首页 / 国际专利分类库 / 物理 / 核物理;核工程 / 化学元素的转变;放射源 / 用于以电磁辐射、微粒辐射或粒子轰击的方法转变化学元素的装置,例如生产放射性同位素(对同一元素的不同同位素分离入B01D59/00)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 自卸料卧式Na131I生产装置 CN201510037597.1 2015-01-26 CN104616711A 2015-05-13 刘国平; 源魏洪; 陈静; 蹇源; 陈琪萍; 何佳恒; 王关全; 李梅; 李兴亮; 吴川; 党宇峰; 牟婉君; 刘飞; 余钱红; 张锐; 钟文彬
发明提供了一种自卸料卧式Na131I生产装置,所述的蒸馏器包括台架、蒸馏器、捕集器、尾气监测器、真空、升降台、控制器。所述的蒸馏器置于台架上并与台架固定连接,所述蒸馏器、捕集器、尾气监测器、真空泵通过管路依次连接,升降台置于蒸馏器的下方,控制器与蒸馏器、捕集器、真空泵、升降台分别电连接。本发明的装置能够从缓慢流动的熔融状态的TeO2中高效蒸出碘-131并制成Na131I产品,具有自动收集蒸馏残渣和尾气在线监测功能。本发明能够大批量生产Na131I,较大节省操作空间和减少放射性固体废物量,结构紧凑,适用于有效操作空间较小的屏蔽工作箱内的Na131I干馏生产,操作的稳定性、便利性和安全性好。
2 具有辐照靶端件的燃料 CN200810184989.0 2008-12-18 CN101483072A 2009-07-15 W·E·拉塞尔二世; D·G·史密斯
发明涉及具有辐照靶端件的燃料棒。具体而言,示例性实施例涉及在任一端部具有端件(120/130)的燃料棒(100),该端件(120/130)中容纳辐照靶。示例性实施例的端件(120/130)可容纳当曝露于在端件(120/130)位置处遇到的中子通量时可转变为所希望的同位素的材料。示例性实施例的端件(120/130)可由该材料构成或否则可装有该材料。示例性实施例的端件(120/130)可与各种全长度和/或部分长度的燃料棒(18)和(19)相配接,并且可起到上和/或下端塞(120/130)的作用,从而将燃料棒(100)与上和/或下连接板(14/16)相配接。
3 用于产生放射性同位素的靶装置 CN200580005296.5 2005-02-18 CN1922695A 2007-02-28 J-C·阿米莉亚; M·吉约特
发明涉及一种辐照单元,用于通过粒子束辐照靶材料来产生感兴趣的放射性同位素,包括形成空腔(7)的金属型芯(2),该空腔(7)被设计用来容纳靶材料并被辐照窗口封闭,其特征在于,所述金属型芯(2)包括至少两个不同材料的分离的金属部件(8,9),所述至少两个不同材料的分离的金属部件(8,9)至少由包括所述空腔(7)的第一部件(8)和第二部件(9)构成。
4 同位素生成靶 CN201180037251.1 2011-07-27 CN103038831A 2013-04-10 S·R·里斯; T·S·帕尔默; S·T·凯勒; M·蒙克
一种同位素生成靶,可包括外径壁和内径壁。同位素源可位于所述内径壁与所述外径壁之间,并且所述同位素源可包含裂变材料,所述裂变材料中散布有一个或多个空隙区域。中央区域可位于所述内径壁内,并且所述中央区域可构造为容纳中子热化体。
5 用于产生放射性同位素的靶装置 CN200580005296.5 2005-02-18 CN1922695B 2012-12-26 J-C·阿米莉亚; M·吉约特
发明涉及一种辐照单元,用于通过粒子束辐照靶材料来产生感兴趣的放射性同位素,包括形成空腔(7)的金属型芯(2),该空腔(7)被设计用来容纳靶材料并被辐照窗口封闭,其特征在于,所述金属型芯(2)包括至少两个不同材料的分离的金属部件(8,9),所述至少两个不同材料的分离的金属部件(8,9)至少由包括所述空腔(7)的第一部件(8)和第二部件(9)构成。
6 使用纳米管产生高能粒子的方法和其物品 CN200680050547.6 2006-11-30 CN101356588A 2009-01-28 克里斯托弗·H·库珀; 詹姆斯·F·洛恩; 威廉·K·库珀; 艾伦·G·卡明斯
发明揭示一种产生高能粒子的方法,其包含使纳米管与氢同位素来源(诸如D2O)接触和施加活化能到所述纳米管。在一个实施例中,所述氢同位素包含氕、氘、氚和其组合。本发明还揭示一种使物质转化的方法,此方法基于增加受限于纳米管结构有限尺寸的原子的原子核交互作用可能性,所述方法产生足以使物质转化的高能粒子,且将待转化物质暴露于这些粒子中。
7 Na125I溶液生产装置 CN201510037459.3 2015-03-24 CN104700915A 2015-06-10 刘国平; 钟文彬; 陈静; 牟婉君; 刘飞; 余钱红; 张锐; 蹇源; 魏洪源; 陈琪萍; 何佳恒; 王关全; 李梅; 李兴亮; 吴川; 党宇峰
发明提供了一种Na125I溶液生产装置,所述的生产装置包括台架、倒气罐、开靶器、充焊器、反应器、原料罐、真空、压表、液氮泵。所述的倒气罐、开靶器、充焊器、反应器、原料罐、真空泵均设置在台架上并与台架固定连接,压力表固定连接在倒气罐上;所述的倒气罐与开靶器、充焊器、反应器、原料罐、真空泵、压力表分别连接;所述的台架下设置有液氮泵,液氮泵与开靶器、充焊器、反应器、原料罐分别连接。本发明的生产装置具有开靶、制靶、活化氙气冷却衰变、Na125I溶液浓缩等功能,能够实现高浓度高Na125I溶液生产,并可在线将回收的氙气直接制成靶件再利用。该装置紧凑小巧,操作方便。
