序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 用于提高电机效率的装置和方法 CN200680019576.6 2006-05-31 CN101228680A 2008-07-23 杰拉尔德·戈什
单相或多相交流电机同步发电机,包括主绕组和执行主绕组磁场的去饱和的附加绕组。每个附加绕组通过至少一个电容器以与各自主绕组不同的相位和与各自主绕组相反的磁场方向来供给。在每个主和附加绕组上使用的绕线的总横截面具有预定大小并且优选地遵循主绕组大约三分之二(2/3)的比例以及附加绕组大约三分之一(1/3)的比例,并且各电容值是预定的。每个附加绕组的数为其各自主绕组的匝数的百分之五十至百分之百(50%-100%)。两个绕组在同一操作中同时形成。
2 输出滤波器和具有该输出滤波器的电动机驱动系统 CN201080036574.4 2010-07-28 CN102474171B 2015-08-05 犬塚爱子; 樋口刚
提供如下的输出滤波器和具有该输出滤波器的电动机驱动系统:大幅降低载波频率成分的共模电压,并且,即使改变电变换装置的载波频率而使电动机运转,也能够防止载波频率接近输出滤波器的谐振频率而激励与电力变换装置的输出电压重叠的共模电压。在连接于电力变换装置(100)与电动机(105)之间的输出滤波器(101)中,旁通电路(104)具有多个电容不同的电容器(Cfa、Cfb)和多个旁通路径切换开关(106a、106b),对应于电力变换装置(100)的载波频率的设定变更,来选择与中性点检测电路(103)串联连接的电容器(Cfa、Cfb),切换旁通路径切换开关(106a、106b)。
3 输出滤波器和具有该输出滤波器的电动机驱动系统 CN201080036574.4 2010-07-28 CN102474171A 2012-05-23 犬塚爱子; 樋口刚
提供如下的输出滤波器和具有该输出滤波器的电动机驱动系统:大幅降低载波频率成分的共模电压,并且,即使改变电变换装置的载波频率而使电动机运转,也能够防止载波频率接近输出滤波器的谐振频率而激励与电力变换装置的输出电压重叠的共模电压。在连接于电力变换装置(100)与电动机(105)之间的输出滤波器(101)中,旁通电路(104)具有多个电容不同的电容器(Cfa、Cfb)和多个旁通路径切换开关(106a、106b),对应于电力变换装置(100)的载波频率的设定变更,来选择与中性点检测电路(103)串联连接的电容器(Cfa、Cfb),切换旁通路径切换开关(106a、106b)。
4 控制压缩机运行的装置和方法 CN200410056647.2 2004-08-13 CN100441867C 2008-12-10 洪彦杓; 朴景培; 崔基哲; 奇成铉; 郭泰熹; 许钟泰; 金镛洙
一种控制压缩机的运行的装置和方法,其能防止由于施加到压缩机的电动机上的电源电压的变化值导致的压缩机的欠行程或过行程,该装置包括一个控制单元,其根据施加到压缩机的电动机上的电源电压的变化值输出一个选择信号;连接到所述电动机的电容器;和一个切换单元,其基于所述选择信号选择性地改变电容器的电容量。
5 球磨机的驱动系统和运行球磨机的方法 CN201280009356.0 2012-02-07 CN103379962B 2016-01-20 马尔藤·霍兰
发明涉及一种用于由具有绕线转子电机(12)驱动的球磨机(2)的驱动系统(10),其中电机(12)配有将其转矩(M)与其他特征参数(D)相关联的特性曲线族(36),特性曲线族(36)具有至少两个不同的特性曲线(40a-e,42),并且驱动系统具有使驱动系统(10)在特征参数(D)为恒定值时在两个特性曲线(40a-e,42)之间跳跃式转换的开关元件(20)。在一种运行带有驱动系统(10)的球磨机(2)的方法中:在激活第一特性曲线(40a-e)时球磨机(2)的滚筒(6)从停止状态(R)开始运动;在球磨机(2)的滚筒(6)中结(34)的情况下,球磨机运行到结块(34)处于倾斜位置(S1-2)中为止;通过操作开关元件(20)转换到第二特性曲线(42)。
6 基于磁流变液的笼型异步电动机调速系统 CN201410221977.6 2014-05-22 CN104283389A 2015-01-14 聂晶; 李西洋; 张惠; 成斌; 王洪坤; 李宏伟; 岑红蕾
发明提供了一种基于磁流变液的笼型异步电动机调速系统,包括笼型绕组、调流控制电路两部分,所述笼型绕组由磁流变液、绝缘管、励磁线圈和端环组成。所述调流控制电路由导线、集电环、电刷和输出电流可调的恒流源电路组成。当笼型异步电动机工作时,通过改变恒流源电路输出电流的大小,使笼型绕组上励磁线圈产生相应强弱的磁场,磁流变液在磁场作用下电阻改变,通过笼型转子绕组的感应电流随之发生变化,从而笼型转子旋转速度发生改变,最终改变笼型异步电动机的输出转速。本发明利用磁流变液在磁场环境下电阻变化的特点,设计了笼型异步电动机调速系统,具有调速范围宽,调速反应迅速,实现无极调速等优点。
7 流量控制致动器 CN201280017105.7 2012-03-29 CN103688463A 2014-03-26 R·科斯特勒; H·伯格曼恩; P·图尔
一种致动器(1’),用于驱动控制流动通道(29)中的流体流量的调节元件(30),包括用于驱动调节元件(30)的电动达(4)和用于控制提供给电动马达(4)的电流的控制单元(2)。在从控制单元(2)至电动马达(4)的电流路径中定位电阻元件(3),电阻元件(3)包括电阻器(5)和与该电阻器(5)并联的NTC热敏电阻(6)。因而,当环境温度升高时,电阻元件(3)的减小的电阻平衡马达绕组的增大的电阻,从而使得从控制单元(2)至马达(4)的电流较少地变化,并且马达(4)的输出转矩随之较少地变化。
