首页 / 国际专利分类库 / 物理 / 测量 / 线速度或角速度、加速度、减速度或冲击的测量;运动的存在、不存在或方向的指示 / 测量流体的速度,例如空气流;测量物体相对于流体的速度,例如船、航行器的速度(计量流量的速度测量装置的应用入G01F)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
81 气动学测量探测器及装配有所述探测器的直升机 CN200911000139.1 2009-12-23 CN101793594A 2010-08-04 J·舒瓦内; J·曼德勒
发明涉及一种用于气流的空气动学测量的探测器。所述探测器包括围绕轴线(12)旋转的板(13)、用于传送声波的传送器和响应所述声波的接收器,所述传送器和所述接收器构成与所述板(13)整体连接并且置于所述板(13)上的分离位置处的两个元件,所述探测器还包括用于传递表示声波在所述两个元件之间的飞行时间的信息以及所述信息随时间的变化的装置。在使用所述探测器装载到直升机(10)上的情况下,所述旋转的板(13)在与所述直升机整体连接的同时,有利地置于所述直升机的旋翼(11)的中心处。所述类型的探测器使得可以甚至在直升机(10)的低空速下实现空气动力学的测量。本发明还涉及一种装配有所述探测器的直升机。
82 位置指示装置 CN01816573.7 2001-08-13 CN1466713A 2004-01-07 木下政宏; 野添悟史; 备后英之; 佐佐木昌
一种位置指示装置,在设于鼠标壳体(2)下面的凹部(7)内收容安装了流量传感器(6)的电路基板(8)。当移动鼠标(1)时由空气的惯性等相对地产生空气流动。通过用流量传感器(6)检测该空气的流速来检测鼠标(1)的移动。
83 船速を特定するための装置、システム、方法及びプログラム JP2017518708 2015-05-21 JP6412642B2 2018-10-24 安藤 英幸; 角田 領
84 対気速度計測システム JP2015212377 2015-10-28 JP2017083318A 2017-05-18 UEDA NAOTSUGU; YUGAMI KATSUYUKI; OKUDA HIROTAKA; TOYOSAKI SADAHISA
【課題】低速飛行体の対気速度を平方向の2軸について計測可能な技術を提供する。【解決手段】水平フローセンサ121は、X軸センサ1211と、Y軸センサ1212とを備える。X軸センサ1211及びY軸センサ1212は、ヒータ、サーモパイル等を含むセンサ素子を備える熱式のフローセンサである。X軸センサ1211及びY軸センサ1212は、ベース1213上に、互いに直交する向きで搭載されている。また、ベース1213、並びにX軸センサ1211及びY軸センサ1212の上方には、所定間隔の隙間をあけてカバー1214が設けられている。ベース1213とカバー1214とは4つの支柱で接続されており、ベース1213とカバー1214との間には水平方向に空気が通過するようになっている。【選択図】図2
85 無人航空機のための風況推定 JP2011053953 2011-03-11 JP5893836B2 2016-03-23 エリック・イー・ハムケ; デール・エフ・エンス; グレゴリー・アール・ロー; ロジャー・エイ・ワッカー; オリヴァー・シュバート
86 基板処理装置のデータ取得方法及びセンサ用基板 JP2012141247 2012-06-22 JP5704129B2 2015-04-22 赤田 光
87 動き安定LIDARおよび風の速さの測定方法 JP2014543773 2011-11-29 JP2015502540A 2015-01-22 ダッフィー,トーマス; キリアジス,アンタナジオス・ステファノス; デブリエント,ダーク; コッピ−,ウェルナー
本発明は、風の速さの測定のための動き安定LIDAR(100)であるMS−LIDARに関し、MS−LIDARは、レーザレーダであるLIDAR(10)に装着されるプローブ端部(30)と浮があるプラットフォーム(80)に装着されるベース端部(40)とを有する安定化ユニット(25)を備え、安定化ユニット(25)はベース端部(40)の動きをプローブ端部(30)から少なくとも部分的に分離するように構成されており、プローブ端部(40)に対し固定した関係で装着されたLIDAR(10)と、プローブ端部(30)に対し固定した関係にある動き検出器とを備え、MS−LIDAR(100)は、1つ以上の遠隔プローブ空間部分における風の速さを測定するように配置されている。
88 Data acquisition method for substrate processing apparatus, and sensor substrate JP2012141247 2012-06-22 JP2014007251A 2014-01-16 AKATA HIKARU
PROBLEM TO BE SOLVED: To accurately detect wind directions of air flows in a plurality of measurement regions on a surface of a sensor substrate even when a region in which the sensor can be arranged is limited on the substrate.SOLUTION: A data acquisition method for a substrate processing apparatus, includes: placing a sensor substrate on a placing part in a first direction and a second direction in order to acquire data on a wind direction in a first measurement region and a second measurement region on a surface of the substrate, respectively. (In the sensor substrate, a plurality of sensor pairs each having a first sensor and a second sensor for acquiring vector data on air flows are provided at distances different from each other when viewed from the center of the surface. The first measurement region and the second measurement region shift their positions to around the center of the substrate); and then combining the vector data on the air flows obtained by the first sensor and the second sensor forming the same sensor pair on the basis of a base point preset for each sensor pair, to calculate the wind direction from the respective base points in the first measurement region and the second measurement region.
