序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 核素转换方法及核素转换装置 CN201380007232.3 2013-01-29 CN104081467A 2014-10-01 岩村康弘; 伊藤岳彦; 牟田研二; 鹤我薰典
发明提供一种核素转换装置及核素转换方法,与加速器或反应堆等大规模的装置相比,能够以规模相对较小的装置进行核素转换,使核素转换量增大。本发明的核素转换装置具备:结构体(1)、从两侧夹入结构体(1)而配置的氘高浓度部(2)及氘低浓度部(3),向氘高浓度部(2)供给包含重电解液(16),将电解液(16)电解而产生氘,在结构体(1)的氘高浓度部(2)侧的表面附近形成氘浓度高的状态,同时,使氘低浓度部(3)形成氘浓度低于氘高浓度部(2)的状态,使氘从氘高浓度部(2)向氘低浓度部3透过结构体(1),在结构体(1)中,使实施核素转换的物质在氘的作用下发生核素转换。
2 使用纳米管产生高能粒子的方法和其物品 CN200680050547.6 2006-11-30 CN101356588A 2009-01-28 克里斯托弗·H·库珀; 詹姆斯·F·洛恩; 威廉·K·库珀; 艾伦·G·卡明斯
发明揭示一种产生高能粒子的方法,其包含使纳米管与氢同位素来源(诸如D2O)接触和施加活化能到所述纳米管。在一个实施例中,所述氢同位素包含氕、氘、氚和其组合。本发明还揭示一种使物质转化的方法,此方法基于增加受限于纳米管结构有限尺寸的原子的原子核交互作用可能性,所述方法产生足以使物质转化的高能粒子,且将待转化物质暴露于这些粒子中。
3 核素转换方法及核素转换装置 CN201380007232.3 2013-01-29 CN104081467B 2017-03-08 岩村康弘; 伊藤岳彦; 牟田研二; 鹤我薰典
发明提供一种核素转换装置及核素转换方法,与加速器或反应堆等大规模的装置相比,能够以规模相对较小的装置进行核素转换,使核素转换量增大。本发明的核素转换装置具备:结构体(1)、从两侧夹入结构体(1)而配置的氘高浓度部(2)及氘低浓度部(3),向氘高浓度部(2)供给包含重电解液(16),将电解液(16)电解而产生氘,在结构体(1)的氘高浓度部(2)侧的表面附近形成氘浓度高的状态,同时,使氘低浓度部从氘高浓度部(2)向氘低浓度部3透过结构体(1),在结构体(1)中,使实施核素转换的物质在氘的作用下发生核素转换。(3)形成氘浓度低于氘高浓度部(2)的状态,使氘
4 制备氚的方法、装置和系统 CN201510161091.1 2015-04-07 CN104900289A 2015-09-09 陈大融; 蒋亮; 陈皓生; 汪家道; 李党国
发明公开了制备氚的方法、装置和系统。其中,制备氚的方法包括:将第一流体介质通过柱塞进行压缩,以便形成射流,其中,第一流体介质包含至少2mmol/L的6LiD;利用空化盘对射流进行空化处理,形成含有空泡的空泡流;使空泡流通过迷宫式通道,在超声场作用下,进行液汽界面传质处理,得到高内含物空泡流;利用喷嘴使高内含物空泡流以60-100m/s的速度冲击置于第二流体介质中的金属工件的上表面,高内含物空泡流趋近金属工件的上表面,实现氘氘热核聚变,得到氚和快中子,其中,第二流体介质含有氘,快中子在第二流体介质中慢化并得到热中子,热中子与6LiD反应生成额外的氚。利用该方法可以实现氘氘热核聚变,可以安全、简便并且低成本地制备氚。
5 制备Tc-99m的方法 CN201280034257.8 2012-07-13 CN103650061A 2014-03-19 L.A.M.M.巴波萨
制备Tc-99m的方法,其包括将纯化的Mo-99的溶液与包含化物和i)氧化物或ii)锆氧化物的吸附材料接触,从而使得由Mo-99衰变得到的Tc-99m此后可被洗脱的步骤。
6 用于内源式产生放射性同位素的装置 CN200580043999.7 2005-10-21 CN101084557B 2011-10-19 马尔科·苏米尼; 阿戈斯蒂诺·塔尔塔里; 多米齐亚诺·莫斯塔奇
用于放射性同位素内源式产生、尤其是用于PET的装置,其特征在于包括:一其内表面至少部分地处理成抗离子注入而且相对于核反应产物惰性化的真空容器(1)。一设置在上述真空容器(1)里面的一对电极(4,5),一电容器组(2),一把上述电容器组(2)连接到上述电极(4,5)以致在后者之间产生放电因而形成等离子体而且建立用于开展产生放射性同位素的核反应的一些条件的装置(3,16),一象这样的装置不超过50nH的等效电路总电感,安装到真空容器(1)用于形成不高于10-6Torr真空度的装置(10),一安装到上述真空容器(1)用于在形成真空以后以一定压引入至少一种通常保证在放电期间形成等离子的反应气体和随后达到象这样1015keV-s/cm3数量级的等离子体的一些吸持条件的装置(11),以及一安装到上述真空容器(1)用于抽取出气体而且把气体贮藏在气体色谱仪的圆筒内的装置。
7 用于放射性同位素内源式产生、尤其是用于PET的装置 CN200580043999.7 2005-10-21 CN101084557A 2007-12-05 马尔科·苏米尼; 阿戈斯蒂诺·塔尔塔里; 多米齐亚诺·莫斯塔奇
用于放射性同位素内源式产生、尤其是用于PET的装置,其特征在于包括:一其内表面至少部分地处理成抗离子注入而且相对于核反应产物惰性化的真空容器(1)。一设置在上述真空容器(1)里面的一对电极(4,5),一电容器组(2),一把上述电容器组(2)连接到上述电极(4,5)以致在后者之间产生放电因而形成等离子体而且建立用于开展产生放射性同位素的核反应的一些条件的装置(3,16),一像这样的装置不超过50nH的等效电路总电感,安装到真空容器(1)用于形成不高于10-6Torr真空度的装置(10),一安装到上述真空容器(1)用于在形成真空以后以一定压引入至少一种通常保证在放电期间形成等离子的反应气体和随后达到像这样1015keV-s/cm3数量级的等离子体的一些吸持条件的装置(11),以及一安装到上述真空容器(1)用于抽取出气体而且把气体贮藏在气体色谱仪的圆筒内的装置。
8 나노튜브들 및 그 물품을 이용하여 강한 입자들을발생시키는 방법 KR1020087016435 2006-11-30 KR1020080074218A 2008-08-12 쿠퍼,크리스토퍼,에이치.; 론,제임스,에프.; 쿠퍼,윌리암,케이.; 큐밍즈,알렌,지.
There is disclosed a method of generating energetic particles, which comprises contacting nanotubes with a source of hydrogen isotopes, such as D2O, and applying activation energy to the nanotubes. In one embodiment, the hydrogen isotopes comprises protium, deuterium, tritium, and combinations thereof. There is also disclosed a method of transmuting matter that is based on the increased likelihood of nuclei interaction for atoms confined in the limited dimensions of a nanotube structure, which generates energetic particles sufficient to transmute matter and exposing matter to be transmuted to these particles.
