序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 유동을 측정하는 시스템 및 방법 KR1020077016097 2005-11-29 KR1020070087069A 2007-08-27 타이슨스튜어트에이.; 루실리앙
One embodiment of the present invention can comprise a primary flow measurement system, a secondary flow measurement system in fluid communication with the primary flow measurement system and a control coupled to the primary flow measurement system and the secondary flow measurement system. The controller can comprise a processor and a memory accessible by the processor. The processor can execute computer instructions stored on the memory to calculate a flow rate using the primary flow measurement system, in a first mode of operation, and calculate the flow rate using the secondary flow measurement system, in a second mode of operation. The computer instructions can be further executable to switch between the first mode of operation and the second mode of operation based on a predefined parameter.
22 流量測定システム JP2017021571 2017-02-08 JP2018129400A 2018-08-16 上田 俊人; 田中 淳; 河村 真輔
【課題】収納棚の支持部に載置される各容器に供給される浄化気体の流量を、精度良く効率的に測定する。
【解決手段】流量測定システム(1)は、支持部(22)を有する収納棚(2)と、支持部(22)に対して容器を搬送する搬送装置(3)と、支持部(22)に支持された容器に浄化気体を供給する気体供給装置とを備えた容器収納設備において、流量測定装置(6)を用いて浄化気体の流量を測定する。搬送装置(3)と流量測定装置(6)とが通信可能な状態で電線(71)を介して接続されている。搬送装置(3)が流量測定装置(6)を搬送して当該流量測定装置(6)を対象支持部(22S)に載置している状態で、流量測定装置(6)が浄化気体の流量を測定する。
【選択図】図6
23 差圧式流量計、排ガス分析装置及び流量測定方法 JP2016239071 2016-12-09 JP2018096737A 2018-06-21 深見 瞬
【課題】広範囲な流量において高精度に流量測定を行うことのできる差圧式排ガス流量計を提供する。
【解決手段】流路を流れる流体の差圧を検出し、その差圧から流体の流量を算出する差圧式流量計であって、測定レンジが互いに異なる少なくとも2つの差圧検出部22、23を有し、第1の差圧検出部を用いて得られた流体の流量が所定値以上の場合には、第2の差圧検出部で得られた流体の流量を測定値として出する流量演算部を有する。
【選択図】図2
24 Non-continuous flow rate switching control method for a fluid using a pressure type flow rate control apparatus JP2010512916 2009-03-10 JP5430007B2 2014-02-26 忠弘 大見; 功二 西野; 亮介 土肥; 正明 永瀬; 勝幸 杉田; 薫 平田; 隆 広瀬; 努 篠原; 信一 池田; 俊英 吉田; 久士 田中
25 Flow measuring device JP2008058789 2008-03-07 JP2009216471A 2009-09-24 KAMON KENICHI; MIYATA HAJIME; ITO YOICHI; IWAMOTO RYUJI; BESSO DAISUKE
<P>PROBLEM TO BE SOLVED: To accurately detect leakage or the like based on pressure and flow rate when a fluid is used. <P>SOLUTION: A flow rate measuring unit 106 measures the flow rate of a gas flowing through a flow path 102, while a pressure measuring unit 108 measures the pressure. An analysis unit 112 inputs the measured flow rate data and pressure data, and analyzes the flow rate change following the pressure change. A flow rate change amount corresponding to a pressure change amount at a predetermined level or higher is classified into multiple ranges based on predetermined thresholds, and it is determined whether the flow rate changes following the pressure change based on determination conditions depending on the range of the flow rate change. <P>COPYRIGHT: (C)2009,JPO&INPIT
26 Aerosol dispensing device, aerosol release system, as well as the aerosol distribution hand-held devices JP20505896 1996-08-02 JP3349354B2 2002-11-25 イー グッドマン,ディビッド; エム ラブサメン,リード
Apparatus and methods for delivering an amount of aerosolized medicine for inspiration by a patient in response to the occurrence of appropriate delivery point or points in the patient's detected breath flow. The aerosol medication may be administered as one or more pulses having a pulse width, shape, and frequency that will maximize the respirable fraction of the aerosolized compound being administered. The delivery point or points may be predetermined or determined from a prior inspiratory flow for depositing the selected medication at one or more desired locations in the patient's airway. Determined delivery points are recursively lowered for each inspiratory flow that does not satisfy one of the predetermined and previously lowered threshold. Changes in the patient's breath flow patterns during the course of an aerosolized medication inspiration therapy program may be detected and used to adjust the controlled amount of medication to be delivered in a given administration and/or to inform the patient of the patient's condition or change in condition. The device also may contain a library of administration protocols or operating parameters for different medications and a means for identifying from the canister the medicinal contents of the canister for customizing operation of the apparatus.
