序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 金属性材料を処理するための装置及び方法 JP2016542281 2014-12-16 JP2017507309A 2017-03-16 ヨハン ケマー ハンス; レナート クリスチアン; アイヒ アンドレアス; ショルツ ハラルド; ゾッツ ペーター
本発明は、金属性材料を処理するための装置及び方法に関する。特に、該発明は、鉄鋼及び合金、特に非標準的グレードの鉄鋼及び特に高品質の合金を処理及び/又は製造するのに適する。該発明は、鉄ベースの金属材料の処理に特に有用であることが証明されている。【選択図】図3
42 銅精錬スラグを減少させる方法および装置 JP2015545661 2014-05-21 JP2015537121A 2015-12-24 ジョウ、ソンリン; リウ、ウェイドン; ワン、フー
銅精錬スラグを減少させる方法と装置である。その方法は、銅精錬溶融スラグ(1)を還元剤(2)と圧下の不活性ガス(3)と混合することと、その後それらを減少させることを備える。その装置は、炉本体(4)を備え、炉本体(4)には供給口(413)とスラグ排出口(416)と炉本体の側壁に配置されたガスノズル(411)が設けられる。【選択図】図1
43 JPS646243B2 - JP50483085 1985-08-16 JPS646243B2 1989-02-02 PARUFUENOFU REONIDO IBANOBICHI; HODOINIKOFU BIKUTORU PETOROBICHI; SUBIDONOBICHI NIKORAI AREKUSANDOROBICHI; BORUKOFU BIKUTORU NIKORAEBICHI; BURENKOFU SERUGEI AREKUSANDOROBICHI; GAROSUTO AREKUSANDORU IBANOBI
44 Method and device for depleting copper smelting slag US14649800 2014-05-21 US09903005B2 2018-02-27 Songlin Zhou; Weidong Liu; Hu Wang
A method and device for depleting copper smelting slag. The method comprises mixing copper smelting molten slag (1) with a reductant (2) and an inert gas (3) under pressure, and then depleting same. The device for depletion comprises a furnace body (4), which furnace body (4) is provided with a feed opening (413) and a slag discharge port (416), and gas nozzles (411) disposed on the side wall of the furnace body.
45 INTEGRAL MELTER AND PUMP SYSTEM FOR THE APPLICATION OF BITUMINOUS ADHESIVES AND HIGHWAY CRACK-SEALING MATERIALS, AND A METHOD OF MAKING THE SAME US15008773 2016-01-28 US20170218575A1 2017-08-03 WILLIAM E. HOWSEMAN, JR.
An integral melter and pump assembly or system, and a method of making the same, is disclosed wherein the pump assembly comprises a melter housing having a melter container defined within the melter housing. A pump mounting plate is integrally mounted within a side wall portion of the melter container and an output dispensing supply pump is mounted directly upon an external surface portion of the pump mounting plate in a surface-to-surface manner such that heat generated internally within the melter container is effectively transferred by conduction from the melter container and through the pump mounting plate such that the temperature level of the output pump is elevated to, and maintained at, a predeterminedly desired level even when the pump, is not disposed in its output dispensing mode. In addition, since the output dispensing or material supply pump is disposed externally of the melter container and the melter housing, the output dispensing or material supply pump is easily and readily accessible in case maintenance becomes necessary. Optionally, an oil jacket or chamber can surround the melter container so as to more evenly or consistently provide heating of the melter container.
46 A Solids Injection Lance US14891112 2014-05-02 US20160116215A1 2016-04-28 Jacques Pilote; Rodney James Dry; Mark Preston Davis
A method for injecting a solid feed material through a solids injection lance includes creating flow conditions in an injection passageway of the lance so that at least a part of the feed material flowing along the passageway forms a buffer zone between a wall of a tube that defines the passageway and feed material flowing along a central section of the passageway.
47 FURNACE FOR SMELTING COPPER FOR LOWER BLOW-THROUGH WITH ENRICHED OXYGEN US14894439 2014-05-30 US20160109181A1 2016-04-21 Zhixiang CUI; Zhi WANG; Ruimin BIAN
The invention describe facilities for smelting copper for a lower blow-through with enriched oxygen, comprising a furnace for lower blow-through, which, in turn, comprises the following characteristics:A furnace body with a chamber and a partition inside, at least a supply inlet, a smoke outlet, a matte outlet, a slag outlet, at least one side opening for spray pistols, at least one lower opening for nozzles, and thermometer and level measurement openings;At least one oxygen lance, arranged between the lower openings, for injecting oxygen into the chamber;At least one side spray gun arranged inside the side openings in order to supply the chamber with coal dust or reductive gas.
48 ARC FURNACE US14467541 2014-08-25 US20150063400A1 2015-03-05 Masato OGAWA; Kunio MATSUO; Noriyuki TOMITA; Akihiro NAGATANI
Provided is an arc furnace, including: a furnace body having a bottomed cylindrical shape; a furnace lid that openably closes an opening of the furnace body; an electrode that is provided at the furnace lid and melts a metal material supplied into the furnace body by electric discharge; a tilting floor that is tiltable within a plane substantially perpendicular to the tilting floor; and a rotation mechanism that is provided on the tilting floor inward from an outer circumference of the furnace body to support a bottom wall of the furnace body, and rotates the furnace body around a cylinder axis thereof.
