序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 Switchable window glass JP2011527412 2009-09-22 JP2012503123A 2012-02-02 ジェレミー ブート ジョセフ
遠隔した電気的接続を有する、切換可能なフィルム組立体が開示されている。 この切換可能なフィルムは、第1及び第2の導電層の間に、活性層を備える。 該活性層は、それを介して電界の放射を変化させる光透過を有する。 電気的接続は、前記フィルムを電源に接続することを意味する。 電気的接続手段の少なくとも1つは、前記フィルム組立体を前記電源に接続するように、前記第1及び第2の導電層と離隔して設けられた遠隔電気接続領域を備え、切換可能なフィルム組立体の少なくとも一部分を介して電界を投射することによって、前記活性層の光透過を変化させる。
【選択図】 図3
162 Electro-optic modulator having metal contact base of the bias electrode - doped semiconductor for reducing the Dc bias fluctuation JP2011523850 2009-07-28 JP2012500998A 2012-01-12 ケイヴァン セイヤ,; ロバート, アール. ヘイズ,
DCバイアス変動を低減するためのニオブ酸リチウム変調器構造体(30)が提供されており、前記ニオブ酸リチウム変調器構造体(30)は、一又は複数のDCセクション(38、40)とRFセクション(42)を有する光導波管(34)の上にパターン化された高ドープ半導体層(44、54)を含み、金属層又は金属接合(50)は、半導体層(44、54)の一部と接触し、緩衝層(46)はRFセクション(42)に形成される。 また、上述した構造体を有するニオブ酸リチウム電気光学変調器を作製する方法も提供されている。
163 光非相反素子製造方法 JP2009529454 2008-02-25 JPWO2009107194A1 2011-06-30 秀樹 横井
リブ導波路を形成したSi層と、磁気光学材料層とを貼り合わせて光非相反素子を作成する場合に、クラックの発生を回避しつつ、Si層と磁気光学材料層との十分な接着を確保することができる新たな技術を提供する。第1の基板であるSOI基板のSi層に導波路を形成する工程と、前記導波路の上に第1の薄膜バッファ層を形成する工程と、第2の基板に成膜した磁気光学材料層の上に前記第1の薄膜バッファ層と同じ材料を用いて第2の薄膜バッファ層を形成する工程と、前記第1の薄膜バッファ層と、前記第2の薄膜バッファ層とを、前記磁気光学材料層によって前記導波路を伝播する光に非相反な位相変化を生じさせることができる配置で、接合する工程と、を備える。
164 Semiconductor light modulator and light modulation device JP2008003201 2008-01-10 JP2009163186A 2009-07-23 ISHIBASHI TADAO; MARUYAMA KAZUHIRO; KOBAYASHI KENJI; AKEYOSHI TOMOYUKI; KIKUCHI NOBUHIRO; TSUZUKI TAKESHI; ISHIKAWA MITSUE
<P>PROBLEM TO BE SOLVED: To provide an npin type semiconductor light modulator separating electrically an upper n-type clad layer from an electric signal line of a waveguide, and to provide a light modulation device using the same. <P>SOLUTION: This semiconductor light modulator is provided with: a first semiconductor light waveguide composed of a multilayer structure which includes a core layer, a first clad layer and a second clad layer arranged on a lower section and an upper section, respectively, via the core layer, and a barrier layer inserted between the second clad layer and the core layer; a second semiconductor light waveguide composed of a multilayer structure having a p-type semiconductor wherein the second clad layer locally penetrates in the laminating direction in an n-type semiconductor, in the multilayer structure of the first semiconductor light waveguide; a first electrode connected to the first clad layer of the first semiconductor light waveguide; and a second electrode which electrically connects the second clad layer of the first semiconductor light waveguide and the p-type semiconductor of the second clad layer of the second semiconductor light waveguide to each other. <P>COPYRIGHT: (C)2009,JPO&INPIT
165 Optical modulator JP2004229268 2004-08-05 JP4278586B2 2009-06-17 昌樹 杉山
166 Array substrate for liquid crystal display and method of manufacturing the same JP2006347557 2006-12-25 JP2007310351A 2007-11-29 SONG MOO-HYOUNG; HONG SUNG-JIN
<P>PROBLEM TO BE SOLVED: To provide an array substrate for liquid crystal display that prevents the occurrence of disconnection defects at a position where two wirings intersects with each other, and that improves productivity and reduces the manufacturing cost, and to provide a method of manufacturing the same. <P>SOLUTION: Buffer Patterns 206 and 208 are formed of the same material as a lower metal wiring 202, corresponding to crossing portions of the metal wirings that mutually intersect while being configured on different layers; especially, while extending from the lower metal wiring 202 and formed of an alternative pattern that is located so as to come close to/separate from the lower metal wiring 202. In such a configuration, the step difference in the metal wiring 202 can be reduced at the crossing position of the upper metal wiring 220. Accordingly, the disconnection of the upper metal wirings 220 due to the step difference in the lower metal wiring 202 can be prevented; and especially, the disconnection defect of the metal wiring by an etchant-pooling phenomenon can be prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT
167 Method of manufacturing the optical waveguide device JP2002335151 2002-11-19 JP3966409B2 2007-08-29 明雄 前田; 隆司 塩谷
168 Liquid crystal display module JP2006117556 2006-04-21 JP2006301648A 2006-11-02 PARK CHI HYUCK; JUNG TAE BONG
