序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 电流垂直于膜面结构的磁阻元件 CN03159135.3 2003-09-09 CN1228764C 2005-11-23 菅原貴彥
电流垂直于膜面(CPP)结构的磁阻(MR)元件,包括由颗粒膜制成的被钉扎磁性层。颗粒膜含有导电磁晶粒和介电材料。介电材料用于使被钉扎磁性层中的检测电流路径变薄。此外,检测电流集中于磁晶粒。可以得到检测电流的电压的较大变化。由此可以增强CPP结构的MR元件的输出。
2 磁性元件和使用这种磁性元件的磁头和磁存储器 CN98114853.0 1998-05-09 CN1210818C 2005-07-13 猪俣浩一郎; 齐藤好昭; 柚须圭一郎; 市原胜太郎; 荻原英夫
发明提供了一种磁性元件,它包括有具有分散在电感应体基质中的强磁性微粒的、并且不显示超常磁性的、具有有限矫顽的微粒磁性膜,以及强磁性膜。微粒磁性膜和强磁性膜以叠层或沿着基板表面并列设置的方式构成为强磁性隧道结合膜。强磁性隧道结合膜将微粒磁性膜作为屏障。通过使微粒磁性膜和强磁性膜中的一个磁性膜的自旋方向在外部磁场的作用下变化的方式,可以获得巨磁电阻效应。这种磁性元件特征在于磁电阻变化率大、饱和磁场小、并可以将元件电阻调节为所需要的值,因此具有可获得偏差小而稳定的特性。
3 磁致电阻效应元件和磁致电阻效应型磁头 CN01804615.0 2001-11-07 CN1221041C 2005-09-28 细见政功; 牧野荣治
提供一种磁致电阻效应元件和磁致电阻效应型磁头。在GMR元件的CPP结构中,具有叠层结构部(10),该叠层结构部至少由根据外部磁场磁化旋转的自由层(1)、钉扎层(3)、钉扎该钉扎层(3)的磁化的反强磁性层(4)、夹在上述自由层(1)和上述钉扎层(3)之间的非磁性层(2)层叠而成;该磁致电阻效应元件以上述叠层结构部(10)的层叠方向作为检测电流的通电方向;且在上述自由层(1)和钉扎层(3)中的至少一个分散有异相粒子。由此,可以提高传导电子的自旋依赖散射,提高灵敏度。
4 电流垂直于膜面结构的磁阻元件 CN03159135.3 2003-09-09 CN1489135A 2004-04-14 菅原貴彥
电流垂直于膜面(CPP)结构的磁阻(MR)元件,包括由颗粒膜制成的被钉扎磁性层。颗粒膜含有导电磁晶粒和介电材料。介电材料用于使被钉扎磁性层中的检测电流路径变薄。此外,检测电流集中于磁晶粒。可以得到检测电流的电压的较大变化。由此可以增强CPP结构的MR元件的输出。
5 磁性元件和使用这种磁性元件的磁头和磁存储器 CN98114853.0 1998-05-09 CN1213867A 1999-04-14 猪俣浩一郎; 齐藤好昭; 柚须圭一郎; 市原胜太郎; 荻原英夫
发明提供了一种磁性元件,它包括有具有分散在电感应体基质中的强磁性微粒的、并且不显示超常磁性的、具有有限矫顽的微粒磁性膜,以及强磁性膜。微粒磁性膜和强磁性膜以叠层或沿着基板表面并列设置的方式构成为强磁性隧道结合膜。强磁性隧道结合膜将微粒磁性膜作为屏障。通过使微粒磁性膜和强磁性膜中的一个磁性膜的自旋方向在外部磁场的作用下变化的方式,可以获得巨磁电阻效应。这种磁性元件特征在于磁电阻变化率大、饱和磁场小、并可以将元件电阻调节为所需要的值,因此具有可获得偏差小而稳定的特性。
6 磁性记录元件和磁性存储器 CN200710137982.9 2007-03-26 CN101097987A 2008-01-02 中村志保; 森濑博史
根据本发明的一个示例的磁性记录元件包括:磁性自由层(11),该层的磁化随着流过薄膜电流方向是可变的,并且该层的磁化的易磁化轴的方向与薄膜平面垂直;磁性被钉扎层(12),该层的磁化被固定在与薄膜平面垂直的方向上;以及磁性自由层(11)和磁性被钉扎层(12)之间的非磁性阻挡层(13)。在磁性自由层(11)中,饱和磁化强度Ms(emu/cc)和各向异性磁场Han(Oe)之间的关系满足Han>12.57Ms,以及Han<1.2E7Ms-1+12.57Ms。
7 磁致电阻效应元件和磁致电阻效应型磁头 CN01804615.0 2001-11-07 CN1398434A 2003-02-19 细见政功; 牧野荣治
在GMR元件的CPP结构中,具有叠层结构部(10),该叠层结构部至少由根据外部磁场磁化旋转的自由层(1)、钉扎层(3)、钉扎该钉扎层(3)的磁化的反强磁性层(4)、夹在上述自由层(1)和上述钉扎层(3)之间的非磁性层(2)层叠而成;该磁致电阻效应元件以上述叠层结构部(10)的大致层叠方向作为检测电流的通电方向;上述自由层(1)和钉扎层(3)中的至少一个是在膜厚方向上由膜厚1.9nm以下的薄膜层分割而成的多层膜状态,形成有多个异相界面。由此,可以提高传导电子的自旋依赖散射,提高灵敏度。
8 能有效克服噪声的MRAM CN01125743.1 2001-08-21 CN1339800A 2002-03-13 小野裕司; 吉田荣吉; 增本敏昭