27 Supply of aerosol drug for intake JP50743992 1992-03-03 JP2613347B2 1997-05-28 LLOYD PETER M; RITSON CARL; JOHANSSON ERIC T; RUBSAMEN REID M
Apparatus and methods for delivering an amount of aerosolized medicine for inspiration by a patient in response to the occurrence of appropriate delivery point or points in the patient's detected breath flow. The aerosol medication may be administered as one or more pulses having a pulse width, shape, and frequency that will maximize the respirable fraction of the aerosolized compound being administered. The delivery point or points may be predetermined or determined from a prior inspiratory flow for depositing the selected medication at one or more desired locations in the patient's airway. Determined delivery points are recursively lowered for each inspiratory flow that does not satisfy one of the predetermined and previously lowered threshold. Changes in the patient's breath flow patterns during the course of an aerosolized medication inspiration therapy program may be detected and used to adjust the controlled amount of medication to be delivered in a given administration and/or to inform the patient of the patient's condition or change in condition. The device also may contain a library of administration protocols or operating parameters for different medications and a means for identifying from the canister the medicinal contents of the canister for customizing operation of the apparatus.
28 Flow rate, a device for measuring control the amount of heat JP106696 1996-02-27 JPH081383U 1996-09-13 ヴォルフガンク・フーバー; パウル・ナウアー; ペーター・リース
(57)【要約】 【課題】 流量あるいは温度差が僅かな場合でも十分な精度で流量、熱量を測定制御することが可能な、安価な構成の流量、熱量を測定制御する装置を提供する。 【解決手段】 開と閉の2つの動作位置を有する絞り装置4と、絞り装置の前方9および後方10の流体の差圧を測定する装置8と、測定データから流量あるいは熱量を計算するコンピュータ14とが設けられる。 流量あるいは熱量の目標値を示す所定の信号Eがコンピュータ1
4に入され、所定の信号をパルス有り無しの信号に変換し、その信号により絞り装置が駆動される。 絞り装置は、一定断面の開口部となる位置と閉じた位置の2つの位置を取るだけであり、差圧発生時の弁開度を測定する必要がなく、弁開度測定に伴う不正確さが発生しないので、正確な流量あるいは熱量の測定が可能になる。
29 Flow rate and heating value measuring instrument JP8150090 1990-03-30 JPH03202742A 1991-09-04 PEETAA RIISU; PAURU NAUAA; BUORUFUGANKU FUUBAA
PURPOSE: To expand the high-accuracy measuring region of a flow rate and heating value measuring instrument by using a constricting device having at least two different cross sections for passing a fluid and selecting a suitable cross section in accordance with the differential pressure of the fluid between the front and rear sides of the device. CONSTITUTION: Coefficients charagterizing the flow rate of a fluid at each position of H- and L-level signals are stored in a multiplier 22. When the flow rate of the fluid passing through the opening of a constricting device 4 decreases while the opening is at a position 5a, the differential pressure of the fluid between the front and rear sides of the device 4 decreases and a differential pressure measuring instrument 6 detects the decreased differential pressure and inputs the detected pressure to a comparison switch (SW) 27. When the signal becomes smaller than a lower threshold which characterizes the switching characteristic of the SW 27, the output signal of the SW 27 is switched to an L-level from an H-level. Consequently, a motor 3 is driven and the device 4 is moved to switch the cross section of a supply pipe to a smaller opening 5b. Simultaneously, the L-level signal is impressed upon the multiplier 22 and the coefficient related to the L-level signal becomes effective, and then, the signal of the measuring instrument 6 is multiplied by the coefficient. Thus the flow rate of the fluid given at the position of the opening 5b is measured. COPYRIGHT: (C)1991,JPO
