序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Signal detecting circuit US756613 1976-12-23 US4498052A 1985-02-05 Noel O. Fothergill
A time averaging circuit which increases significantly the signal to noise ratio of a received signal. The output of a multiplier which provides near D.C. signals with the noise is fed to a metal core transformer through an operational amplifier. The secondary winding output of the transformer is partly subtracted from the input in the operational amplifier, enhancing the D.C.-like signal components. Time integration via the feed back loop results in the A.C. noise components being relatively reduced in amplitude. The A.C. noise components from the secondary of the transformer and the output of the operational amplifier are subtracted in a second operational amplifier, the output signal of which has substantially increased signal to noise ratio. A pre-processing circuit includes a multiplier which multiplies the received signal with a narrow band-width portion thereof, tuned to the signal frequency, which enriches the near D.C. energy.
102 Digital homodyne processing system US89930 1979-10-31 US4280202A 1981-07-21 Roger F. Koppelmann
A digital homodyne processing system is disclosed and includes a hydrophone, a preamplifier for amplifying the hydrophone output signal, a heterodyne circuit and a low-pass filter for filtering the amplified hydrophone output, and a digital-to-analog converter. The output of the digital-to-analog converter is compared against sine and cosine references and is integrated as a function of the sine and cosine references. The integration results are processed for detection of a coded waveform.
103 Method and apparatus for delay analysis of energy transmitted through a medium US39154 1979-05-15 US4279019A 1981-07-14 Richard C. Heyser
A method and apparatus is disclosed for determining the manner by which an initial injection of wave energy is modified by a medium under test using a time delay spectrometer (TDS) and a fast Fourier transform (FFT). A switch allows either the time delay spectrum or an energy-time curve to be displayed. A differentiator at the input of the FFT corrects for inverse square loss of energy through the medium, i.e., compensates for spherical expansion of energy. Different arrangements of the TDS adapt the system to a medium having variable time delay, or adapt the system for measurement of harmonic distortion through the medium.
104 Ultrasonic nondestructive testing method US64925 1979-08-08 US4253337A 1981-03-03 Carmine F. Vasile
Disclosed is a method for evaluating a discontinuity in an object. As used to measure the depth of a surface discontinuity in a plate type of object, the method includes the steps of generating a horizontally polarized shear wave in the object directed substantially along the axis of the discontinuity, passing the generated wave through an aperture to diffract the wave prior to its arrival at the discontinuity, detecting the wave after it has propagated through the discontinuity, and calculating the depth of the discontinuity by correlating the phase and amplitude of the detected wave to the phase and amplitude of a similar wave propagated in a region of the object which is free of discontinuities.
105 Automatic underwater null steering US057841 1970-09-17 US4228531A 1980-10-14 Bruce P. Bogert; Peter Hirsch
Means are provided for reducing the dynamic range requirement of an underer sound system by minimizing the effects of noise interference. Computer means are provided to automatically rotate the pattern function of the combination of the dipole hydrophones in the system. A minimum noise pattern position is derived from hydrophone output information.
106 Method of and apparatus for sonar and related signal texture enhancement of recording media US520788 1974-11-04 US3975704A 1976-08-17 Martin Klein
This invention provides two dramatic improvements in the state of the art of side scan sonar systems and the like, bringing out the fine details of the sonar signals to enhance the texture of the sonar charts and to improve the quality and interpretability of the sonar records, while additionally bringing the sonar signals into the dynamic range of the recording medium in such a way that the tuning of the sonar instrument is greatly simplified and, in many situations, may be run continuously with no operator's adjustment of the instrument controls. These ends are attained through a novel compressed-signal absolute value smoothing and derivative processing, with dynamic range matching to the recording medium.
107 Shift register time compressor for sonar signal correlation US3594718D 1966-12-30 US3594718A 1971-07-20 BLACK CHARLES I; DUVALL RALPH M
Successive signal samples from one detecting station are each compared for polarity coincidence with all samples in a train of samples of signals from a second detecting station with visual display means provided for integration with time. New samples of signals from both detecting stations are injected into the system at controlled sample rates synchronized with the display unit.
108 Ultrasonic transceiver US3585577D 1969-06-12 US3585577A 1971-06-15 ROLLWITZ WILLIAM L; BENSON HARVEY S
Simplified ultrasonic transceiving apparatus preferably incorporating transducer means coupling ultrasonic vibrations into a medium, said means being bidirectional in operation to also convert vibrations from the medium into electrical signals; an oscillatory signal applied to said transducer means for propagation into the medium, and means forming an output signal combining the oscillatory signal and vibrations received from within the medium into an electrical signal.
109 Converter circuit multiplying slight difference frequency between at least two frequency components of single input US39679564 1964-09-04 US3325739A 1967-06-13 STEPHENSON JR MORRIS H
110 Signal interlacer US36905264 1964-05-18 US3315031A 1967-04-18 EUGENE KADAK
111 Interlaced video display of sea bottom using sonic energy US17821662 1962-03-07 US3142032A 1964-07-21 HOWARD JONES CHARLES
112 MOBILE-BODY DETECTION DEVICE EP14813923 2014-06-12 EP3012660A4 2016-07-13 MUGIUDA TORU; GOTO KAZUSHI
A moving body detection device includes an oscillation circuit, a transmitter, a receiver, a phase detection portion, a moving body determination portion, and a control portion. The control portion is configured to periodically switch between a halt mode of causing at least the transmitter and the phase detection portion to halt and a detection mode of causing the transmitter and the phase detection portion to operate. Also, the control portion is configured to, in the detection mode, determine whether or not the Doppler signal is outputted from the phase detection portion in a period from a point of time when a predetermined waiting time elapses from a start point of the detection mode until the detection mode ends. Then, the control portion is configured to, upon determining that the Doppler signal is outputted, extend the detection mode and cause the moving body determination portion to operate, and upon determining that the Doppler signal is not outputted, switch to the halt mode.
113 METHOD FOR IMPROVING PERFORMANCE OF A SODAR SYSTEM EP13844471.6 2013-10-02 EP2904422A1 2015-08-12 MARTIN, Andrew Louis
A method is disclosed for improving performance of a Sodar system adapted to locate discontinuities in the atmosphere by transmitting pulse compression signals such as plural acoustic chirps. The method comprises transmitting the acoustic chirps, receiving acoustic echoes of the chirps, and processing the acoustic echoes to provide an indication of the discontinuities, wherein the processing includes correcting range or resolution error associated with the acoustic echoes.
114 MOVING OBJECT DETECTION DEVICE EP10809594.4 2010-06-16 EP2444820A9 2014-03-26 KASANO, Fumihiro; KATAYAMA, Susumu; MUGIUDA, Toru; GOTO, Kazushi; FUJIKAWA, Hidehiko; MINAMINO, Motohiro

