序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 气压记录仪 CN201510944016.2 2015-12-16 CN106885648A 2017-06-23 徐春燕; 黄喜梅; 吴江
发明公开了一种气压记录仪。本发明是基于STM32微处理器平台的气压采集存储系统,实现大容量的数据采集,并采用薄膜开关,实现按键的软启动操作;采用MS5803‑01BA数字式气压传感器,精确感知伞系统下降过程中的气压变化,得到海拔高度与时间的关系及下降速度与时间的关系。
2 得到旋转翼飞机的预测垂直速度的方法和设备 CN200880109452.6 2008-09-25 CN101809451B 2013-04-03 B·塞瑞塔安
发明涉及用于得到旋转翼飞机的预测垂直速度的方法和设备,所述设备包括预测垂直速度指示器(1),预测垂直速度指示器(1)至少包括:第一装置(V),用于测量旋转翼飞机的瞬时垂直速度v;第二装置(2),用于测量旋转翼飞机的瞬时真实速度(VP);第三装置(3),用于计算旋转翼飞机的预测垂直速度(vAp),其中所述第三装置分别通过第一(l1)和第二(l2)链路连接到第一和第二装置,并且在存储器中包含最小功率速度(Vy)的预定值以及特征系数(k),对于所述给定旋转翼飞机类型的旋转翼飞机,特征系数(k)为常数。
3 得到旋转翼飞机的预测垂直速度的方法和设备 CN200880109452.6 2008-09-25 CN101809451A 2010-08-18 B·塞瑞塔安
发明涉及用于得到旋转翼飞机的预测垂直速度的方法和设备,所述设备包括预测垂直速度指示器(1),预测垂直速度指示器(1)至少包括:第一装置(V),用于测量旋转翼飞机的瞬时垂直速度v;第二装置(2),用于测量旋转翼飞机的瞬时真实速度(VP);第三装置(3),用于计算旋转翼飞机的预测垂直速度(vAp),其中所述第三装置分别通过第一(l1)和第二(l2)链路连接到第一和第二装置,并且在存储器中包含最小功率速度(Vy)的预定值以及特征系数(k),对于所述给定旋转翼飞机类型的旋转翼飞机,特征系数(k)为常数。
4 速度检测、位置检测和导航系统 CN200610126951.9 2006-09-06 CN1928567B 2010-05-26 大久保仁; 高冈吕尚
发明提供了速度检测、位置检测和导航系统。在本发明的一个实施例中,在使用加速传感器的导航系统中,当无法从GPS处理部分获得位置信息时,速度检测单元根据表达式(11)使用检测到的加速度αG、测量时间mt、时间t0处的速度V0、加速度g和高度变化量Dh来执行运算。通过利用表达式(4)中示出的重力加速度分量gf、重力加速度g、高度变化量Dh和距离Dm之间的关系,可以通过高度变化量Dh抵消重力加速度分量gf。因此,可以十分准确地计算速度V,而不受重力加速度分量gf的影响。
5 速度检测、位置检测和导航系统 CN200610126951.9 2006-09-06 CN1928567A 2007-03-14 大久保仁; 高冈吕尚
发明提供了速度检测、位置检测和导航系统。在本发明的一个实施例中,在使用加速传感器的导航系统中,当无法从GPS处理部分获得位置信息时,速度检测单元根据表达式(11)使用检测到的加速度αG、测量时间mt、时间t0处的速度V0、加速度g和高度变化量Dh来执行运算。通过利用表达式(4)中示出的重力加速度分量gf、重力加速度g、高度变化量Dh和距离Dm之间的关系,可以通过高度变化量Dh抵消重力加速度分量gf。因此,可以十分准确地计算速度V,而不受重力加速度分量gf的影响。
6 PROCEDE ET DISPOSITIF D'OBTENTION D'UNE VITESSE VERTICALE PREDICTIVE D'UN GIRAVION EP08859751.3 2008-09-25 EP2193379B1 2017-08-16 CERTAIN, Bernard
7 System and method for computing mach number and true airspeed EP14178085.8 2014-07-22 EP2833152B1 2017-07-19 Nathan, Visvanathan Thanigai; Anandappan, Thanga; Hillier, John
8 AIR DATA SENSOR WITH CLEANING MEANS FOR PNEUMATIC LINES EP12722811.2 2012-05-15 EP2715372B1 2016-01-06 ELLISON, William Frank; CENEY, Clive Edwin
9 AIR DATA SENSOR WITH CLEANING MEANS FOR PNEUMATIC LINES EP12722811.2 2012-05-15 EP2715372A1 2014-04-09 ELLISON, William Frank; CENEY, Clive Edwin
Apparatus and method for providing the apparatus, the apparatus comprising: a duct; and anon-return valve (18, 24); wherein the duct comprises a first portion and a second portion; the first portion has a first end (28, 30) and a second end; the first end (28, 30) is open to a fluid (e.g. air); the second end is connected to the second portion such that fluid is permitted to flow between the first portion and the second portion; the non-return valve (18, 24) is positioned at or proximate to the second end; and the non-return valve (18, 24) is arranged such that, upon application of a suction force to the first portion at the first end(28,30), fluid flows into the first portion via the non-return valve (18, 24) from outside the duct, and through the first portion from the second end to the first end (28, 30).
10 Velocity detection, position detection and navigation system EP06018703.6 2006-09-06 EP1760474A3 2013-08-07 Ohkubo. Masashi Sony Corp.; Takaoka, Tomohisa Sony Corp.