8 球磨机的驱动系统和运行球磨机的方法 CN201280009356.0 2012-02-07 CN103379962A 2013-10-30 马尔藤·霍兰
发明涉及一种用于由具有绕线转子电机(12)驱动的球磨机(2)的驱动系统(10),其中电机(12)配有将其转矩(M)与其他特征参数(D)相关联的特性曲线族(36),特性曲线族(36)具有至少两个不同的特性曲线(40a-e,42),并且驱动系统具有使驱动系统(10)在特征参数(D)为恒定值时在两个特性曲线(40a-e,42)之间跳跃式转换的开关元件(20)。在一种运行带有驱动系统(10)的球磨机(2)的方法中:在激活第一特性曲线(40a-e)时球磨机(2)的滚筒(6)从停止状态(R)开始运动;在球磨机(2)的滚筒(6)中结(34)的情况下,球磨机运行到结块(34)处于倾斜位置(S1-2)中为止;通过操作开关元件(20)转换到第二特性曲线(42)。
9 控制压缩机运行的装置和方法 CN200410056647.2 2004-08-13 CN1657777A 2005-08-24 洪彦杓; 朴景培; 崔基哲; 奇成铉; 郭泰熹; 许钟泰; 金镛洙
一种控制压缩机的运行的装置和方法,其能防止由于施加到压缩机的电动机上的电源电压的变化值导致的压缩机的欠行程或过行程,该装置包括一个控制单元,其根据施加到压缩机的电动机上的电源电压的变化值输出一个选择信号;连接到所述电动机的电容器;和一个切换单元,其基于所述选择信号选择性地改变电容器的电容量。
10 왕복동식 압축기를 채용한 냉장고의 압축기 구동장치 KR1020040011490 2004-02-20 KR100595550B1 2006-07-03 홍언표; 박경배; 최기철; 기성현; 곽태희; 허종태; 김용수
본 발명은 왕복동식 압축기를 채용한 냉장고의 압축기 구동장치에 관한 것으로, 부하에 따른 압축기의 용량 가변시 마다 적절한 커패시턴스로 압축기를 구동시켜 저스트로크 또는 과스트로크를 방지하도록 한 것이다. 이를 위하여 본 발명은 다수의 커패시터를 구비하여 냉장고의 부하변동에 대응하는 압축기가 내장된 냉장고에 있어서, 전원전압 및 외기온도를 기준전압 및 기준온도와 비교하고, 그 비교결과에 근거하여 커패시턴스 및 압축기 용량 가변을 위한 스위칭 제어신호를 출력하는 제어부와; 압축기를 운전시키는 기동 커패시터와; 상기 기동커패시터에 병렬로 연결되는 하나 이상의 보조 커패시터와; 상기 기동커패시터 및 보조커패시터와 병렬로 연결되고, 그 기동커패시터 및 보조커패시터와 공진하여 압축기를 구동시키는 리액터와; 상기 리액터와 직렬로 연결되어, 과전류가 흐르면 오프되어 압축기를 보호하는 피티씨와; 상기 스위칭 제어신호에 의해, 상기 기동커패시터와 보조커패시터를 연결시키거나 차단하여, 커패시턴스를 가변하는 스위치를 포함하여 구성한다.
11 A control system for an electric motor of a cooling fan EP11003518.5 2011-04-29 EP2518892B1 2015-03-04 Leidig, Karl, Dr.; Herzog, Michael
12 APPARATUS AND METHOD FOR INCREASING EFFICIENCY OF ELECTRIC MOTORS EP06771491.5 2006-05-31 EP1886394A2 2008-02-13 GOCHE, Gerald
A single or multiphase alternating current electric motor or synchronous generator includes main windings and additional windings that perform de-saturation of the magnetic field of the main windings. Each additional winding is fed through at least one capacitor in a different phase angle and opposite field directions from the respective main windings. The total cross sections of the wire used on each main and additional winding are of predetermined sizes and preferably follow the approximate ratio of approximately two-thirds (2/3) for the main winding and approximately one-third (1/3) for the additional winding, and the respective capacitor values are predetermined. The number of turns of each additional winding is from fifty to one hundred percent (50%-100%) of the number of turns of its respective main winding. The two windings are built simultaneously in a single operation.