49 METHOD FOR PURIFYING HIGH-PURITY ALUMINIUM BY DIRECTIONAL SOLIDIFICATION AND SMELTING FURNACE THEREFOR US13977582 2011-12-14 US20140202653A1 2014-07-24 Tao Hong; Imin Nurgul
Provided is a method for preparing high-purity aluminum by directional solidification, comprising the steps of: providing 4N to 5N aluminum as raw material, heating the same to a temperature of 670° C. to 730° C., maintaining the temperature for 7 minutes to 80 minutes, cooling the bottom of chamber (3) to allow the aluminum liquid crystallizing in a direction from the bottom to top of the chamber (3) for 1 hour to 8 hours to obtain a crystalline ingot, during the crystallization process of a finished product of crystalline ingot, stifling and heating the aluminum liquid, maintaining a particular temperature gradient of the aluminum liquid, and removing a portion of the crystalline ingot from one end of the ingot, the remaining portion being the high-purity aluminum. Also provided is a smelting furnace, comprising a shell (1), a heating device (2), a chamber (3), a temperature measurement device, a stirring device and a cooling device (6).
50 Aluminum melting furnace US541883 1975-01-17 US3996412A 1976-12-07 Carl W. D. Schaefer; Richard L. Schaefer; Gordon F. Kennedy
An electrically energized aluminum melting furnace comprises a vessel for supporting molten aluminum and a roof and upper wall structure cooperating with side walls of the vessel to define a heating chamber above the molten aluminum. A plurality of unshielded resistance heating elements are supported by the roof and upper wall structure above the molten aluminum. The molten aluminum has access through a submerged opening to a charging well to which unmelted aluminum is periodically charged without danger that molten aluminum will splash upon the heating elements. Heat conducted from the heating chamber through the body of molten aluminum residing in the vessel is utilized to melt in the charging well the aluminum charged thereto. The melted aluminum in the charging well is permitted to flow through the heating chamber and through a submerged opening to a hot metal well from which hot metal may be withdrawn by any of numerous techniques. The heating chamber is so arranged that an oxide skin is preserved at the surface of the molten aluminum residing within the heating chamber, the oxide skin effecting an efficient transfer of radiant energy received from the resistance heating elements to the molten aluminum. The aforementioned roof and upper wall structure is rested upon furnace walls so as to allow a vertical growth of the furnace walls.
51 Method and apparatus for heating pieces of steel scrap US43238774 1974-01-10 US3880649A 1975-04-29 BLOOM WILLIAM M
Pieces of steel scrap are charged into a ladle by a magnet on a crane so that the central part of the charge is substantially denser than the peripheral part. A cover having a plurality of natural gas-oxygen burners mounted around its periphery is then placed on top of the ladle to obtain a substantially gas tight container except for a flue opening and some small openings due to a non-tight fit between ladle and cover adjacent the top. The burners direct their flames downwardly parallel to the sidewall of the ladle and the combustion gases are discharged through the flue opening. The flames are reducing in nature and the container is under a positive pressure. The heating is continued until the scrap is at a temperature of at least approximately 1,500*F and preferably approaching the melting point of the scrap. Molten iron in substantially greater weight than the scrap and having a substantially higher carbon content is then poured into the ladle so that the majority of the scrap is melted. The mixture is then easily poured from the ladle into the oxygen converter.
52 METHOD AND ARRANGEMENT FOR ADJUSTING CHARACTERISTICS OF A FURNACE PROCESS IN A FURNACE SPACE AND INJECTION UNIT EP16778075.8 2016-09-14 EP3350526A1 2018-07-25 BJÖRKLUND, Peter; KARHUVAARA, Oskari; SONNINEN, Valtteri; SAARI, Pekka; LUOMALA, Matti
Provided are a method and an arrangement for adjusting characteristics of a furnace process in a furnace space limited by a furnace shell of a metallurgical furnace. The arrangement comprises an injection unit having a frame mounted by means of a mounting means on the metallurgical furnace outside the furnace space of the furnace shell. Also provided is an injection unit for use in the method and in the arrangement.
53 A SOLIDS INJECTION LANCE EP14798282 2014-05-02 EP2997167A4 2017-01-11 PILOTE JACQUES; DRY RODNEY JAMES; DAVIS MARK PRESTON
A method for injecting a solid feed material through a solids injection lance includes creating flow conditions in an injection passageway of the lance so that at least a part of the feed material flowing along the passageway forms a buffer zone between a wall of a tube that defines the passageway and feed material flowing along a central section of the passageway.