8 一种立式高浓度Na131I溶液生产装置 CN201510037677.7 2015-01-26 CN104616712A 2015-05-13 刘国平; 钟文彬; 陈静; 张锐; 牟婉君; 刘飞; 余钱红; 党宇峰; 蹇源; 魏洪源; 陈琪萍; 何佳恒; 王关全; 李梅; 李兴亮; 吴川
发明提供了一种立式高浓度Na131I溶液生产装置,所述的生产装置包括升降台、蒸馏器、加料台、捕碘器、循环控制器。所述的升降台与蒸馏器固定连接;所述的蒸馏器与捕碘器、循环水泵通过管路分别连接,蒸馏器正下方设置有加料台;所述的控制器与升降台、蒸馏器、加料台、捕碘器、循环水泵分别电连接。本发明的立式高浓度Na131I溶液生产装置具有自动卸出蒸馏残渣的功能,甚至能将开盖的靶筒直接放入陶瓷坩埚蒸馏,显著提高了装置的单产能和Na131I溶液浓度,减小了放射性污染险和固体废物产量。本发明的生产装置结构紧凑,适用于有效操作空间较小的屏蔽工作箱内的高浓度Na131I干馏生产,操作的稳定性、便利性和安全性好。
9 82srr82rb hoshaseidoitaihatsuseisochi JP11599275 1975-09-27 JPS5160900A 1976-05-27 PATORITSUKU EMU GURANTO; BURUUSU AA AADARU; HARARUDO EI OBURAIAN JUUNIA
10 照射ターゲット位置決めシステムを用意する方法 JP2011044795 2011-03-02 JP5643678B2 2014-12-17 ウィリアム・アール・ラッセル,ザ・セカンド; へザー・ジェイ・ハットン; メリッサ・アレン; メリッサ・リン・ヒラディク; サミュエル・ジョン・ラファウンテン; ルイス・アルベルト・トーレス; エリック・ディットマー
11 Irradiation target positioning devices and methods of using the same JP2011044795 2011-03-02 JP2011185927A 2011-09-22 RUSSELL WILLIAM EARL II; HATTON HEATHER J; ALLEN MELISSA; HLADIK MELISSA LYNN; LAFOUNTAIN SAMUEL JOHN; TORRES LUIS ALBERTO; DITTMER ERICK
<P>PROBLEM TO BE SOLVED: To provide irradiation target positioning devices and systems that are configurable to permit accurate irradiation of irradiation targets and accurate production of daughter products, including isotopes and radioisotopes, therefrom. <P>SOLUTION: The devices and methods include irradiation target plates 100 having precise loading positions 101 for irradiation targets 150, where the targets 150 may be maintained in a radiation field. The devices and methods further include a target plate holder for retaining and positioning the target plates 100 and irradiation targets 150 therein in the radiation field. The devices and methods include materials with known absorption cross-sections for the radiation field to further permit precise, desired levels of exposure in the irradiation targets, and perform desired amounts of irradiation and daughter product production. <P>COPYRIGHT: (C)2011,JPO&INPIT
12 GALLIUM-69 ENRICHED TARGET BODIES US15878756 2018-01-24 US20180211737A1 2018-07-26 David Pipes; William Uhland
Gallium target bodies for producing germanium-68 are disclosed. The targets include an alloy of a base metal and gallium. The alloy is enriched in gallium-69 to increase germanium-68 production. Methods for producing such alloys by electroplating are also disclosed.
13 Methods and systems for producing fissile material from fertile feedstock US12749688 2010-03-30 US09852823B1 2017-12-26 John Wilson Benac