89 Method for measuring the airspeed of rotary wing aircraft and equipment JP24476996 1996-09-17 JP3860264B2 2006-12-20 アラン・ブロックルハースト
90 Measuring element for detecting a flow velocity JP2004549052 2003-09-26 JP2006504966A 2006-02-09 ヴィルシュ、ミヒァエル; ビルクレ、ジークフリート; ボッセルマン、トーマス
その周りを洗流する流体(22)の流速を検出するための測定要素(1)は、その長手方向に沿って電磁波を案内するための導体(4)と、この導体(4)に隣接して配置された電熱要素(5)とを有している。 この電熱要素(5)によって、導体(4)に熱が供給される。 導体に入される電磁波は、流体の流速に関係する導体(4)の温度に影響される。
91 Package structure and a method of manufacturing the same element JP35458896 1996-12-19 JP3045089B2 2000-05-22 鉄三 原; 泰宏 根来
92 Optical fiber underwater temperature distribution measurement system JP21203590 1990-08-09 JP2984337B2 1999-11-29 AOKI TARO; HATSUTORI RIKUO; YAMAGUCHI MASAYOSHI; ITO TETSUJI
A measuring system measures temperature distribution in water using an optical fiber. An optical fiber cable suspended from a ship and towed by the ship to form an arch within the water. A measuring device for continuously measuring temperature at various points along the lengths of said optical fiber cable. Sensors are provided within the water to calculate the water depth at each of the various points along the length of the arch shaped optical fiber. Thus, a temperature distribution at each water depth can be continuously measured.
93 Wind speed measurement methods within the reed groove JP27213590 1990-10-12 JP2892479B2 1999-05-17 TAKEGAWA JUJIRO
94 Method for measuring transmitted amount of vapor for material JP13227998 1998-05-14 JPH116792A 1999-01-12 MAYER WILLIAM N; TUOMELA STEPHEN D; KRAKE GUSS L
PROBLEM TO BE SOLVED: To make it possible to measure the transmitted amount of vapor for material accurately by filling a liquid source in a chamber having the wall selected from various kinds of materials, forming another chamber, which is linked to an inactive gas source at the outside of the wall, diffusing the vapor into the chamber and the material and measuring the transmittance. SOLUTION: A test chamber 10 has lower and upper compartments 12 and 14. A sample film 16 is clumped between the compartments 12 and 14. The vapor emitted from a liquid source 20 contained in the compartment 12 is diffused in the entire chamber formed between the film 16 and the compartment 12. A small ventilating aperture 11 penetrates the wall of the compartment 12. The entire pressure in the compartment 12 becomes equal to the outer atmospheric pressure. Then, inactive carrier gas such as nitrogen is made to flow into the upper chamber formed between the film 16 and the compartment 14 through an inlet 22 and flow out from an outlet 24. The amount of transmission is measured with a vapor detector 30.