9 AN ION BEAM IRRADIATION METHOD WITH AN ASYMMETRIC DISTRIBUTION USING CONVEX-SHAPED ELECTROMAGNETS AND THE APPARATUS THEREOF KR20060014145 2006-02-14 KR20070081891A 2007-08-20 CHO YONG SUB; JANG JI HO
An apparatus and a method for irradiating an ion beam with asymmetric distribution by using convex-shaped electromagnets are provided to irradiate the ion beam safely by irradiating the ion beam through the change of magnetic poles of the deflection electromagnet without an additional scraper. An apparatus for irradiating an ion beam(10) with asymmetric distribution by using convex-shaped electromagnets includes a deflection electromagnet(130). The apparatus periodically refracts the ion beam(10) which is generated at an ion source or an accelerator so as to irradiate the ion beam(10) to a target by using the deflection electromagnet(130). The deflection electromagnet(130) has two magnetic pole surfaces which face each other and are projected to each other with a convex shape. The ion beam(10) passes through the two magnetic pole surfaces to be irradiated to the target.
10 연구용 원자로의 조사표적 인입출장치 KR1020130169009 2013-12-31 KR1020150080305A 2015-07-09 홍영돈; 최선주; 엄영랑; 허철민
본발명에따른연구용원자로의조사표적인입출장치는, 조사표적이수용되며, 제1연결부가형성된조사리그; 상기조사리그의제1연결부와결합및 분리가능한제2연결부가형성된연결유닛; 상기연결유닛과연결되고, 상기연결유닛의상부로길게연장된고정유닛; 및상기고정유닛이체결되는체결부를포함하고, 상기고정유닛이체결된상태에서상기고정유닛및 연결유닛을이동시키는이동브릿지; 를포함한다.
11 이온원-표적 일체형 중성자 발생장치 및 이를 이용한동위원소 생산 시스템 KR1020040101698 2004-12-06 KR1020060062750A 2006-06-12 최희동
본 발명은 이온원-표적 일체형 중성자 발생장치 및 이를 이용한 동위원소 생산 시스템에 관한 것으로서, 보다 상세하게는 전극으로 작동되는 중성자 발생표적과 이를 둘러싸고 있는 이온원으로 구성되어 고전류의 플라즈마를 발생시켜 높은 중성자 생성율을 달성할 수 있는 이온원-표적 일체형 중성자 발생장치와 이를 이용한 동위원소 생산 시스템에 관한 것이다. 본 발명에 따른 이온원-표적 일체형 중성자 발생장치는, 양 끝단이 밀봉된 원통형의 석영관과; 상기 석영관의 양 끝단을 밀봉하고 있는 밀봉체와; 상기 석영관 내부 중앙에 관의 길이 방향을 따라 배치되는 중성자 발생표적과; 상기 석영관 내부면과 상기 중성자 발생표적 사이에 관의 길이 방향을 따라 배치되고, 한쪽 단부가 접지되어 있는 플라즈마 전극과; 상기 석영관의 양 끝단부 측에 설치된 한 쌍의 전자석과; 상기 한 쌍의 전자석 사이에 설치되며, 상기 석영관의 외부를 둘러싸고 형성된 고주파 안테나;를 포함하여 구성되되, 상기 밀봉체 중, 일측의 밀봉체에 상기 석영관의 내부로 가스를 주입할 수 있는 가스 주입구가 설치된 것을 특징으로 한다. 중성자 발생 장치, 동위원소, 표적, 이온원, 플라즈마, 고주파, 전자석
12 NUCLIDE CONVERSION METHOD AND NUCLIDE CONVERSION DEVICE EP13743465.0 2013-01-29 EP2816566B1 2017-08-16 IWAMURA, Yasuhiro; ITOU, Takehiko; MUTA, Kenji; TSURUGA, Shigenori
13 DEVICE FOR THE ENDOGENOUS PRODUCTION OF RADIOISOTOPES, PARTICULARLY FOR PET EP05807836.1 2005-10-21 EP1810298A2 2007-07-25 Sumini, Marco; Tartari, Agostino; Mostacci, Domiziano
Device for the endogenous production of radioisotopes, particularly for PET, characterized by comprising: - a vacuum chamber (1), the inner surface of which at least partially treated to resistion implantation and inertised with respect to the nuclear reaction products, - a pair of electrodes (4,5) placed inside said vacuum chamber (1), - a capacitor bank (2), - means (3,16) to connect said capacitor bank (2) to said electrodes (4,5) to generate between the latter an electrical discharge, thus generating plasma and creating conditions for the unfolding of nuclear reactions