A method for generating a fissile material is described. The method includes positioning a fertile, non-fissile material within outer space, the position within an area of proton or other high energy particle radiation, rather naturally or artificially occurring, allowing the high energy particle radiation to impinge the fertile but non-fissile material over a time, the time based on amount of high energy particle radiation at the position, such that the non-fissile material gradually transmutes into a fissile material due to the impingement, and deploying the fissile material within a spacecraft.
14 Isotope production target US13192300 2011-07-27 US09396826B2 2016-07-19 Steven Richard Reese; Todd Stephen Palmer; Stephen Todd Keller; Madicken Munk
An isotope production target may include an outer diameter wall and an inner diameter wall. An isotope source may be located between the inner diameter wall and the outer diameter wall, and the isotope source may comprise fissile material interspersed with one or more voided regions. A central region may be located within the inner diameter wall, and the central region may be configured to house a neutron thermalization volume.
15 Method and device for secure, high-density tritium bonded with carbon US13427165 2012-03-22 US09305674B1 2016-04-05 Alan Kevin Wertsching; Troy Joseph Trantor; Matthias Anthony Ebner; Brad Curtis Norby
A method and device for producing secure, high-density tritium bonded with carbon. A substrate comprising carbon is provided. A precursor is intercalated between carbon in the substrate. The precursor intercalated in the substrate is irradiated until at least a portion of the precursor, preferably a majority of the precursor, is transmutated into tritium and bonds with carbon of the substrate forming bonded tritium. The resulting bonded tritium, tritium bonded with carbon, produces electrons via beta decay. The substrate is preferably a substrate from the list of substrates consisting of highly-ordered pyrolytic graphite, carbon fibers, carbon nanotunes, buckministerfullerenes, and combinations thereof. The precursor is preferably boron-10, more preferably lithium-6. Preferably, thermal neutrons are used to irradiate the precursor. The resulting bonded tritium is preferably used to generate electricity either directly or indirectly.