13 AN ASYMMETRIC DRIVE MOTOR FOR A BARRIER OPERATOR OR THE LIKE EP03714294.0 2003-03-19 EP1488505A2 2004-12-22 FITZGIBBON, James, J.; LAIRD, Edward, T.; WILLMOTT, Colin, B.
An asymmetrical drive motor (150) and apparatus (100) with the asymmetric drive motor (150) driving a barrier (112). The asymmetric motor (150) drives the barrier (112) at different drive powers according to direction, time of travel, safety requirements or speed. The drive power is controlled by electrically changing the capacitance value for a permanent split capacitor motor (150).
14 Remote speed controller for a motor EP85306616.5 1985-09-17 EP0180311B1 1991-04-10 Vincent, David
15 Motor speed control circuit EP85306617.3 1985-09-17 EP0181072A1 1986-05-14 Vincent, David

This invention relates to motor speed control circuits employing capacitors. Windings (L1 and L2) of a motor are connected in parallel to a neutral phase of an alternating current source. Each coil (L1 and L2) may be connected to live phase (L) of the source whereby the rotation direction of the motor may be altered. Three socket terminals are connected to each winding (L1 and L2). A capacitor pack has three pins with capacitors (C1 and C2) connected between a common pin and the two remaining pins. The pins of the capacitor pack can be inserted into the sockets in three different ways whereby either capacitor (C1) capacitor (C2), or capacitor (C1 and C2) in parallel can be connected across the windings (L1, L2) to vary thereby speed and performance characteristics of the motor.

16 Methods and controllers for operation of electric motors US15335251 2016-10-26 US09935576B1 2018-04-03 Ludovic Andre Chretien; Roger Carlos Becerra
A controller and methods for hybrid operation control of an electric motor in an electric motor system are provided. The controller is configured to receive a speed command for operating the electric motor, measure available voltage on an inverter configured to provide conditioned AC voltage to the electric motor, and determine a winding phase angle difference based on the received speed command and the measured available inverter voltage. The controller is also configured to adjust a phase angle difference between winding voltage commands for the switches of the inverter using the determined winding phase angle difference, and apply the winding voltage commands including the adjusted phase angle difference to the inverter switches to control the electric motor.
17 HANDHELD POWER TOOL WITH COMPACT AC SWITCH US14063503 2013-10-25 US20150115857A1 2015-04-30 Oleksiy P. Sergyeyenko; Timothy W. French; Phillip Martinez; Yesman Wang
A power tool is disclosed having a compact AC switch assembly. An electric motor driving the power tool is contained within a housing that includes a handle. A trigger is slidingly received in the handle and moves in an axis of trigger travel along a trigger travel distance extending between an extended position of the trigger and a depressed position. A trigger switch including a printed circuit board is disposed in mechanical communication with the trigger and controls the electric motor in accordance with trigger position. The printed circuit board has a plurality of conductive traces that are sequentially arranged and linearly aligned adjacent the trigger in a direction that is transverse to the axis of trigger travel to reduce the width of the printed circuit board to a value that is less than or equal to three times the trigger travel distance.
18 Motor controller system and method for maximizing energy savings US12207913 2008-09-10 US08810190B2 2014-08-19 Paul H. Kelley
A motor controller (4) and method for maximizing the energy savings in an AC induction motor (3) at every load wherein the motor is calibrated at two or more load points to establish a control line (6), which is then programmed into a non-volatile memory (30) of the motor controller. A DSP-based closed-loop motor controller observes the motor parameters of the motor such as firing angle/duty cycles (23), voltage (37), current (9) and phase angles to arrive at a minimum voltage necessary to operate the motor at any load along the control line. The motor controller performs closed-loop control to keep the motor running at a computed target control point, such that maximum energy savings are realized by reducing voltage through pulse width modulation.
19 Output filter and motor drive system including the same US13308550 2011-12-01 US08362733B2 2013-01-29 Aiko Inuduka; Tsuyoshi Higuchi
A motor drive system includes: a three-phase motor; a power conversion device that supplies power for driving the three-phase motor; and an output filter that is arranged between an output of the power conversion device and the three-phase motor and has a configuration in which a setting value of a filter resonance frequency is selectable and changeable.
20 Apparatus and method for increasing efficiency of electric motors US10908934 2005-06-01 US07227288B2 2007-06-05 Gerald Goche
A single or multiphase alternating current electric motor or synchronous generator includes main windings and additional windings that perform de-saturation of the magnetic field of the main windings. Each additional winding is fed through at least one capacitor in a different phase angle and opposite field directions from the respective main windings. The total cross sections of the wire used on each main and additional winding are of predetermined sizes and preferably follow the approximate ratio of approximately two-thirds (⅔) for the main winding and approximately one-third (⅓) for the additional winding, and the respective capacitor values are predetermined. The number of turns of each additional winding is from fifty to one hundred percent (50%-100%) of the number of turns of its respective main winding. The two windings are built simultaneously in a single operation.
QQ群二维码
意见反馈