional amplifier has first and second two-terminal ports (P1, P2) each capable of acting as either an input or an output for said amplifier. A field effect type transistor (FT1) is connected in common gate mode with the common (or grounded) terminal (T2, T4) of each of said ports (P1, P2) being at least AC connected with the gate (G) of said transistor (FT1), and the source (S) and drain (D) of said transistor (FT1) being respectively connected to a corresponding one of the other terminals (T1, T3) of said ports (P1, P2) via an impedance matching device (N1, L1, N3, L3).
174 Transmission control circuit for use in TDMA communication device EP93119551.5 1993-12-03 EP0600515A3 1995-02-08 Tanemura, Takeshi

A transmission control circuit for use in a TDMA communication device controls the rise and fall characteristics of driving voltages applied to high-frequency amplifier circuits in such a way that the generation of unnecessary waves at the time of transmission can be restrained to a minimum, wherein a driving voltage ON/OFF circuit B1 outputs first and second driving voltages S1 and S2 having different rise and fall time constants, the first driving voltage S1 being supplied to a first high-frequency amplifier circuit A1, and the second driving voltage S2 to a second high-frequency amplifier circuit. The requisite rise time for the driving voltage S1, which is supplied to the first high-frequency amplifier circuit A1, is longer than the requisite rise time for the ON/OFF switching signal S2, supplied to the second high-frequency amplifier circuit A2, and the requisite fall time for the driving voltage S1 is shorter than the requisite fall time for the second ON/OFF switching signal S2, which is supplied to the second high-frequency amplifier circuit A2.

175 Symmetric bi-directional amplifier EP90312494.9 1990-11-16 EP0430509A3 1991-11-06 Tsukii, Toshikazu; Houng, S. Gene; Schindler, Manfred J.

A transceiver module (10) includes a bi-directional amplifier (16) having a pair of symmetric signal paths for amplification of both transmit and receive signals. The bi-directional amplifier (16) is disposed between a pair of r.f. switches (14, 18) to provide a pair of signal paths between two terminals of the module (10). The amplifier (16) has an input propagation network (30) coupling two input terminals (16a, 16b), and an output propagation network (32) coupling two output terminals (16c, 16d). A plurality of FETs (FET1, FET2, FET3, FET4) have their gates connected to the input propagation network (30) and their drains connected to the output propagation network (32). Electrical paths lengths are selected so that an input signal at one input terminal (16a) propagates with amplification to one output terminals (16c) and an input signal at the other input terminal (16b) propagates with amplification to the other output terminal (16d).

176 Symmetric bi-directional amplifier EP90312494.9 1990-11-16 EP0430509A2 1991-06-05 Tsukii, Toshikazu; Houng, S. Gene; Schindler, Manfred J.

A transceiver module (10) includes a bi-directional amplifier (16) having a pair of symmetric signal paths for amplification of both transmit and receive signals. The bi-directional amplifier (16) is disposed between a pair of r.f. switches (14, 18) to provide a pair of signal paths between two terminals of the module (10). The amplifier (16) has an input propagation network (30) coupling two input terminals (16a, 16b), and an output propagation network (32) coupling two output terminals (16c, 16d). A plurality of FETs (FET1, FET2, FET3, FET4) have their gates connected to the input propagation network (30) and their drains connected to the output propagation network (32). Electrical paths lengths are selected so that an input signal at one input terminal (16a) propagates with amplification to one output terminals (16c) and an input signal at the other input terminal (16b) propagates with amplification to the other output terminal (16d).

177 カプラを有する低雑音増幅器モジュール JP2017557171 2016-04-08 JP2018515037A 2018-06-07 ライ・カン・リュン; ケヴィン・シ・ホアイ・ワン; ドンリン・パン; チーウチャーン・ナラソン
カプラを有する増幅器モジュールを開示する。増幅器モジュールは、複数の入力端子と2つ以上の出力端子とを含んでもよい。各入力端子は、独立した増幅器の入力に結合されてもよい。独立した増幅器からの出力が、2つ以上の出力端子に結合されてもよい。増幅器モジュールは、2つ以上の出力端子を互いに結合するための出力カプラを含んでもよい。信号が、第1の出力端子によって受信されてもよく、出力カプラによって第2の出力端子に結合されてもよい。いくつかの実施形態では、2つ以上の出力端子が互いに結合されるときに、独立した増幅器は、非アクティブ化されるか、あるいは最小ゲイン構成において動作してもよい。
178 Vehicle communication device JP1716297 1997-01-30 JP3828224B2 2006-10-04 司雄 佐藤; 勝博 大内
179 Optimized asymmetric common-source bi-directional amplifier JP2003369294 2003-10-29 JP2005057724A 2005-03-03 YANG JEFFREY MING-JER; NISHIMOTO MATT; CHUNG YUN-HO; BATTUNG MICHAEL; LAI RICHARD
PROBLEM TO BE SOLVED: To provide a bi-directional amplifier capable of optimizing operational performance both during a receive mode and during a transmit mode. SOLUTION: A bi-directional amplifier comprising a first port and a second port, and a receiver amplifier and a transmitter amplifier both electrically connected between the first port and the second port is disclosed, wherein the receiver amplifier directionally couples a signal from the second port to the first port during the receive mode and the transmitter amplifier is biased off during that mode. Further, the transmitter amplifier directionally couples a signal between the first port and the second port during the transmit mode and the receiver amplifier is off during that mode. COPYRIGHT: (C)2005,JPO&NCIPI
180 Asymmetrical, voltage optimizing, broadband common gate two-way mmic amplifier JP2003152982 2003-05-29 JP2004007703A 2004-01-08 YANG JEFFREY M; CHUNG YUN-HO; NISHIMOTO MATT Y
<P>PROBLEM TO BE SOLVED: To provide a two-way amplifier for a transceiver module for amplifying both a transmission signal and a received signal which are propagated reversely to each other. <P>SOLUTION: The amplifier (10) includes first and second common gate FETs (22, 24) electrically coupled to each other along a common transmission line (20). A first variable matching network (28) is electrically coupled to the transmission line (20) between a transmission signal input port (12) and the first FET (22) and a second variable matching network (30) is electrically coupled to the transmission line (20) between a reception signal input port (14) and the second FET (24). An inter-stage variable matching network (32) is electrically coupled to the transmission line between the first and second FETs. A DC voltage regulator (34) supplies a DC bias signal to matching networks (28, 30, 32) and the FETs to provide a different signal amplification characteristic and a different impedance matching characteristic to the transmission signal and the reception signal. <P>COPYRIGHT: (C)2004,JPO
QQ群二维码
意见反馈