A moving object detecting apparatus includes: a transmitting/receiving unit for radiating an ultrasonic wave and receiving a reflective wave reflected from an object present in a monitoring space; a phase detection circuit for mixing reference signals with a reflective signal and obtaining a pair of Doppler signals each having an amplitude depending on a phase difference from the reference signal, each of the Doppler signals having a different phase from each other; a rotation angle calculation unit for calculating a rotation angle; a cumulative addition unit for accumulating the rotation angle; and a comparison unit for comparing the accumulated rotation angle with a threshold value. In the moving object detecting apparatus, a single ultrasonic vibrator is commonly used in the transmitting unit and the receiving unit.

115 DISTANCE ESTIMATION USING SOUND SIGNALS EP11723702.4 2011-05-13 EP2572212A1 2013-03-27 LAMB, William, J.; AARTS, Ronaldus, M.
An apparatus comprises a test signal generator (401) which generates an ultrasonic test signal by modulating an audio band test signal on an ultrasonic signal. The ultrasonic test signal is radiated from a parametric loudspeaker (403) and is demodulated by non-linearities in the air. A reflected audio signal may arise from reflections of an object, such as a wall. An audio band sensor (405) generates an audio band captured signal which comprises the demodulated reflected audio band signal. A distance circuit (407) then generates a distance estimate for the distance from the parametric loudspeaker (403) to the object in response to a comparison of the audio band captured signal and the audio band test signal. Specifically two signals may be correlated to determine a delay corresponding to the full path length. Based on the distance estimates an audio environment may be estimated and a sound system may be adapted accordingly.
116 MOVING OBJECT DETECTION DEVICE EP10809594.4 2010-06-16 EP2444820A1 2012-04-25 KASANO, Fumihiro; KATAYAMA, Susumu; MUGIUDA, Toru; GOTO, Kazushi; FUJIKAWA, Hidehiko; MINAMINO, Motohiro

A moving object detecting apparatus includes: a transmitting/receiving unit for radiating an ultrasonic wave and receiving a reflective wave reflected from an object present in a monitoring space; a phase detection circuit for mixing reference signals with a reflective signal and obtaining a pair of Doppler signals each having an amplitude depending on a phase difference from the reference signal, each of the Doppler signals having a different phase from each other; a rotation angle calculation unit for calculating a rotation angle; a cumulative addition unit for accumulating the rotation angle; and a comparison unit for comparing the accumulated rotation angle with a threshold value. In the moving object detecting apparatus, a single ultrasonic vibrator is commonly used in the transmitting unit and the receiving unit.

117 Speed measuring apparatus EP98122149.2 1998-11-25 EP0919836A2 1999-06-02 Takai, Takuo; Ikeuchi, Fumio

A speed measuring apparatus includes a transmitter for transmitting an acoustic reference wave toward a moving-target, the acoustic reference wave being generated based on a reference signal with a predetermined frequency; a receiver for receiving acoustic reflection waves which are generated by the transmitted acoustic reference wave being deflected by the moving-target, converting the acoustic reflection waves to receiver signals, and outputting the receiver signals therefrom; a signal attenuating unit for selectively attenuating a signal component with the same frequency as the frequency of the reference signal in the receiver signals which are output from the receiver and outputting signals therefrom; a band pass filter unit for abstracting at least one Doppler signal component from the signals output from the signal attenuating unit; and a speed computing unit for computing the speed of the moving-target relative to the speed measuring apparatus, based on the Doppler signal component abstracted by the band pass filter unit.

