首页 / 国际专利分类库 / 物理 / 核物理;核工程 / 未列入其他类目的粒子或电离辐射的处理技术;照射装置;γ射线或X射线显微镜 / 粒子或电离辐射的处理装置,如聚焦或慢化 / .使用电荷交换器件,例如用于束流的电荷中性化或改变其符号(中性粒子束的产生或加速入 H05H3/00)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 Higher pressure, modular target system for radioisotope production US12213614 2008-06-23 US20090090875A1 2009-04-09 William Z. Gelbart; Roberto A. Pavan; Stefan K. Zeisler
A beam window according to example embodiments may include a foil having an interior region and an exterior region. The interior region of the foil may be dome-shaped, and a central portion of the dome-shaped interior region may be thinner than the exterior region of the foil. The beam window may be welded to a flange to form a window module. One or more window modules may be utilized in a target assembly. The target assembly may further include a cooling unit and/or collimator to form a target system according to example embodiments.
42 Ion neutralizer US11174571 2005-07-06 US07282702B2 2007-10-16 Yun Kwang Jeon; Jung Wook Kim
An ion neutralizer enhances a heat transfer rate between a reflecting plate and a frame while preventing the reflecting plate from being bent due to thermal deformation. The ion neutralizer includes a frame and a plurality of reflecting plates integrally formed with the frame to neutralize plasma ions. Each reflecting plate has a cantilever shape. Each reflecting plate has a supporting end in surface contact with the frame, and a free end to define a space with the frame in order to prevent the reflecting plate from being bent upon stretching due to thermal deformation.
43 Stripping foil US10301566 2002-11-22 US07223463B2 2007-05-29 Yoshio Arakida
A foil is formed on a given substrate, then, peeled off of the substrate and floated on the water surface charged in a tank. The surface level of the water is decreased to contact the foil to a folding plate of a jug substrate and thus, fold the foil at the folding plate in two. The two surfaces of the foil opposing each other are laminated along a foil forming-supporting plate within a laminating region. The thus laminated foil is dried and annealed except the area in the vicinity of the foil forming-supporting plate, and then, cut along the folding plate, a foil acceptor and a supporting plate, to provide a stripping foil which can be supported by itself.
44 Stripping foil, method for fabricating a stripping foil and apparatus for fabricating a stripping foil US10301566 2002-11-22 US20030104207A1 2003-06-05 Yoshio Arakida
A foil is formed on a given substrate, then, peeled off of the substrate and floated on the water surface charged in a tank. The surface level of the water is decreased to contact the foil to a folding plate of a jug substrate and thus, fold the foil at the folding plate in two. The two surfaces of the foil opposing each other are laminated along a foil forming-supporting plate within a laminating region. The thus laminated foil is dried and annealed except the area in the vicinity of the foil forming-supporting plate, and then, cut along the folding plate, a foil acceptor and a supporting plate, to provide a stripping foil which can be supported by itself.
45 SPACE CHARGE NEUTRALIZATION OF AN ION BEAM US09083706 1998-05-22 US20020003208A1 2002-01-10 VADIM G. DUDNIKOV
A device is provided for treating a workpiece with positively charged ions. The device includes an apparatus including an ion source for producing a positive ion beam and directing the positive ion beam toward a surface of a work piece. The device further includes a source for introducing negative ions into the beam path in at least one selected region downstream of the ion source.
46 Space charge neutralization of an ion beam US09083706 1998-05-22 US06329650B1 2001-12-11 Vadim G. Dudnikov
A device is provided for treating a workpiece with positively charged ions. The device includes an apparatus including an ion source for producing a positive ion beam and directing the positive ion beam toward a surface of a work piece. The device further includes a source for introducing negative ions into the beam path in at least one selected region downstream of the ion source.
47 Method for producing high ionization in plasmas and heavy ions via annihilation of positrons in flight US96314 1998-06-11 US06107635A 2000-08-22 Jose Chakkoru Palathingal
High ionization of atoms and molecules is a requirement in several atomic and plasma studies and studies of radiation spectra, in the production of lasers and in industrial applications of various kinds. Most often, ionization of atoms is limited to the removal of the outermost electrons only, for doing which well-known techniques exist. Extraction of electrons from the core shells strongly bound to the atoms, especially the heavy atoms, is difficult. Removal of these electrons is however necessary to achieve a high level of ionization or total ionization demanded in several applications. The method of the present invention employs positron annihilation in flight as a means of eliminating the electrons of the core shells of atoms, especially in the case of elements of large atomic number, so that total or near-total ionization is possible. The method is particularly relevant in producing inner-shell ionization in plasmas and assembles of heavy ions.
