序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 PROCEDE ET DISPOSITIF POUR LA PRODUCTION D'ENERGIE A PARTIR D'UN HYDRURE A CARACTERE METALLIQUE EP99913418.2 1999-04-15 EP1072041B1 2003-03-19 DUFOUR, Jacques, Julien, Jean; DUFOUR, Xavier, Jean-Claude, Marie; FOOS, Jacques, Henri; MURAT, Denis, Marie, Louis
The invention concerns a method which consists in generating an activated and metastable form of hydrogen from a hydrogen plasma confined in the metal lattice interstitial sites by exposing the confined plasma to the action of a magnetic field in conjunction with a displacement of the protons and electrons in a direction parallel to the magnetic field action. Said exposure generates from the confined plasma the required activated and metastable form of hydrogen. Then the interesting effects of this activated form are recuperated. Figure 1 shows a device more particularly adapted for managing nuclear waste and enabling for example to transform Uranium 238 into Thorium 232.
42 Method and adsorbant composition for 82 Rb generation EP81302602.8 1981-06-11 EP0043650B1 1986-09-10 Neirinckx, Rudi D.
43 Shielding device for a reservoir comprising a radioactive material EP83201201.7 1983-08-18 EP0102121A1 1984-03-07 De Jong, Rudolf Barend Jan, Drs.

The invention relates to a shielding device for a reservoir comprising a radioactive material and having an inlet and an outlet aperture, in particular a column for a radio-isotope generator, comprising a lead cover for the reservoir in which a closable access for the reservoir is recessed. The shielding device furthermore is provided with means which the device can be moved forward.

44 Verfahren zur Trennung von Technetium-99m von Molybdän-99 EP80100734.5 1980-02-14 EP0014957A1 1980-09-03 Molter, Michael Dr.; Pütter, Dietrich

Es wird ein Verfahren zur Trennung von Technetium-99m von an Aluminiumoxid gebundenem Molybdän-99 mit Elutionsmitteln aus Nuklidgeneratoren beschrieben, in welchem dem Elutionssystem ein Kupfer-Salz, vorzugsweise ein Cu(II)-Saiz zugesetzt wird.