<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display device and a method for manufacturing the same capable of preventing degradation in image quality due to uneven luminance. <P>SOLUTION: The liquid crystal display module is provided with a liquid crystal display panel 102, a compensation film 142b compensating the decrease in the viewing angle due to the liquid crystal layer abnormally aligned upon application of an electric field in the vicinity of an alignment film in the liquid crystal display panel 102, and an isotropic medium layer 143 positioned between the liquid crystal display panel 102 and the compensation film 142b. <P>COPYRIGHT: (C)2007,JPO&INPIT
169 Electrooptical waveguide element of bias point dc voltage drift and thermal deviation suppression system and manufacturing method thereof JP2006034027 2006-02-10 JP2006301593A 2006-11-02 NAGATA SUKETOSHI
<P>PROBLEM TO BE SOLVED: To provide a lithium niobate type electrooptical optical waveguide element of the configuration in which the drift due to a DC voltage at a bias point and a temperature drift are suppressed, for example, a modulator. <P>SOLUTION: An optical waveguide is disposed on the surface within an electrooptical substrate or near the same and a buffer layer is formed on the surface of the substrate. A block layer which is a novel element with this kind of the element is formed on the surface of the buffer layer and functions to suppress or reduce the occurrence of an unnecessary chemical reaction on the surface or near the same. The electric charges generated on the surface section of the element or within the same propagate in a desired direction in a charge dissipation layer which is disposed on the block layer and has moderate electric conduction. A plurality of the electrodes disposed on the surface of the charge dissipation layer sends an electric signal through the respective layers of buffer, block and charge dissipation to the optical waveguide. <P>COPYRIGHT: (C)2007,JPO&INPIT
170 Acousto-optic device JP17663897 1997-07-02 JP3836950B2 2006-10-25 忠雄 中沢; 實 清野; 眞司 谷口
171 Low bias drift modulator having buffer layer JP2005216564 2005-07-26 JP2006039569A 2006-02-09 MCBRIEN GREGORY J; KISSA KARL; DRAKE GLEN; VERSPRILLE KATE
<P>PROBLEM TO BE SOLVED: To provide a structure of an electrooptical modulator including an additional set of bias electrodes embedded into a device for applying a bias for the purpose of setting an operating point. <P>SOLUTION: An RF electrode used for modulating an input light signal can be operated by a zero DC bias and the electrode corrosion by the galvanic action and other actions that can exist within a non-hermetic package is reduced. The embedded bias electrode is advantageous even in controlling charge accumulation due to an improvement in the eventually obtained drift characteristics. The bias electrode material is also useful for forming a sealing layer in a way as to enable operation in a non-hermetic structure in addition for routing a bias signal particularly to an external terminal. As a result, the cost for manufacture is lowered. An embodiment using X-cut and Z-cut lithium niobates (LiNbO<SB>3</SB>) is provided. In the case of the latter, the bias electrode can be divided along the axis of the electrode so as to avoid light loss. <P>COPYRIGHT: (C)2006,JPO&NCIPI
172 A buffer layer structure for stabilizing the lithium niobate devices JP2003560642 2002-12-09 JP2005515499A 2005-05-26 ヴィシャル アガールワル,; ウイリアム, ケー. バーンズ,; ラリー, エー. ヘス,
上面及び下面を有する電気−光学結晶基板(10)と、この電気−光学結晶基板の面内に形成された光導波路(14a,14b)と、この光導波路の上に配置されて、光導波路に電界を印加するための少なくとも1つの電極(12a,12b,13)と、シリコンチタンオキシニトライド層(16)と、このシリコンチタンオキシニトライド層を、光導波路が形成された面とは逆の電気−光学結晶基板の別の面に相互接続するための接続層(17)とを備えた光導波路型デバイス。
173 Dielectric optical waveguide device JP23149693 1993-09-17 JP3628342B2 2005-03-09 隆志 山根; 浩尚 箱木
174 Wiring board and liquid crystal display device JP2000257232 2000-08-28 JP2001194677A 2001-07-19 OGURA MASAFUMI; KATAOKA YOSHIHARU; SHIMADA NAOYUKI
PROBLEM TO BE SOLVED: To improve an adhesion property with an insulating film in a metal film formed on the insulating film. SOLUTION: A TFT 43 is formed on the insulating substrate 42, and a film of the photosensitive resin 44 which covers a TFT 3 is formed. Two times of exposure are performed by the first and second photomasks in which circular light shielding parts waste distributed, a contact hole 66 is formed in the photosensitive resin 44, and a smooth ruggedness is formed in the area other than the TFT 43. Furthermore, a MoN film 45 and a reflector electrode 46 are sequentially laminated on the photosensitive resin 44. In this case, a high adhesion strength of the MoN layer 45 to the photosensitive resin 4 can be obtained by setting the N2 content in the MoN film 45 from 5 atomic % to 30 atomic %, and the degradation of the etching rate can be suppressed.