48 Apparatus for neutralizing charged body US185829 1994-01-24 US5596478A 1997-01-21 Tadahiro Ohmi; Hitoshi Inaba
An apparatus which can neutralize charge bodies such as processed substrates for semiconductor device and for flat display, free from electromagnetic noise, impurity contamination, and residual potentials. To process in a prescribed way a wafer(5) to be processed, the wafer(5) is, for example, moved from a pretreatment chamber(2) to a low pressure reaction chamber(3). In this case, a gas, which does not react on the wafer, such as nitrogen and argon, is introduced into the pretreatment chamber(2), and is kept under a predetermined pressure by a vacuum pump(15). Then, ultraviolet rays are projected in the pretreatment chamber(2) from an ultraviolet rays lamp(11) constituting a means for generating neutralization charge, and positive and negative floating charged particles(electrons and positive ions) are generated by exiting the atmosphere in the chamber(2). Since the charges are removed by projecting the ultraviolet rays from the outside of a case(1) and the case(2) and moreover in a non-contact way, no electromagnetic noise is generated and the residual potentials are vanished too.
49 Beam charge exchanging apparatus US371775 1995-01-12 US5543615A 1996-08-06 Mutsumi Saito; Tomoyuki Yahiro; Masahiro Hatakeyama
A beam charge exchanging apparatus causes the charges of charged particles in a fast particle beam to be exchanged with charges of a gas or other fluid. The apparatus includes; a gas/fluid container disposed in a vacuum and having holes which allow the fast particle beam to pass through the container, a source of gas or other fluid, and a nozzle for introducing the gas into the container. The source and the nozzle are designed to introduce a high speed gas/fluid into the container so that the fast particle beam will collide with the high speed gas/fluid in the container and the charges thereof will be exchanged such that the fast particle beam is converted into a neutral particle beam. The apparatus may further include elements for detecting the quantity of neutral particles resulting from the charge exchange by measuring the quantity of generated ionized gas as an electric current.
50 Method for reducing isobaric interferences in accelerator mass spectrometry US125910 1993-09-24 US5386116A 1995-01-31 Linas R. Kilius; Albert E. Litherland
Resonant charge transfer is used to reduce isobaric interferences in accelerator mass spectrometry.
51 Ion neutralizer US871984 1992-04-22 US5243189A 1993-09-07 Kazutoshi Nagai; Tohru Satake; Hideaki Hayashi; Yoshio Hatada
An ion neutralizer which neutralizes electric charges on ions and produces a fast atom beam in an ultra-high vacuum comprising: an ion source disposed in a vacuum container; a hollow container disposed in the vacuum container, the hollow container being closed at both ends thereof except for an ion beam entrance hole provided in one end portion thereof and a fast atom beam exit hole provided in the other end portion thereof; a metal vapor generating source comprising a filament wound with a fine wire or ribbon of a metal selected from titanium, magnesium and aluminum, the filament being disposed in the hollow container in such a manner as to surround an axis connecting the ion beam entrance hole and the fast atom beam exit hole; a vacuum pump connected to the vacuum container; and a filament heating power supply disposed outside the vacuum container and the hollow container and connected to the filament.
52 Method and apparatus for producing neutral atomic and molecular beams US841142 1986-03-19 US4775789A 1988-10-04 Royal G. Albridge, Jr.; Richard F. Haglund, Jr.; Kenneth J. Snowdon; Norman H. Tolk
A method and apparatus for producing a neutral beam of oxygen or other gas for use in testing of materials and for heavy particle etching is disclosed. A beam of positively ionized gas is accelerated and filtered to produce a beam having ions of a selected energy. The beam is decelerated to an energy of the level required and directed toward a photo emissive surface at a grazing incidence angle causing electrons to be contributed to the beam thereby neutralizing part of the ionized atoms and molecules of the beam. The beam is directed through electrostatic deflection plates which separate out remaining ionized particles producing a neutral beam.
53 Ton beam neutralizer US666597 1984-10-31 US4713542A 1987-12-15 Joseph E. Campana
A method and apparatus for converting an ion beam from a standard ion gun into a neutral particle beam by the processes of resonance neutralization followed by Auger deexcitation and/or Auger neutralization, established by directing the ion beam to pass in the proximity of a suitable metal surface.