118 Schaltungsanordnung zur Erfassung von chirpmodulierten Signalen, insbesondere zur Erfassung von chirpmodulierten Ultraschallsignalen EP88890059.4 1988-03-17 EP0286623A3 1990-11-28 Metchev, Alexander, Dipl.-Ing. Dr.

Schaltungsanordnung zur Erfassung von chirpmodulierten Signalen mit mindestens zwei Zählern, einem Oszillator sowie einer Kette von Gattern und getakteten Schieberegistern. Diese enthält einen digitalen Frequenzdiskriminator, durch welchen die Fre­quenzänderungen der eingelangten chirpmodulierten Signale erfaßt und digitalisiert werden, wobei die digitalen Ausgangssignale des Frequenzdiskriminators einem sequentiellen Pulsdetektor, der aus einer Kette von ODER-Gattern (75) und vom Oszillator (36) durch Zähler (40) getakteten Schieberegistern (70) besteht, zugeführt werden, in welchem diese Signale zeitlich aufeinan­derfolgend aufsummiert werden, so daß der digitale Frequenz­diskriminator (2) und der sequentielle Pulsdetektor (70, 75) ein an die chirpmodulierten Signale angepaßtes Filter bilden, wobei nach Erreichung eines vorgegebenen Schwellwertes von mindestens einer aus einer Mehrzahl von Schwellwertschaltun­gen (80) an einen Prioritätsdekoder (90) ein Ausgangssignal abgegeben wird und vom Prioritätsdekoder (90) die Frequenz und den Zeitpunkt des eingelangten chirpmodulierten Signals ermittelt wird, wodurch dieses in einem vorgegebenen Frequenz­bereich festgestellt und korrelativ ausgewertet wird, worauf das Ausgangssignal des Prioritätsdekoders (90) an eine Signal­anzeige bzw. an einen Speicher abgegeben wird.

119 System and method for measuring ice thickness EP87305987.7 1987-07-07 EP0298165A1 1989-01-11 Pridham, Roger G.,

Sonar ice thickness measurement comprises transmitting an AM and subsequent CW sonic radiant energy signals (13,30) from a high frequency sonar transducer (11) in the water (12) toward the sonic signal reflecting ice cap (19). Reflection (30ʹ) of the CW signal (30) from the water-ice interface (18) and reflection (15ʹ) from the water-air interface (16) of the modulating frequency (15), generated by non-linear of parametric effects in the water (12) by the modulated transmit signal (13), causes the CW signal (30) to be modulated to generate side bands at the modulating frequency on each side of the carrier frequency to provide an FM high frequency signal (27), received by the transducer (11). Detection of the FM signal (27) determines the time of arrival of the echo of said detected FM signal (27) relative to the detection of the reflected modulated signal (14) from the water-ice interface (18). The time difference (TT) between the detected signals (14ʹ,27ʹ) and an assumed value of the speed (CICE) of sound through the ice (19) give the thickness (D) of the ice cap (19).

120 Schaltungsanordnung zur Erfassung von chirpmodulierten Signalen, insbesondere zur Erfassung von chirpmodulierten Ultraschallsignalen EP88890059.4 1988-03-17 EP0286623A2 1988-10-12 Metchev, Alexander, Dipl.-Ing. Dr.

Schaltungsanordnung zur Erfassung von chirpmodulierten Signalen mit mindestens zwei Zählern, einem Oszillator sowie einer Kette von Gattern und getakteten Schieberegistern. Diese enthält einen digitalen Frequenzdiskriminator, durch welchen die Fre­quenzänderungen der eingelangten chirpmodulierten Signale erfaßt und digitalisiert werden, wobei die digitalen Ausgangssignale des Frequenzdiskriminators einem sequentiellen Pulsdetektor, der aus einer Kette von ODER-Gattern (75) und vom Oszillator (36) durch Zähler (40) getakteten Schieberegistern (70) besteht, zugeführt werden, in welchem diese Signale zeitlich aufeinan­derfolgend aufsummiert werden, so daß der digitale Frequenz­diskriminator (2) und der sequentielle Pulsdetektor (70, 75) ein an die chirpmodulierten Signale angepaßtes Filter bilden, wobei nach Erreichung eines vorgegebenen Schwellwertes von mindestens einer aus einer Mehrzahl von Schwellwertschaltun­gen (80) an einen Prioritätsdekoder (90) ein Ausgangssignal abgegeben wird und vom Prioritätsdekoder (90) die Frequenz und den Zeitpunkt des eingelangten chirpmodulierten Signals ermittelt wird, wodurch dieses in einem vorgegebenen Frequenz­bereich festgestellt und korrelativ ausgewertet wird, worauf das Ausgangssignal des Prioritätsdekoders (90) an eine Signal­anzeige bzw. an einen Speicher abgegeben wird.

QQ群二维码
意见反馈