30 JPH0321852B2 - JP10151881 1981-06-30 JPH0321852B2 1991-03-25 HATSUTORI TAKAAKI
31 FLOWMETER EP09718159.8 2009-03-02 EP2249132B1 2018-05-09 MIYATA, Hajime; KAMON, Kenichi; ITOU, Youichi; BESSYO, Daisuke; IWAMOTO, Ryuji
Detecting a leak, or the like, with high accuracy on the basis of pressure and a flow volume acquired during use of fluid is made possible. A volume of gas flowing through a flow path 102 is measured by a flow volume measurement unit 106, and pressure is measured by a pressure measurement unit 108. Measured flow data and measured pressure data are input to an analysis unit 112, to thus analyze following of a pressure change by a flow volume change. An amount of flow volume change responsive to an amount of pressure change of a predetermined level or more is classified into a plurality of ranges by means of a predetermined threshold value, and a following flow value change is determined on the basis of determination conditions of the respective ranges of amounts of flow volume changes.
32 A PRESSURE DIFFERENTIAL FLOW METER INCLUDING A CONSTRICTION DEVICE THAT CAN CREATE MULTIPLE AREAS OF CONSTRICTION EP12869217 2012-02-21 EP2817595A4 2015-10-21 IRANI CYRUS A; DYKSTRA JASON D
33 A PRESSURE DIFFERENTIAL FLOW METER INCLUDING A CONSTRICTION DEVICE THAT CAN CREATE MULTIPLE AREAS OF CONSTRICTION EP12869217.5 2012-02-21 EP2817595A1 2014-12-31 IRANI, Cyrus, A.; DYKSTRA, Jason, D.
According to another embodiment, a method of determining the flow rate of a fluid using the pressure differential flow meter comprises: flowing the fluid through the flow meter, wherein the flow meter comprises: (A) the constriction device, (i) wherein the constriction device is capable of creating at least a first area of constriction and a second area of constriction; (a) wherein the first area of constriction has a cross-sectional area that is less than the cross-sectional area of the second area of constriction; (b) wherein the pressure differential is within a range when the fluid velocity flowing through the first area of constriction is within a first fluid velocity range and when the fluid velocity flowing through the second area of constriction is within a second fluid velocity range; and (c) wherein as the fluid velocity through the first area of constriction increases to about the maximum velocity of the first fluid velocity range, the constriction device creates the second area of constriction; and (d) wherein as the fluid velocity through the second area of constriction decreases to about the minimum velocity of the second fluid velocity range, the constriction device creates the first area of constriction; and (B) a flow rate computing device. According to another embodiment, a pressure differential flow meter comprises the constriction device.
34 METHOD OF ASSESSING AND CONDITION MONITORING OF FLUID CONDUITS AND APPARATUS THEREFOR EP12812309.8 2012-11-14 EP2780674A2 2014-09-24 MACKENZIE, Hugh; VARDY, Alan
A method of and apparatus for assessing the condition of a fluid conduit. The method comprises providing a measurement apparatus comprising a measurement region in fluid communication with the fluid conduit. The measurement apparatus is operable to measure at least one of pressure and flowrate in the measurement region. A pressure surge is effected or generated to propagate in the fluid conduit, and at least one of a pressure response or a flowrate response from the fluid conduit is measured. From a pressure data set and a flowrate data set, a data set representative of the cross sectional area along the fluid conduit is determined. This enables average or over all area profiles along long fluid pipelines to be deduced.