95 Element package structure and manufacture thereof JP35458896 1996-12-19 JPH10189795A 1998-07-21 HARA TETSUZO; NEGORO YASUHIRO
PROBLEM TO BE SOLVED: To provide an element package structure which has high reliability in vacuum sealing of an element. SOLUTION: A cover part 2 is joined with an upper side of a substrate 1, and an element 4 is housed in a space 3 surrounded by the substrate 1 and the cover part 2. A connection hole 5 connected to the space 3 is provided in the cover part 2, and an aperture part of the connection hole 5 is provided on an upper surface of the cover part 2. An underlying electrode film is formed in a region over an entire circumference of the aperture part of the connection hole 5 opened on the upper surface of the cover part 2, and a heat-melting material 8 is joined with the underlying electrode film so as to close the aperture part of the connection hole 5 by the heat-fusible material 8, thereby sealing the element 4 in the vacuum space 3. Before the aperture part of the connection hole 5 is closed by the heat-fusible material 8, evacuation of the space 3 is carried out, and the heat-fusible material 8 is heated and melted in the vacuum so as to wait for complete exhaust of gas from the heat-fusible material 8. After that, the heat-fusible material 8 on completion of evacuation is pressed and joined to the underlying electrode film on the periphery of the aperture part of the connection hole 5 so as to close the aperture part of the connection hole 5 by the heat-fusible material 8, thereby sealing the space 3 in the vacuum.
96 High speed flow measuring apparatus using nmr imaging apparatus JP22246691 1991-08-08 JPH04288143A 1992-10-13 NOOBAATO JIYOSEFU PERUKU
PURPOSE: To measure the weighted average speed of motion spin without generating inaccuracy generated by the presence of stationary spin. CONSTITUTION: An NMR apparatus executes three separate measuring cycles to measure a flow spin speed under such a state that stationary spin is present. A first cycle is a standard and a magnetic field gradient having a flow responded increment first moment ΔM1 is contained in a second cycle and a magnetic field gradient having the flow responded increment first moment ΔM1 is contained in a third cycle. By processing the NMR signal obtained as the result, a speed measured value is formed. COPYRIGHT: (C)1992,JPO
97 JPH0333427B2 - JP2687382 1982-02-23 JPH0333427B2 1991-05-17 TSUBOI HIROYUKI; SUGYAMA HIROSHI
98 JPS6217092U - JP10381186 1986-07-08 JPS6217092U 1987-01-31
99 JPS6125317B2 - JP3132780 1980-03-12 JPS6125317B2 1986-06-14 SUZUKI SHIGENORI; OOIKE TAKAYASU
100 Speed estimating apparatus for vessel JP2221084 1984-02-09 JPS60166820A 1985-08-30 TACHIKI MASAAKI; KOJIMA TOSHIAKI
PURPOSE:To estimate the speed in real time with a speed estimating apparatus by inputting the engine power of own vessel and the wind direction and velocity data thereinto in real time. CONSTITUTION:The engine power 4 detected with an engine power output meter 3 and the wind direction and velocity 6 detected with an anemoscope 5 are converted with an S/D converter 7 from synchro to digital and inputted into a speed estimating apparatus 8, which holds engine power 10- speed curves 11 corresponding to the displacement 9 of own vessel. The engine power - speed curve 12 previously inputted into the speed estimating apparatus 8 indicate the speed in the carlm condition and the accuracy of the estimated speed can be improved by taking account of the influence of wind. The variation in the speed due to effect of wind can be estimated by the approximation formula as the increment of the power generally necessary for holding a specified speed.
QQ群二维码
意见反馈