54 VERFAHREN ZUM BETREIBEN EINES LICHTBOGENOFENS UND SCHMELZANLAGE MIT EINEM NACH DIESEM VERFAHREN BETRIEBENEN LICHTBOGENOFEN EP13713803.8 2013-03-21 EP2823069A1 2015-01-14 BACKES, Ralph-Herbert; DÖBBELER, Arno
In a method for operating an arc furnace (30) and a smelting system operated according to said method, at least one measurement value (M 1) of a measurement variable characterizing the operating state of each of a plurality of system components that influence the operating conditions of the arc furnace (30) is detected and compared to a respective currently permissible threshold value for said measurement variable, and a maximum power (P) that can be supplied to the arc furnace (30) within a time window (∆t1) while satisfying all currently permissible threshold values is determined on the basis of the comparison result.
55 Four de fusion-affinage de verre EP91420182.7 1991-06-07 EP0462028A1 1991-12-18 Boen, Roger; Tuaz, Frédéric; Paya, Bernard

La présente invention concerne un four de fusion-affinage de verre dont la partie inférieur (1), non chauffée, comprend une paroi réfractaire fortement isolante et dont la partie supérieure (2) est du type à paroi froide et est chauffée par induction, le fond étant également constitué d'un réfractaire. Le rapport entre la hauteur de la partie supérieure et la hauteur de la partie inférieure est compris entre 2/1 et 1/2.

56 銅精錬スラグを減少させる方法および装置 JP2015545661 2014-05-21 JP6030246B2 2016-11-24 ジョウ、ソンリン; リウ、ウェイドン; ワン、フー
57 固形物注入ランス JP2016513175 2014-05-02 JP2016522324A 2016-07-28 ピローテ,ジャック; ジェイムズ ドライ,ロドニー; プレストン デイヴィス,マーク
固形物の供給材料を固形物の注入ランスを通して注入する方法が、ランスの注入流路内に、流路に沿って流れる供給材料の少なくとも一部分が、流路を画定する管の壁面と、流路の中心部分に沿って流れる供給材料との間に緩衝区域を形成するような流れの条件を作出するステップを含む。【選択図】図3
58 アーク炉 JP2013180757 2013-08-31 JP2015048976A 2015-03-16 OGAWA MASATO; MATSUO KUNIO; TOMITA NORIYUKI; NAGATANI TETSUHIRO
【課題】均一な材料溶解を可能にしつつ、炉全体の大型化を回避しかつ傾動注湯を可能にして操業効率の向上を実現する。【解決手段】有底円筒状の炉体1と、当該炉体1の開口を開放可能に閉鎖する炉蓋2と、炉蓋2に設けられ炉体1内に供給された金属材料を放電溶解する電極3と、略垂直面内で傾動可能な傾動床5と、前記炉体1の外周よりも内方で傾動床5上に設けられて炉体1の底壁11を支持し、当該炉体1を筒軸回りに回転させる回転機構4とを備える。【選択図】図1
59 方向性凝固により高純度アルミニウムを準備する方法及びそのための溶鉱炉 JP2014524249 2011-12-14 JP2014527577A 2014-10-16 洪涛; 努力古依明
方向性凝固により高純度アルミニウムを準備する方法であって、4N〜5Nアルミニウムを原料として提供するステップと、アルミニウム原料を温度670℃〜730℃まで加熱するステップと、その温度を7分間〜80分間維持するステップと、チャンバー3の底部を冷却して、1時間〜8時間にわたり、アルミニウム液をチャンバー3の底部から頂部への方向において結晶化させて、結晶インゴットを取得するステップと、結晶インゴットの完成品の結晶化プロセス中、アルミニウム液を撹拌し加熱するステップと、アルミニウム液の特定の温度勾配を維持するステップと、インゴットの一端部から結晶インゴットの一部分を除去するステップとを含み、残った部分が高純度アルミニウムである、方法が提供される。外殻1と、加熱装置2と、チャンバー3と、温度測定装置と、撹拌装置と、冷却装置6とを備える溶鉱炉も提供される。【選択図】図1
60 Method for melting reactive metallic material and melting device JP2111399 1999-01-29 JPH11285810A 1999-10-19 CHANDLEY GEORGE D; ERICKSON RONALD E; TOUSIGNANT PAUL J
PROBLEM TO BE SOLVED: To enable to quick melt while preventing impurity from intruding at a low cost by selectively and sequentially executing induction-heating to plural solid alloy charging constituted elements separated in a refractory melting vessel. SOLUTION: In a melting example of Ti-6Al-4V alloy, after introducing a high m.p. lower part charging material constituted element C1 composed of Ti (slender small piece) spotted with a fixed quantity of V (black block) into the refractory melting vessel 54, a low m.p. upper part charging material constituted element C2 composed of a solid Al piece (round grain) and Ti piece, is introduced into 1/3 of the upper end of the vessel 54 and after selectively induction-preheating with an induction coil 68a, the constituted elements C 1, C 2 are melted with an induction coil 68. The upper constituted element C 2 is made to flow toward the bottom part of the vessel 54 and the melting of the upper end or the lower end of the constituted elements C 1, C 2 is started and at the same time, the molten alloy is held to separate from the side wall of the vessel 54 with high induction power level and restrain harmful reaction with the refractory. Successively, a mold vessel 20 is descended and the molten alloy is sucked from a filling tube 23 and filled into a mold 22. COPYRIGHT: (C)1999,JPO
QQ群二维码
意见反馈