35 TRIPLE REDUNDANCY VORTEX FLOWMETER SYSTEM EP08827847 2008-08-22 EP2188597A4 2010-09-01 MATTAR WADE; DES ROSIERS HARRY WILLIAM
36 Débitmètre EP00402749.6 2000-10-06 EP1092960A1 2001-04-18 Raffort, Joel

La présente invention concerne un débitmètre démontable et modulable comprenant un venturi (50) comportant deux sections (51, 52) tronconiques coaxiales et de dimensions déterminées dont les extrémités de plus petit diamètre sont reliées par une section (53) cylindrique intermédiaire, caractérisé en ce que le débitmètre comprenant des moyens (60, 70) de mesure d'une différence de pression dans le venturi, entre une première position dite amont et une deuxième position dite aval, ces moyens (60, 70) étant montés sur le venturi, la position amont étant située en amont de la section (51) tronconique dite amont, située en amont par rapport au sens F d'écoulement du fluide et la deuxième position étant dans la section (53) cylindrique intermédiaire, le débitmètre comprenant également des moyens de détermination du débit du fluide en fonction de la valeur de la différence de pression, et des moyens de mesure de la pression.

37 Exhaust gas sampling method using a flow rate detector with variable venturi EP99305474.1 1999-07-09 EP0971211A2 2000-01-12 Hanashiro, Noriyuki, c/o Honda Giken Kogyo KK; Shibata, Atsushi, c/o Honda Giken Kogyo KK; Yanagihara, Shigeru, c/o KK Tsukasa Sokken; Yamawaki, Shuta, c/o KK Tsukasa Sokken

A flow rate detector mechanism using variable Venturi therein, comprising: a variable flow rate , generator, comprising: a core 11; and a variable Venturi 12; wherein a throat (flow passage) cross-sectional area defined between the core and the venturi is able to be changed by shifting relative positions of the core and the venturi in a direction of axes thereof, and further comprising a flow rate calculation processing portion 30 for calculating a flow rate based on the relative positions in the direction of the axes thereof and for outputting the calculated flow rate, thereby continuously changing the constant flow rate, without occurrence of any disturbance therein. Further, with an exhaust gas sampling method applying the flow rate detector mechanism using variable Venturi, CVS flow rate is changed within the range of the phases of measure modes, so as to make small the difference between the peak dew point in the bag and the final dew point in the bag, as well as to causethe final dew point to approach the temperature at which the bag is kept. Therefore, the dilution ratio of the final dew point is decreased, so as to improve the accuracy in analysis.

38 Vorrichtung zur Messung und/oder Steuerung des Durchflusses und/oder von Wärmemengen EP90105995.6 1990-03-29 EP0392272B1 1996-09-04 Ries, Peter, Dr.; Nauer, Paul; Wolfgang, Huber
39 BIOLOGICAL FLUID FLOW CONTROL APPARATUS AND METHOD EP15200457.8 2015-12-16 EP3034113A1 2016-06-22 PATEL, Amit J.; PLANAS, Samantha M.; HIGGINSON, Kathleen M.; THILL, Melissa A.; MOORE, Courtney

Apparatus, system and method are provided for controlling flow through a biological fluid processing device. Pressure of fluid flow through a flow path is monitored and flow rate in the flow path is increased or decreased based on sensed pressure levels for selected periods of time. This has particular application in controlling flow in an infusion or return flow path of an apheresis device that separates whole blood into one or more blood components.

40 Klappe zur Anordnung in einem Strömungskanal einer klimatechnischen Anlage EP12182807.3 2012-09-03 EP2669592B1 2016-01-06 Schicks, Heike; Sadkowski, Manfred
QQ群二维码
意见反馈