45 Nuclide conversion device JP2001201875 2001-07-03 JP4346838B2 2009-10-21 岳彦 伊藤; 智嗣 坂井; 充 坂野; 康弘 岩村
46 Method for generating energy particles using nanotubes, and the article JP2008544373 2006-11-30 JP2009518646A 2009-05-07 カミングス,アラン,ジー.; クーパー,ウィリアム,ケイ.; エイチ. クーパー,クリストファー; ローン,ジェームズ,エフ.
エネルギー粒子を発生させる方法であって、ナノチューブをD Oなどの素同位体と接触させること、及びそのナノチューブに活性化エネルギーを与えることを含む方法を開示する。 一実施形態においては、水素同位体は、プロチウム、ジュウテリウム、トリチウム、およびそれらの組み合わせを含む。 ナノチューブ構造の限定された寸法内に閉じ込められた原子の核相互作用の可能性を増加させることに基づく物質の核変換方法も開示し、この方法で、物質の核変換に充分なエネルギー粒子が発生し、核変換されるべき物質がそれらの粒子に曝露される。
47 Apparatus for internal production of radioisotopes, particularly suitably used for positron emission tomography JP2007537226 2005-10-21 JP2008517287A 2008-05-22 タルタリ アゴスティーノ; モスタッチ ドミジアノ; スミニ マルコ
本発明は、特にPETに用いられる、放射性同位元素の内部生産装置である。
本発明の装置は、イオン注入に対して耐性を持たせるために少なくとも部分的に処理され、核反応生成物に対して不活性化された内部表面を持つ真空チャンバ(1)と、真空チャンバ(1)の中に配された一対の電極(4,5)と、コンデンサバンク(2)と、コンデンサバンク(2)を前記電極(4,5)に接続するための手段(3,16)を備える。 その手段(3,16)とは、電極(4,5)間で放電を生じさせ、これによりプラズマを発生させ、核反応が次々に起こる状況を作ることによって放射性同位元素を発生させるものである。 さらに、本発明の装置は、本装置に相当する電気回路が、50nHより大きくならない総インダクタンスと、真空チャンバ(1)に接続し、10 −6トルより大きくない真空を作るための手段(10)と、真空チャンバ(1)に接続し、挿入するための手段(11)を備える。 その手段(11)とは、真空が作り出された後に、圧下で少なくとも一つの反応ガスを導入し、これにより放電の間のプラズマの生成が確保され、その後、10 15 keV−s/cm による該プラズマの閉じ込め状態を得ることを可能にするものである。 さらに、本発明の装置は、真空チャンバ(1)に取り付けられ、ガスクロマトグラフィーシリンダーの中にガスを抽出するとともに、そのガスを蓄積するための手段を備える。
48 Method and apparatus for generating energy from hydride having a metallic nature JP2000545153 1999-04-15 JP2002512377A 2002-04-23 ザビエ、ジャン‐クロード、マリー、デュフール; ジャック、アンリ、フォー; ジャック、ジュリアン、ジャン、デュフール; ドニ、マリー、ルイ、ミュラ
(57)【要約】 本発明は、金属格子格子間位置に閉じ込められた素プラズマから、その閉じ込められたプラズマを磁界の作用にさらすと共に、陽子および電子を磁界作用の方向と平行の方向に移動させることにより、活性化された、準安定形態の水素を発生させる方法に関する。 該露出により、閉じ込められたプラズマから、必要とする活性化された、準安定形態にある水素が発生する。 次いで、この活性化された形態から重要な効果が得られる。 図1は、特に核廃棄物を管理し、例えばウラニウム238をトリウム232に変換する様に設計された装置を示す。
49 JPS6361640B2 - JP50169580 1980-03-25 JPS6361640B2 1988-11-29
50 Liquid preparation method for radioactive medicine application* device for generating its isotope* and storage tank for device JP254681 1981-01-09 JPS56104250A 1981-08-19 HEREN BANETSUKUUFUINDA
51 Method and device for preparing 195 mau contained liquid JP5110280 1980-04-16 JPS55149128A 1980-11-20 KARERU YAN PAANETSUKU
52 Device for producing technetium 99m JP6973978 1978-06-09 JPS5416096A 1979-02-06 JIYON BUINSENTO EBANSU; RARUFU UIRIAMU MACHIYUUSU
53 Rechargeable 99mo*99m tc generator system JP7332278 1978-06-19 JPS548296A 1979-01-22 ARUFURETSUDO KAAKU SOONTON; FURANKU AANESUTO SERON
54 JPS5233280B2 - JP1493074 1974-02-07 JPS5233280B2 1977-08-26
55 NUCLIDE CONVERSION METHOD AND NUCLIDE CONVERSION DEVICE EP13743465.0 2013-01-29 EP2816566A1 2014-12-24 IWAMURA, Yasuhiro; ITOU, Takehiko; MUTA, Kenji; TSURUGA, Shigenori

A nuclide transmutation device and a nuclide transmutation method which enable nuclide transmutation to be performed in a relatively small-scale device compared with large-scale devices such as accelerators and nuclear reactors, wherein the amount of nuclide transmutation can be increased. The nuclide transmutation device comprises a structure (1), and a high deuterium concentration unit (2) and a low deuterium concentration unit (2) disposed on either side of the structure (1) so as to sandwich the structure (1) therebetween, wherein an electrolytic solution (16) containing heavy water is supplied to the high deuterium concentration unit (2), the electrolytic solution (16) is electrolyzed to generate deuterium, thereby producing a state of high deuterium concentration near the high deuterium concentration unit (2) side surface of the structure (1) and placing the low deuterium concentration unit (3) in a state of low deuterium concentration relative to the high deuterium concentration unit (2), causing the deuterium to deuterium to penetrate through the structure (1) from the high deuterium concentration unit (2) toward the low deuterium concentration unit (3), and subjecting a substance to undergo nuclide transmutation to nuclide transmutation in the structure (1) by reaction with the deuterium.