As an embodiment of the present invention, in a navigation system using an acceleration sensor, when position information cannot be obtained from a GPS processing section, a velocity detecting unit performs an operation using detected acceleration α G, a measurement time mt, a velocity V0 at a time t0, gravity acceleration g and an amount of height change Dh, according to Expression (11). By using the relationship among a gravity acceleration component gf, the gravity acceleration g, the amount of height change Dh and distance Dm shown in Expression (4), the gravity acceleration component gf can be offset by the amount of height change Dh. Therefore, velocity V can be calculated with high accuracy without receiving the effect of the gravity acceleration component gf.

11 Air data sensor with cleaning means for pneumatic lines EP11275086.4 2011-05-23 EP2527844A1 2012-11-28 The designation of the inventor has not yet been filed

Apparatus and method for providing the apparatus, the apparatus comprising: a duct; and a non-return valve (18, 24); wherein the duct comprises a first portion and a second portion; the first portion has a first end (28, 30) and a second end; the first end (28, 30) is open to a fluid (e.g. air); the second end is connected to the second portion such that fluid is permitted to flow between the first portion and the second portion; the non-return valve (18, 24) is positioned at or proximate to the second end; and the non-return valve (18, 24) is arranged such that, upon application of a suction force to the first portion at the first end (28, 30), fluid flows into the first portion via the non-return valve (18, 24) from outside the duct, and through the first portion from the second end to the first end (28, 30).

12 VERFAHREN UND VORRICHTUNG ZUR ERKENNUNG DES FREIEN FALLS EP07704459.2 2007-02-09 EP1991461B1 2009-09-23 LAMMEL, Gerhard
The present invention describes a method and an apparatus for preventing damage to an apparatus resulting from the consequences of a free fall. In this case, first of all, a free fall of the apparatus is identified and a measure is then carried out to protect the apparatus against damage. According to the invention, free fall is in this case identified by detecting the ambient pressure. The apparatus may have a hard disk in which the write/read head of the hard disk is parked and/or locked on identifying the free fall.
13 Sideslip correction for a multi-function three probe air data system EP02253069.5 2002-04-30 EP1256812A3 2003-05-14 Cronin, Dennis J.; Amerson, Thomas D.

A multi-function probe system (14, 16, 18, 50, 70) that provides redundancy for measurements and compensates for effects of sideslip of an aircraft (10) includes at least two probes (14, 16) that are symmetrically located on the opposite sides of the aircraft, and a third probe (18, 50, 70) mounted on the centerline (20) of the aircraft (10) positioned to directly measure local sideslip, in one form (18, 50) of the third probe with ports (60, 62) that are positioned on opposite sides of the center plane of the aircraft. Each of the probes (14, 16, 18, 50, 70) includes self contained instrumentation (14D, 16D, 18D, 38) for providing signals indicating various pressures. The local angle of sideslip sensed by the third probe (18, 50, 70) is used as a compensation for pressure readings at either of the other probes (14, 16) for determining actual angle of attack, and static pressure.

14 A variometer EP80302928.9 1980-08-22 EP0024904A2 1981-03-11 Leonard, Michael Gilbert

A variometer for use in a glider to indicate the rate of lift or sink during flight. An audible signal is generated variations in which correspond to variations in the output of a differentiation circuit receiving signals from an electrical pressure transducer, the audible signal so providing an indication of the rate of lift or sink thereby relieving the pilot of an otherwise visual task and hence simplifying the procedure of flying the glider. The audible signal may vary in pitch between a level indicating a desired lift or sink and another level indicating the actual lift or sink. Alternatively a pulsed signal is used in which the repetition rate of pulses is indicative of the rate of lift or sink. Also the audible pitch of the pulsed signal may be changed to indicate whether the glider is flying at less than or greaterthan a predetermined sink rate.

