首页 / 国际专利分类库 / 机械工程;照明;加热;武器;爆破;发动机或泵 / 炉;窑;烘烤炉;蒸馏炉 / 一般炉、窑、烘烤炉或蒸馏炉;开式烧结设备或类似设备 / 竖炉或类似立式或基本立式的炉 (用于预热、燃烧、煅烧或冷却石灰、镁化氧或白云石的入C04B 2/12)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 VERFAHREN ZUM GESCHLOSSENZELLIGEN BLÄHEN VON MINERALISCHEM MATERIAL EP12777880.1 2012-10-04 EP2697181B1 2015-07-22 BRUNNMAIR, Ernst Erwin
102 SYSTEM AND METHOD FOR THE CALCINATION OF MINERALS EP07718671.6 2007-04-02 EP2004319B8 2015-07-22 HORLEY, Connor, James; SCEATS, Mark, Geoffrey
103 METHOD AND APPARATUS FOR CONTROLING TEMPERATURE UNIFORMITY OF THE BURDEN IN A DIRECT REDUCTION SHAFT FURNACE EP02792357.2 2002-12-12 EP1604373B1 2012-07-25 METIUS, Gary, E.; MONTAGUE, Stephen, C.; BAILEY, Russell; KAKALEY, Russell; VOELKER, Brian, W.
A method and apparatus for increasing hydrocarbon input to a direct reduction shaft furnace (12) while controlling the temperature uniformity of the center portion (26) of the burden within the furnace (12) wherein the hydrocarbon gases used in the direct reduction may be preheated, which increases the temperature of the hydrocarbon gases, and therefore increases the resultant temperature of the upflowing gas as it rises from the lower section (66) of the furnace (12) into the center (26) of the burden. Alternatively, a portion of the upflowing gas may be removed before it enters the reduction zone of the furnace. The removed upflowing gas, known as hot bleed gas, may be ducted to the top gas scrubber (32) of the furnace or may be mixed with the main reducing gas stream of the furnace for reintroduction to the furnace. Alternatively, hot reducing gas may be directly injected into the center portion (26) of the burden, offsetting the cooling effect of the upflowing gas. The centrally injected hot reducing gas may be split off from the main reducing gas stream or may be generated by a partial oxidation reactor.
104 METHOD AND APPARATUS FOR CONTROLING TEMPERATURE UNIFORMITY OF THE BURDEN IN A DIRECT REDUCTION SHAFT FURNACE EP02792357 2002-12-12 EP1604373A4 2008-04-16 METIUS GARY E; MONTAGUE STEPHEN C; BAILEY RUSSELL; KAKALEY RUSSELL; VOELKER BRIAN W
A method and apparatus for increasing hydrocarbon input to a direct reduction shaft furnace (12) while controlling the temperature uniformity of the center portion (26) of the burden within the furnace (12) wherein the hydrocarbon gases used in the direct reduction may be preheated, which increases the temperature of the hydrocarbon gases, and therefore increases the resultant temperature of the upflowing gas as it rises from the lower section (66) of the furnace (12) into the center (26) of the burden. Alternatively, a portion of the upflowing gas may be removed before it enters the reduction zone of the furnace. The removed upflowing gas, known as hot bleed gas, may be ducted to the top gas scrubber (32) of the furnace or may be mixed with the main reducing gas stream of the furnace for reintroduction to the furnace. Alternatively, hot reducing gas may be directly injected into the center portion (26) of the burden, offsetting the cooling effect of the upflowing gas. The centrally injected hot reducing gas may be split off from the main reducing gas stream or may be generated by a partial oxidation reactor.
105 Anlage zur Herstellung von Ziegeln und/oder Dachpfannen EP96104671.1 1996-03-25 EP0735334A1 1996-10-02

Die Erfindung betrifft eine Anlage zur Herstellung von Ziegeln und/oder Dachpfannen, mit separaten kreisringförmig gebogenen Tunneln (Ringtunneln) für das Trocknen und Brennen von auf Kreisbahnen transportierten Formlingen, wobei Trockner- und Ofentunnel in konzentrischer Anordnung nebeneinander verlaufen und jeder Ringtunnel unter Freilassung einer Be- und Entladestelle auf einem Kreissektor offen ist, und ist gekennzeichnet durch ein von der Ringtunnel-Anlage (16,17) umgebenes Materiallager (M), welches als Rundsumpf oder Rundmischbett ausgeführt ist und in einer in der Grundfläche als Rund- oder Polygonbau ausgebildeten Halle eine von einem drehbaren Befüll-Förderband (7) aufschüttbare und von einer drehbaren Material-Entnahmeeinrichtung (8) abräumbare Ringhalde aus aufbereitetem Material aufnimmt.

106 Four pour déshydrater pulvérulents sable et granulats EP88400454.0 1988-02-29 EP0284464B1 1992-09-30 Bergounhon, René
107 Four pour déshydrater pulvérulents sable et granulats EP88400454.0 1988-02-29 EP0284464A1 1988-09-28 Bergounhon, René

L'invention concerné un dispositif pour déshydrater, économe d'énergie, adapté à la cuisson du gypse.