56 PROCESS FOR PRODUCING TC-99M EP12738691.0 2012-07-13 EP2732450A1 2014-05-21 BARBOSA, Luis, A.M.M.
A process for producing Tc-99m comprises the steps of contacting a solution of purified Mo-99 with an adsorbent material comprising i) a tin oxide, or ii) a zirconium oxide and a titanium oxide, such that the Tc-99m resulting from the decay of Mo-99 may thereafter be eluted.
57 Nuclide transmutation device and nuclide transmutation method EP01402812.0 2001-10-30 EP1202290B1 2013-12-04 Iwamura, Yasuhiro; Itoh, Takehiko; Sakano, Mitsuru
The present invention produces nuclide transmutation using a relatively small-scale device. The device (10) that produces nuclide transmutation comprises a structure body (11) that is substantially plate shaped and made of palladium (Pd) or palladium alloy, or another metal that absorbs hydrogen (for example, Ti) or an alloy thereof, and a material (14) that undergoes nuclide transmutation laminated on one surface (11A) among the two surfaces of this structure body (11). The one surface (11A) side of the structure body (11), for example, is a region in which the pressure of the deuterium is high due to pressure or electrolysis and the like, and the other surface (11B) side, for example, is a region in which the pressure of the deuterium is low due to vacuum exhausting and the like, and thereby, a flow of deuterium in the structure body (11) is produced, and nuclide transmutation is carried out by a reaction between the deuterium and the material (14) that undergoes nuclide transmutation. <IMAGE>
58 Procedure for the preparation of radioisotopes EP06425518.5 2006-07-24 EP1883079B1 2009-05-06 Bedeschi, Paolo
59 Procedure for the preparation of radioisotopes EP06425518.5 2006-07-24 EP1883079A1 2008-01-30 Bedeschi, Paolo

A procedure for the preparation of radioisotopes consisting of a first step of electrodepositing a metallic isotope target to be irradiated on a target-holder element, a second step of irradiating the target, a third step of dissolving the target and a fourth set of purifying the radioisotope from the initial metallic isotope and from other possible radioactive and metallic impurities; the electrodeposition step in turn consisting of a dissolution operation in which the isotope to be irradiated is dissolved in a solution of HNO3 with concentration from 0.5 to 2.5 M, a pH buffering operation, and a recirculation operation, in which the solution obtained above is circulated at a rate from 0.5 to 3 within an electrolytic cell during the current output within the cell itself; the electrodeposition of the target to be irradiated occurs within the electrolytic cell during the recirculation operation.

60 Nuclide transmutation device and nuclide transmutation method EP01402812.0 2001-10-30 EP1202290A2 2002-05-02 Iwamura, Yasuhiro, c/o Mitsubishi Heavy Ind., Ltd.; Itoh, Takehiko, c/o Mitsubishi Heavy Ind., Ltd.; Sakano, Mitsuru, c/o Mitsubishi Heavy Ind., Ltd.

The present invention produces nuclide transmutation using a relatively small-scale device. The device (10) that produces nuclide transmutation comprises a structure body (11) that is substantially plate shaped and made of palladium (Pd) or palladium alloy, or another metal that absorbs hydrogen (for example, Ti) or an alloy thereof, and a material (14) that undergoes nuclide transmutation laminated on one surface (11A) among the two surfaces of this structure body (11). The one surface (11A) side of the structure body (11), for example, is a region in which the pressure of the deuterium is high due to pressure or electrolysis and the like, and the other surface (11B) side, for example, is a region in which the pressure of the deuterium is low due to vacuum exhausting and the like, and thereby, a flow of deuterium in the structure body (11) is produced, and nuclide transmutation is carried out by a reaction between the deuterium and the material (14) that undergoes nuclide transmutation.

QQ群二维码
意见反馈