16 Irradiation target positioning devices and methods of using the same US12718260 2010-03-05 US08542789B2 2013-09-24 William Earl Russell, II; Heather J. Hatton; Melissa Allen; Melissa L. Hladik; Samuel John Lafountain; Luis Alberto Torres; Erick W. Dittmer
Example embodiments and methods are directed to irradiation target positioning devices and systems that are configurable to permit accurate irradiation of irradiation targets and accurate production of daughter products, including isotopes and radioisotopes, therefrom. These include irradiation target plates having precise loading positions for irradiation targets, where the targets may be maintained in a radiation field. These further include a target plate holder for retaining and positioning the target plates and irradiation targets therein in the radiation field. Example embodiments include materials with known absorption cross-sections for the radiation field to further permit precise, desired levels of exposure in the irradiation targets. Example methods configure irradiation target retention systems to provide for desired amounts of irradiation and daughter product production.
17 METHODS AND APPARATUS FOR SELECTIVE GASEOUS EXTRACTION OF MOLYBDENUM-99 AND OTHER FISSION PRODUCT RADIOISOTOPES US13156141 2011-06-08 US20110305309A1 2011-12-15 Lloyd C. Brown
Methods and apparatus are provided for producing and extracting Mo-99 and other radioisotopes from fission products that overcome the drawbacks of previously-known systems, especially the excessive generation of radioactive wastes, by providing gas-phase extraction of fission product radioisotopes from a nuclear fuel target using a mixture including halide and an oxygen-containing species with heat to convert the fission product radioisotopes to gas (e.g., Mo-99 to MoO2Cl2 gas). The gaseous species are evacuated to a recovery chamber where the radioisotopes solidify for subsequent processing, while the substantially intact uranium target made available for further irradiation and extraction cycles.
18 Man made gold and platinum US11732224 2007-04-04 US20080245187A1 2008-10-09 Kuai-Teng Hsu
A man made method, utilizing particles bombardment technique, is used to produce Gold and Platinum. The particles bombardment technique uses particle accelerator to accelerate Lithium particles to high speed. These high speed Lithium particles contain high energy. These high energy Lithium particles are used to bombard Osmium element. Then elements Lithium and Osmium undergo cold fusion process that they are combined to produce element Gold.By the same method, Helium particles are accelerated by particle accelerator to high speed. These high speed Helium particles contain high energy. These high energy Helium particles are used to bombard Osmium element. Then elements Helium and Osmium undergo cold fusion process that they are combined to produce element Platinum.
19 Generator and Method for Production of Technetium-99m US11665186 2005-10-06 US20080187489A1 2008-08-07 Richard Tomlison; Bruce Collier; Alan Guest
A generator that allows for a non-fission based method of producing and recovering 99mTc from neutron-irradiated molybdenum. This generator system is based on the isolation of 99mTc, as the decay product from a source of 99Mo labelled molybdenum carbonyl Mo(CO)6 through a distillation process. The 99mTc obtained from this distillation is produced with high efficiency and purity in a solvent-free form, which can then be dissolved in water or other solvents to produce a solution at the required specific activity and concentration, as reasonably determined by the operator.
20 Process for producing .sup.52 manganese US962139 1978-11-20 US4201625A 1980-05-06 Gerhard Erdtmann; Chaturvedula Sastri; Gottfried Kuppers; Hermann Petri
A target containing vanadium, either of natural isotopic constitution or enriched either with respect to .sup.50 vanadium or .sup.51 vanadium, is bombarded with .sup.3 helium of an energy of about 14 MeV producing .sup.52 manganese by nuclear reaction from both of these isotopes of vanadium. After a waiting period for the disappearance of short-lived intermediates, the target foil is dissolved in acid and the .sup.52 manganese is extracted with a solution of a hydroxychinolin in chloroform. The oxinate complex of .sup.52 manganese thus extracted can be used directly as a source of .sup.52 manganese in the preparation of compositions for radiochemical or radiopharaceutical purposes.
QQ群二维码
意见反馈