Il comporte une enveloppe extérieure (1), intérieure (6), des cônes d'écoulement (7) et (10) assemblés sur ces enveloppes. Un brûleur (11) et une écluse (5) complètent le dispositif. Afin d'augmenter la pression dans le four, il est prévu un couvercle (12), une écluse à gypse (13) et une soupape de vapeur (14). Le traitement s'effectue en phase sèche ou humide, cette dernière étant interessante pour le traitement des produits isolants ou pour le gypse modifiant la nature du plâtre. L'échange thermique permet de traiter les produits à basse température. La chambre de combustion cen­trale évite les pertes par rayonnement. Dans une application à la cuisson du gypse, il a été observé des économies d'énergie de 50% par rapport aux appareils traditionnels.

108 Kupolofen EP83101249.7 1983-02-10 EP0092029B1 1986-08-20 Rachner, Hans-Günther, Dr.
109 Shaft furnace EP83101249 1983-02-10 EP0092029A3 1984-04-25 Rachner, Hans-Günther, Dr.
110 Kupolofen EP83101249.7 1983-02-10 EP0092029A2 1983-10-26 Rachner, Hans-Günther, Dr.

Die Erfindung betrifft einen Kupolofen, insbesondere einen Heißwind-Kupolofen mit Langzeitfutter, mit einer unterhalb der Begichtungsöffnung angeordneten Abzugseinrichtung zum Abziehen der Gichtgase und einer unterhalb der Gichtgas-Abzugseinrichtung angeordneten Windeinrichtung zum Zuführen, Verteilen und Einleiten des Windes in den Ofen, wobei der Ofen (1) zwischen der Gichtgas-Abzugseinrichtung (4) und der Windeinrichtung (9) eine mit einer Dichtung (13) versehene Trennfuge (14) aufweist, und wobei der oberhalb der Trennfuge (14) befindliche Ofenkopf (16) von dem unterhalb der Trennfuge (14) befindlichen Unterofen (17) abkuppelbar ist, und wobei ein zweiter Unterofen (18) vorhanden ist, der gegen den ersten Unterofen (17) auswechselbar und an den Ofenkopf (16) ankuppelbar ist.

111 Schachtofen und Verfahren zum Einspeisen von Sauerstoff in einen derartigen Schachtofen EP81104201.9 1981-06-02 EP0043442A1 1982-01-13 Hakenberg, Walther, Dipl.-Ing.; Seitz, Holger, Dr.-Ing.; Krüger, Benno, Ing. grad.

Bei einem derartigen Schachtofen (10) wird im Gegenstrom zu dem am oberen Ende des Schachts aufgegebenen Brenngut kalte Verbrennungsluft durch ein Gebläse (15) von unten in die Kühlzone des Schachtofens (10) eingepresst.

Um den fossilen Brennstoffeinsatz möglichst weit bis auf das unbedingt notwendige Maß zu reduzieren und somit den eingesetzten Brennstoff möglichst vollständig verbrennen zu können, wird der Gebläsewind durch Sauerstoff angereichert. Hierzu mündet in die Gebläsewindleitung (14) des Schachtofens (10) eine Sauerstoffzuleitung (16). Ihre Mündung befindet sich in Strömungsrichtung gesehen vor der Austrittsöffnung (13) der Gebläsewindleitung (14).

Bei dem Verfahren zum Einspeisen von Sauerstoff in einen derartigen Schachtofen (10) wird der Sauerstoff zusammen mit der Verbrennungsluft durch dieselbe Austrittsöffnung (13) in den Schachtofen (10) eingeleitet. Vorzugsweise werden Sauerstoff und Verbrennungsluft vor dem Austritt aus der gemeinsamen Austrittsöffnung (13) vermischt.

112 Verfahren zum Herstellen einer Gesteinsmaterialschmelze in einem Kupolofen EP81100891.1 1981-02-09 EP0034319A1 1981-08-26 Jensen, Leif

Verfahren zum Herstellen einer Schmelze aus steinigen Materialien in einem Kupolofen, wobei diese Materialien in gleichmäßig geformten Briketts zusammen mit Koks beschickt werden. Um den CO-Gehalt im Abgas zu vermindern und die Schmelzkapazität des Kupolofens zu erhöhen, wird eine Durchflußmenge derverbrennungsluft in bezug auf den Querschnitt des Kupolofens von mindestens 60 Nm3/m2 Minute gewählt und die Form der Briketts wird so gewählt, daß die Porosität in der Verbrennungszone mehr als 0.45 beträgt.