that generate radioisotopes, - an overall inductance of the equivalent electric circuit of such device not exceeding 50 Nh - means (10) attached to said vacuum chamber (1) for the creation of a vacuum not higher than 10-6 torr - means (11) attached to said vacuum chamber (1) for the insertion, after creating the vacuum, of at least one reaction gas at a pressure apt to guarantee creation of the plasma during discharge and subsequent obtainment of confinement conditions of such plasma of the order of 1015 keV-s/cm3, and - means attached to said vacuum chamber (1) for the extraction of gas and its storage into a gas-chromatographic cylinder.
14 PROCESS AND APPARATUS FOR THE PRODUCTION OF CLEAN NUCLEAR ENERGY EP01972447.5 2001-06-25 EP1402540A1 2004-03-31 Di Caprio, Umberto
Light atomic nuclei, such as deuterium, helium, lithium, carbon are subjected to radiance by means of charged subnuclear particles (electrons, protons or positrons) that are generated and accelerated by a preferably linear reactor. The particles (for instance protons and neutrons) released by the resulting fission are conditioned for the triggering of a nuclear chain reaction, whose energy that is produced free from noxious radiations is exploited to operate thermal machines and/or to produce electric energy.
15 PROCEDE ET DISPOSITIF POUR LA PRODUCTION D'ENERGIE A PARTIR D'UN HYDRURE A CARACTERE METALLIQUE EP99913418.2 1999-04-15 EP1072041A1 2001-01-31 DUFOUR, Jacques, Julien, Jean; DUFOUR, Xavier, Jean-Claude, Marie; FOOS, Jacques, Henri; MURAT, Denis, Marie, Louis
The invention concerns a method which consists in generating an activated and metastable form of hydrogen from a hydrogen plasma confined in the metal lattice interstitial sites by exposing the confined plasma to the action of a magnetic field in conjunction with a displacement of the protons and electrons in a direction parallel to the magnetic field action. Said exposure generates from the confined plasma the required activated and metastable form of hydrogen. Then the interesting effects of this activated form are recuperated. Figure 1 shows a device more particularly adapted for managing nuclear waste and enabling for example to transform Uranium 238 into Thorium 232.
16 DISPOSITIF DE CONDITIONNEMENT DE DECHETS RADIOACTIFS CONSTITUES PAR DES ACTINIDES A PERIODE MOYENNE ET/OU LONGUE EP85902571.0 1985-06-04 EP0186677B1 1989-03-15 BEAUVY, Michel
The conditioning device comprises an outer sealed envelope (1) inside which there is arranged a mixture formed of at least one emitter actinide element alpha with a medium and/or long period such as 237Np, at least one emitter element alpha having a period shorter than 100 years such as 242Cm or 244Cm and at least one light element such as beryllium or boron capable of generating neutrons by reaction (alpha, n). The presence of those different elements enables to obtain a destruction in situ of the long or medium period actinide elements by self-fission under the influence of the neutrons produced by reaction of the particles alpha with the light element.
17 Generator for radionuclide EP84300696 1984-02-03 EP0118217A3 1986-02-12 Forrest, Terence Robert Frederick