54 Apparatus and method for spatially characterizing and controlling a particle beam US824485 1986-01-31 US4700068A 1987-10-13 Frederick J. McClung, Jr.; James G. Small
A system and method is described for obtaining a spatial characterization of a particle beam, including the beam direction, position, divergence, aberrations and intensity profile. A mechanism is also provided for adjusting the beam propagation to a desired state in response to the sensed characteristics. A fiber array in the path of a neutral particle beam casts shadows which are sensed at a downstream location to characterize the beam. Various mechanisms can be used to sense the shadow positions and/or widths relative to the fibers, from which the various beam characteristics can be derived. By magnetically removing charged particles from the neutral beam shadows, the shadows can be sensed by their effect upon the secondary emission currents generated in downstream conducting sensor wires, by their effect upon the fluorescence of downstream optical fibers, or by their effect upon the thermal heating of various types of downstream heat sensors. The shadows can also be sensed directly by the differences in their spectral radiation compared to that of the beam. A very high degree of precision is obtained in directing the beam, while initial coarse measurements and adjustments can be derived by providing the fiber array as a grid of conductive wires and sensing differentials in the secondary emission currents generated in the various wires.
55 Neutral particle surface alteration US859937 1986-05-05 US4662977A 1987-05-05 Robert W. Motley; Dennis M. Manos; William D. Langer; Samuel A. Cohen
A plasma gun is described which is capable of creating and directing a plasma towards a neutralizing plate. The plate is comprised of a material which is chemically inert, metallic, and whose atoms are substantially heavier than the atoms of the plasma gas. The plasma, upon impacting the neutralizing plate, picks up sufficient electrons to cause the ions to revert to their neutral state. The particles, upon hitting the neutralizing plate, are redirected towards a substrate whose surface is to be altered or eroded. A potential may be applied to the neutralizing plate to enable the energy of the reflected particles to be controlled. The neutral atoms, so redirected, provide a desired anisotropic erosion capability.
56 Injector for negative ions US759465 1985-07-26 US4616157A 1986-10-07 Harry Naylor; Kenneth H. Purser
Apparatus for generating negative ions, specifically He.sup.- ions. Positive ions at a predetermined energy level from a conventional ion source are directed to a permanent magnet channel that utilizes two, spaced permanent magnet assemblies to analyze the ions and, with double focusing, to direct them to a focal point located in a lithium vapor canal. As the positive ion beam passes through a lithium vapor of constant density in a predetermined volume at the central region of the canal, electrons transfer to the ions and produce He.sup.- ions. The canal is constructed to efficiently condense and collect lithium vapor as it escapes the predetermined volume. The beam of negative ions then passes to another permanent magnet assembly that corrects any astigmatism in the emerging beam and that directs the beam, with appropriate optical properties, onto an injection axis for another accelerating structure.
57 Method of broad band mass spectrometry and apparatus therefor US348103 1982-02-11 US4489237A 1984-12-18 Albert E. Litherland; Linas R. Kilius; Emil L. Hallin
A highly sensitive broad band mass spectrometer consists of a broad band selector of a low energy level beam of negative ions to be examined; a molecular disintegrator and charge changer which receives the negative ions and produces a beam of high-energy multiply charged positive ions free of molecules; and a broad band high-energy, continuously-operable isochronous time-of-flight mass spectrometer which receives the output from the molecular disintegrator. The disintegrator destroys molecules that would obscure the measurement of atomic species. Both selector and spectrometer preferably are electrostatic to avoid mass discrimination and maintain the broad band capability. The use of an isochronous time-of-flight mass spectrometer permits continuous operation which increases sensitivity. The ion selector may be of a magnetic type if a somewhat narrower band of masses is acceptable.
58 Apparatus for detecting negative ions US59961 1979-07-23 US4423324A 1983-12-27 George C. Stafford
A negative ion detector converts negative ions to positive ions by means of a conversion anode which is maintained at a relatively high positive voltage. The resultant positive ions are detected by a standard continuous dynode electron multiplier which has its detection signal output at ground potential.
59 Neutral beamline with ion energy recovery based on magnetic blocking of electrons US164990 1980-07-01 US4349505A 1982-09-14 William L. Stirling
A neutral beamline generator with energy recovery of the full-energy ion ponent of the beam based on magnetic blocking of electrons is provided. Ions from a positive ion source are accelerated to the desired beam energy from a slightly positive potential level with respect to ground through a neutralizer cell by means of a negative acceleration voltage. The unneutralized full-energy ion component of the beam exiting the neutralizer are retarded and slightly deflected and the electrons in the neutralizer are blocked by a magnetic field generated transverse to the beamline. An electron collector in the form of a coaxial cylinder surrounding and protruding axial a few centimeters beyond the neutralizer exit terminates the electrons which exit the neutralizer in an E x B drift to the collector when the collector is biased a few hundred volts positive with respect to the neutralizer voltage. The neutralizer is operated at the negative acceleration voltage, and the deflected full energy ions are decelerated and the charge collected at ground potential thereby expending none of their energy received from the acceleration power supply.
60 Neutral beam monitoring US853371 1977-11-21 US4284952A 1981-08-18 Joel H. Fink
Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.
QQ群二维码
意见反馈