在一种具有利用磁性材料的存储器件部分(33,34,35)的磁随机存取存储器中,在磁性材料附近设置高频电流抑制器(26),以抑制存储器件部分中的高频电流。该存储器件和高频电流抑制器一起模制在塑料树脂模体(25)中。高频电流抑制器最好由粒状磁性材料构成的膜膜制成,所说粒状磁性材料具有表示为M-X-Y的组分,其中M是磁性金属元素,Y是选自、氮、氟中的一种元素,X是除M和Y之外的元素。
9 粒状多层磁致电阻器件的制造方法 CN94103796.7 1994-03-30 CN1062670C 2001-02-28 科温·R·高芬; 詹姆斯·K·哈沃德; 托德·L·海勒特; 米查尔·A·帕克
发明提供一种制造粒状多层磁致电阻传感器的方法,其特征在于包括下列步骤:在适当的基片上沉积多个双层材料,每个双层材料包括第一层非磁性导电材料和第二层磁性材料;以及在预定的温度下对所得多层器件退火,在所述退火期间每个所述第二铁磁性材料分裂成多个铁磁性颗粒,所述第一层中的所述非磁性材料流进所述铁磁性颗粒之间和周围。
10 粒状多层磁致电阻传感器 CN94103796.7 1994-03-30 CN1094835A 1994-11-09 科温·R·高芬; 詹姆斯·K·哈沃德; 托德·L·海勒特; 米查尔·A·帕克
一种磁致电阻读出传感器包括一个粒状多层传感元件,该元件包含多层嵌入非磁性导电材料中的大体上扁平的磁性材料颗粒。一个由隔离层隔开磁致电阻传感元件的偏磁层提供一个磁场,以便把磁致电阻传感元件偏置于想要的无信号点。铁磁性材料和非磁性材料是互不混溶的,也可以是混溶的或部分混溶的并以控制互扩散的方式处理的。
11 자기 소자, 자기 메모리 디바이스, 자기저항 효과 헤드 및 자기 저장 시스템. KR1019990038509 1999-09-10 KR100344030B1 2002-07-19 이노마타고이치로; 사이토요시아키; 나카무라신이치
본발명은자기소자, 자기메모리디바이스, 자기저항효과헤드, 및자기기억시스템에관한것으로, 상기자기소자는교대로적층된강자성체-유전체혼합층및 유전체층으로구성된적층막을갖고, 상기강자성체-유전체혼합층은보자력을갖는강자성재료와유전체재료의혼합층으로, 상기혼합층의강자성재료의부피가상기유전체재료의부피보다크거나같다. 상기강자성체-유전체혼합층(3)은이에가깝게위치한강자성층(1)을갖는데, 이들사이에유전체층이개재된다. 상기강자성체-유전체혼합층사이에터널전류가흐른다. 보다작은보자력을갖는자성층은자기저항효과가발생되도록그의스핀이전환된다. 강자성터널접합을갖는자기소자는자기저항변화율이증가하고, 소자의저항이감소되며, 자기저항변화율이전압에따라보다적게변화하도록디자인된다. 또한, 보자력을갖는강자성재료및 유전체재료로구성된혼합층은그에가깝게배열된한 쌍의전극을갖는데, 상기전극중 적어도하나는강자성재료로만들어진다. 상기강자성재료의전극은상기혼합층에인접하는데, 그들사이에유전체층이개재된다. 다른하나의전극은상기혼합층내의강자성재료와실질적으로접촉한다. 상기자기소자는작은자기장으로큰 자기저항변화율을쉽게제공한다. 이는저항및 자기감도를아주적게변화시키고, 낮은저항을갖는것을특징으로한다.
12 Techniques for coupling in semiconductor devices US11338401 2006-01-24 US07893470B2 2011-02-22 Daniel C. Worledge
Techniques for exchange coupling of magnetic layers in semiconductor devices are provided. In one aspect, a semiconductor device is provided. The device comprises at least two magnetic layers, and a spacer layer formed between the magnetic layers, the spacer layer being configured to provide ferromagnetic exchange coupling between the layers, the magnetic layers experiencing anti-ferromagnetic dipole coupling, such that a net coupling of the magnetic layers is anti-ferromagnetic in a zero applied magnetic field. The semiconductor device may comprise magnetic random access memory (MRAM). In another aspect, a method for coupling magnetic layers in a semiconductor device comprising at least