A generator of radionuclides comprises a generator column (10) containing the radionuclide and provided with an inlet (12) and an outlet (14) for eluent, first and second reservoirs (16, 18) for eluent, and connecting means for passing a pre-determined column of eluent from the second reservoir through the generator column. A part defining the second reservoir, which part may be the second reservoir itself, is rotatable to determine the volume of eluent passed through the column. The second reservoir is preferably shaped as a sector of a cylinder rotatable around a horizontal axis.

The generator is well suited for vacuum elution of a variable pre-determined volume of eluent into a single size collection vial with subsequent drying of the generator column.

18 Generator for radionuclide EP84300696.6 1984-02-03 EP0118217A2 1984-09-12 Forrest, Terence Robert Frederick

A generator of radionuclides comprises a generator column (10) containing the radionuclide and provided with an inlet (12) and an outlet (14) for eluent, first and second reservoirs (16, 18) for eluent, and connecting means for passing a pre-determined column of eluent from the second reservoir through the generator column. A part defining the second reservoir, which part may be the second reservoir itself, is rotatable to determine the volume of eluent passed through the column. The second reservoir is preferably shaped as a sector of a cylinder rotatable around a horizontal axis.

The generator is well suited for vacuum elution of a variable pre-determined volume of eluent into a single size collection vial with subsequent drying of the generator column.

19 Method and adsorbant composition for 82 Rb generation EP81302602 1981-06-11 EP0043650A3 1983-01-05 Neirinckx, Rudi D.

The present invention provides a composition comprising 82Sr and an adsorbant selected from tin oxide, hydrated tin oxide, polyantimonic acid, titanium oxide, hydrated titanium oxide, ferric oxide and hydrated ferric oxide, and also provides a low 82Sr breakthrough method of generating 82Rb which comprises eluting such 82Sr charged adsorbant.

20 Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target US14042115 2013-09-30 US09793023B2 2017-10-17 Sean Douglas Reilly; Iain May; Roy Copping; Gregory Edward Dale
A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted to concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.
QQ群二维码
意见反馈