15 浮上速度インジケータ機構及びそのような機構を備えるダイバーズウォッチ JP2016197774 2016-10-06 JP2017090443A 2017-05-25 BEAT GILOMEN
【課題】浮上速度を調節するために、ダイバーが自身の浮上速度を知ることができる浮上速度インジケータ機構を提供する。【解決手段】第1のホイールセット1は、圧が変動した場合、順番に駆動されるように圧力センサに運動学的に接続される。開始位置から圧力の減少に対応する測定位置に単一の回転方向で、第1のホイールセット1によって駆動されるように配置される第2のホイールセット6と、第2のホイールセット6を解放して開始位置に戻すために、一定の間隔をおいて作動するように配置される解放及び復帰手段8と、第2のホイールセット6に運動学的に接続され、間隔における圧力の減少、したがって浮上速度を表す表示位置を、一定の間隔ごとに占めるように配置されるインジケータ部材12を備える浮上速度表示機構10と、一定の間隔ごとに作動し、前記一定の間隔の間にインジケータ部材12の表示位置を維持するように配置される同期手段14を有す。【選択図】図1
16 携帯機器、制御方法及び制御プログラム JP2015190440 2015-09-28 JP2017067507A 2017-04-06 田辺 茂輝; 森田 英樹; 益池 功; 齋藤 信弥
【課題】移動を判定する技術を改善すること。
【解決手段】1つの態様において、携帯機器は、気圧センサと、加速度センサと、コントローラとを備える。気圧センサは、自機に作用する気圧の値を取得する。加速度センサは、自機に作用する加速度の値を取得する。コントローラは、気圧の値と、加速度の値とに基づいて移動状態を判定する。コントローラは、単位間隔当たりに変化した気圧の値が閾値以上である場合、加速度の値に基づく判定により移動中ではないという判定結果を得たとしても、当該判定結果を覆して移動状態を判定する。
【選択図】図1
17 気圧測定値を用いて鉛直方向の変化を識別する装置 JP2015519638 2014-05-23 JPWO2014192271A1 2017-02-23 裕之 佐々木
識別装置(100)において、気圧測定部(1)で測定された気圧値から、気圧測定部(1)の鉛直方向速度を演算する鉛直速度演算部(2)と、鉛直方向速度の大きさを判定する鉛直速度判定部(3)と、鉛直速度演算部(2)で演算された鉛直方向速度および鉛直速度判定部(3)での判定結果に基づいて鉛直方向に移動する継続距離を演算する鉛直継続距離演算部(4)と、鉛直継続距離演算部(4)で演算される鉛直継続距離が所定のしきい値よりも大きいか否かにより、気圧測定部(1)が鉛直方向に移動しているか否かを判定する鉛直移動判定部(5)と、を備える。
18 Apparatus, method, and program for detecting speed and position and navigation system JP2006203554 2006-07-26 JP2007101526A 2007-04-19 OKUBO HITOSHI; TAKAOKA TOMOHISA
<P>PROBLEM TO BE SOLVED: To highly accurately detect speed through the use of an acceleration sensor. <P>SOLUTION: When position information PS can not be acquired from a GPS processing part 4, a speed detection unit 2 can highly accurately compute speed V without being affected by a travelling-direction component gf indicated in the expression (4) since the speed detection unit 2 can offset the travelling-direction component gf by the amount of change Dh in altitude through the use of the relation among the gravitational acceleration component gf; gravitational acceleration g; the amount of change Dh in altitude; and distance Dm by computations using detection acceleration αG; measuring time mt; speed V0 at a time t0; gravitational acceleration g; and the amount of change Dh in altitude according to the expression (11). <P>COPYRIGHT: (C)2007,JPO&INPIT
19 Decompression information display device JP16071893 1993-06-30 JP3293245B2 2002-06-17 宏 佐藤
20 Decompression information indicating device JP16071893 1993-06-30 JPH0717479A 1995-01-20 SATO HIROSHI
PURPOSE:To provide the correct decompression information by calculating the partial pressure of gaseous nitrogen in each tissue by using the exhalation speed coefficient taking into consideration the respiration speed of gaseous nitrogen for each tissue of a human body in the diving operation, and calculating the time where the diving is possible in the non-decompressed condition and the decompression depth, the decompression time or the like. CONSTITUTION:When a diver inhales the compressed air and starts the diving, the signal from a timer and counter circuit 4 is received by CPU 1, and the signal from a pressure sensor 10 is also received. CPU 1 converts the detected pressure into the water depth data, and stores them in RAM 8. Then, a judgement is made that the diver is in the diving mode when the information below the specified depth is not detected for the specified period of time, the data on the water depth of RAM 8 are read to calculate the partial pressure of gaseous nitrogen in the inhaled air. Then, the partial pressure of gaseous nitrogen in a plurality of tissues in a human body is calculated for each tissue based on the detected pressure and the partial pressure of gaseous nitrogen. The decompression data are calculated based on the partial pressure of gaseous nitrogen of each tissue, and display them on a display part 15.
QQ群二维码
意见反馈