175 Light control device JP30970794 1994-11-18 JP2894961B2 1999-05-24 NISHIMOTO YUTAKA
176 Waveguide-type optical device JP11594496 1996-05-10 JP2806425B2 1998-09-30 ランガラージュ マダブシ
177 Waveguide type optical device JP23503695 1995-09-13 JPH0980364A 1997-03-28 TOYOHARA ATSUSHI
PROBLEM TO BE SOLVED: To obtain a waveguide type optical device which can attenuate only a component of TE mode of light propagated in a waveguide. SOLUTION: On a waveguide substrate 12 of the waveguide type optical device 21, a couple of waveguides 13C and 13D branching off from the waveguide 13 are arranged, and above them, electrodes 15 and 16 are formed to constitute a Mach-Zehnder type interferometer. An input-side optical fiber 17 is optically coupled with one end surface of the waveguide substrate 12, an Si buffer layer 22 is locally arranged nearby the other end surface, and an output-side optical fiber 18 is optically coupled with the end surface on this side. The Si buffer layer 22 is 95nm thick and an SiO2 film below it is 0.2μm. This part acts to attenuate the TE component.
178 Optical control device JP30970794 1994-11-18 JPH08146367A 1996-06-07 NISHIMOTO YUTAKA
PURPOSE: To provide an optical control device with which a temp. drift and CD drift are suppressed and a further lower driving voltage is obtainable by eliminating the limitation incurred heretofore on the resistor of a conductor film for suppressing the temp. drift. CONSTITUTION: An optical circuit 5 consisting of two pieces of channel type optical waveguides 2a, 2b formed on the surface of an LiNbO3 substrate 1 and electrodes 4a, 4b via a buffer layer 3 on the optical waveguidgs 2a, 2b are formed. The conductor film 6 is formed near the electrodes 4a, 4b. The conductor film 6 has parts 7 which do not conduct the electrodes 4a and 4b to each other and are insulated near the electrodes 4a, 4b.
179 Dielectric optical waveguide device JP23149693 1993-09-17 JPH0784228A 1995-03-31 HAKOGI HIRONAO; YAMANE TAKASHI
PURPOSE:To suppress generation of short circuit due to the solid phase alloy reaction between electrodes and to obtain higher reliability and longer life of a dielectric optical waveguide device. CONSTITUTION:An insulating buffer layer 4 comprising SiO2, is formed on a substrate comprising LiNbO3, crystal with optical waveguides formed, and a semiconducting film 5 comprising Si is formed on the layer 4. Further, an insulating diffusion inhibiting layer 6 comprising SiO2, is formed on the semiconductive film 5 and a pair of metal electrodes 3 comprising Au are disposed on the diffusion inhibiting layer 6. Thus, formation of silicide due to diffusion of electrodes 3 in a solid phase into the semiconducting film 5 can be prevented by the diffusion inhibiting layer 6.
180 Optical fiber element JP23613292 1992-09-03 JPH0688978A 1994-03-29 UEMIYA TAKAFUMI; UENISHI NAOTA
PURPOSE:To prevent intrusion of water content in air into an org. crystal of a core and to prevent deterioration of the optical fiber element by forming a buffer layer through which the crystal of the core is not dissolved on the end of an optical fiber element and forming a water-intercepting layer on the surface of the buffer layer. CONSTITUTION:The optical fiber element consists of a core made of an org. crystal and a glass clad 2, and this element produces second-order higher harmonic from the laser light made incident on the core 1. On the end surface of the element consisting of the core 1 and the clad 2, a buffer layer 3 and water- intercepting layer 4 are formed in this order. Further, a protective layer and reflection-reduction film may be formed on the surface of the water-intercepting layer 4 and the protective layer, respectively. The buffer layer 3 is preferably such a film as monomolecule layer of silane coupling agent or silicone compd. in order to improve wettability between an inorg. dielectric and core crystal when the water-intercepting layer 4 consists of inorg. dielectric. The water- intercepting layer 4 needs to be made of a transparent material and an inorg. material having small permeability of water, or an org. water-repellent material containing a fluorine is used for the layer 4.
QQ群二维码
意见反馈