two magnetic layers and a spacer layer therebetween, the method comprises the following step. Ferromagnetic exchange coupling is provided of the magnetic layers, the magnetic layers experiencing anti-ferromagnetic dipole coupling, such that a net coupling of the magnetic layers is anti-ferromagnetic in a zero applied magnetic field.
13 Method for manufacturing magnetic field detection devices and devices therefrom US10566838 2004-07-30 US07829962B2 2010-11-09 Daniele Pullini; Brunetto Martorana; Piero Perlo
A method for manufacturing magnetic field detection devices comprises the operations of manufacturing a magneto-resistive element comprising regions with metallic conduction and regions with semi-conductive conduction. The method comprises the following operations: forming metallic nano-particles to obtain regions with metallic conduction; providing a semiconductor substrate; and applying metallic nano-particles to the porous semiconductor substrate to obtain a disordered mesoscopic structure. A magnetic device comprises a spin valve, which comprises a plurality of layers arranged in a stack which in turn comprises at least one free magnetic layer able to be associated to a temporary magnetisation (MT), a spacer layer and a permanent magnetic layer associated to a permanent magnetisation (MP). The spacer element is obtained by means of a mesoscopic structure of nanoparticles in a metallic matrix produced in accordance with the inventive method for manufacturing magneto-resistive elements.
14 Process for obtaining a thin, insulating, soft magnetic film of high magnetization US11189028 2005-07-25 US07504007B2 2009-03-17 Guillaume Bouche; Pascal Ancey; Bernard Viala; Sandrine Couderc
A thin soft magnetic film combines a high magnetization with an insulating character. The film is formed by nitriding Fe-rich ferromagnetic nanograins immersed in an amorphous substrate. A selective oxidation of the amorphous substrate is then performed. The result is a thin, insulating, soft magnetic film of high magnetization. Many types of integrated circuits can be made which include a component using a membrane incorporating the above-mentioned thin film.
15 Magnetoresistance effect element, magnetic head and magnetic reproducing apparatus US11283873 2005-11-22 US07443004B2 2008-10-28 Hiromi Yuasa; Yuzo Kamiguchi; Masatoshi Yoshikawa; Katsuhiko Koui; Hitoshi Iwasaki; Tomohiko Nagata; Takeo Sakakubo; Masashi Sahashi
In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
16 Magnetic recording element and magnetic memory US11725570 2007-03-20 US07432574B2 2008-10-07 Shiho Nakamura; Hirofumi Morise
A magnetic recording element according to an example of the present invention includes a magnetic free layer whose magnetization is variable in accordance with a current direction passing through a film and whose direction of easy axis of magnetization is a direction perpendicular to a film plane, a magnetic pinned layer whose magnetization is fixed to a direction perpendicular to the film plane, and a non-magnetic barrier layer between the magnetic free layer and the magnetic pinned layer. In the magnetic free layer, a relation between a saturated magnetization Ms (emu/cc) and an anisotropy field Han (Oe) satisfies Han>12.57 Ms, and Han<1.2 E7 Ms−1+12.57 Ms.
17 Magnetic recording element and magnetic memory US11725570 2007-03-20 US20070228501A1 2007-10-04 Shiho Nakamura; Hirofumi Morise
A magnetic recording element according to an example of the present invention includes a magnetic free layer whose magnetization is variable in accordance with a current direction passing through a film and whose direction of easy axis of magnetization is a direction perpendicular to a film plane, a magnetic pinned layer whose magnetization is fixed to a direction perpendicular to the film plane, and a non-magnetic barrier layer between the magnetic free layer and the magnetic pinned layer. In the magnetic free layer, a relation between a saturated magnetization Ms (emu/cc) and an anisotropy field Han (Oe) satisfies Han>12.57 Ms, and Han<1.2 E7 Ms−1+12.57 Ms.
18 Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements US11413744 2006-04-28 US20060192237A1 2006-08-31 Yiming Huai
A method and system for providing a magnetic element is disclosed. The method and system include providing a pinned layer, a magnetic current confined layer, and a free layer. The pinned layer is ferromagnetic and has a first pinned layer magnetization. The magnetic current confined layer has at least one channel in an insulating matrix and resides between the pinned layer and the free layer. The channel(s) are ferromagnetic, conductive, and extend through the insulating matrix between the free layer and the pinned layer. The size(s) of the channel(s) are sufficiently small that charge carriers can give rise to ballistic magnetoresistance in the magnetic current confined layer. The free layer is ferromagnetic and has a free layer magnetization. Preferably, the method and system also include providing a second pinned layer and a nonmagnetic spacer layer between the second pinned layer and the free layer. In this aspect, the magnetic element is configured to allow the free layer magnetization to be switched using spin transfer.
19 Magnetoresistance effect element, magnetic head and magnetic reproducing apparatus US10887080 2004-07-09 US07071522B2 2006-07-04 Hiromi Yuasa; Yuzo Kamiguchi; Masatoshi Yoshikawa; Katsuhiko Koui; Hitoshi Iwasaki; Tomohiko Nagata; Takeo Sakakubo; Masashi Sahashi
In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
20 Magnetoresistance effect element, magnetic head and magnetic reproducing apparatus US11283873 2005-11-22 US20060071287A1 2006-04-06 Hiromi Yuasa; Yuzo Kamiguchi; Masatoshi Yoshikawa; Katsuhiko Koui; Hitoshi Iwasaki; Tomohiko Nagata; Takeo Sakakubo; Masashi Sahashi
In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
QQ群二维码
意见反馈