113 폐기물 용융로 KR1020147028431 2013-07-26 KR101921225B1 2018-11-22 카지야마히로히사; 토다카미츠마사; 마나코카즈타카; 노다코히치; 히라쿠라쇼
폐기물의건조, 열분해및 용융을실시하는폐기물용융로(2)는, 상하방향으로연장되어폐기물을수용하는공간을형성하여, 폐기물을상부방향에서하부방향으로안내하는통형상본체부(20); 본체부(20)의중심축선을따라본체부(20)의하측으로이어져, 폐기물에서생성된용융물을저장하는용융물저장부(22); 및, 본체부(20)의중심축선을따라본체부(20)의상측으로이어져, 폐기물에서생성된가스를모아배기구(26)로유도하는가스유도부(21); 를구비한다. 본체부(20)는, 하부방향으로갈수록내측의단면적이점차작아지는테이퍼부(24)를갖는다. 테이퍼부(24)는, 상하방향에있어서, 본체부(20)를구성하는전체부분중에서최대높이를차지한다.
114 이산화탄소를 소비하는 물질에 대한 경화 시스템 및 이의 사용 방법 KR1020157029506 2014-03-13 KR1020160007499A 2016-01-20 쿠플러,존,피.; 아타칸,바히트; 스미스,케네트; 후,수동
본발명은시약으로서이산화탄소를소비하는물질을경화시키기에유용한경화시스템을제공한다. 그러한시스템은이산화탄소를함유하는가스및 경화되는물질을함유하는챔버를지닌다. 그러한시스템은, 시스템을로딩시키면이산화탄소를전달하여주위공기를대체시킬수 있고, 필요에따라서그리고소비됨에따라서이산화탄소를공급할수 있고, 경화사이클동안에경화챔버내의이산화탄소농도, 온도및 습도를제어할수 있고, 경화공정동안에발생하는변수를기록하고사용자에게보여줄수 있는장치를포함한다.
115 폐기물 용융로 KR1020147028431 2013-07-26 KR1020150099684A 2015-09-01 카지야마히로히사; 토다카미츠마사; 마나코카즈타카; 노다코히치; 히라쿠라쇼
폐기물의 건조, 열분해 및 용융을 실시하는 폐기물 용융로(2)는, 상하 방향으로 연장되어 폐기물을 수용하는 공간을 형성하여, 폐기물을 상부 방향에서 하부방향으로 안내하는 통형상 본체부(20); 본체부(20)의 중심축선을 따라 본체부(20)의 하측으로 이어져, 폐기물에서 생성된 용융물을 저장하는 용융물 저장부(22); 및, 본체부(20)의 중심축선을 따라 본체부(20)의 상측으로 이어져, 폐기물에서 생성된 가스를 모아 배기구(26)로 유도하는 가스 유도부(21); 를 구비한다. 본체부(20)는, 하부 방향으로 갈수록 내측의 단면적이 점차 작아지는 테이퍼부(24)를 갖는다. 테이퍼부(24)는, 상하 방향에 있어서, 본체부(20)를 구성하는 전체 부분중에서 최대 높이를 차지한다.
116 내화도 측정용 전기로 KR1020080002716 2008-01-09 KR1020090076656A 2009-07-13 김수환
An electric furnace for measuring the refractoriness to record and monitor a process and a result of the measurement in real-time is provided to manage data by storing and outputting almost all data related to the refractoriness measurement. An electric furnace for measuring the refractoriness comprises: a disk-shaped crucible in which a test member of cone-shape is arranged on the upper side as the radial shape; a heating unit(110) in which the disk-shape crucible is located in inside; a picturing unit(120) taking a picture of the process of measuring the refractoriness of the test member through an observation hole of an upper heating unit; a controller(130) controlling the power source supplied to a hot wire and storing all data related to the refractoriness of the test member; and a output unit(140) outputting the image to outside.
117 PLANT AND METHOD FOR MELTING METAL MATERIALS PCT/IB2015050710 2015-01-30 WO2015114579A3 2016-03-10 VILLEMIN BERNARD; MORSUT STEFANO; CODUTTI ANDREA; GUASTINI FABIO
Plant for melting metal materials comprising at least a heating unit (11) provided with a container (13) to contain the mainly metal materials and with at least an induction heating device (22) configured to heat the mainly metal materials contained in the container (13). The plant also comprises a transfer unit (25) disposed downstream of the heating unit (11) and configured to move, substantially continuously, the mainly metal solid materials exiting from the heating unit (11) to a melting furnace (12). The container (13) is provided with an aperture (16) through which the mainly metal material, heated and in a solid state, is discharged onto the transfer unit (25), and opening/closing members (17) are associated with the aperture (16), commanded by an actuator (19) and configured to open, close and choke the aperture (16) in order to regulate the delivery of the metal materials that is discharged onto the transfer unit (25).
118 REACTOR SYSTEM AND METHOD FOR THERMALLY ACTIVATING MINERALS PCT/AU2012000464 2012-04-27 WO2012145802A3 2013-01-03 SCEATS MARK GEOFFREY
A reactor arrangement and method for thermal activation of a mineral to increase porosity by flash volatilisation of gas from the mineral, comprising: a flash calciner reactor having a reaction chamber and a heating chamber separated by a reactor wall, the reaction chamber and the heating chamber being in heat transfer communication through the reactor wall; a reaction feed comprising the mineral in particulate form entrained in steam passing through the reaction chamber; a heating fluid flow passing through the heating chamber in counterflow to the reaction feed passing through the reaction chamber; whereby the thermal activation of the mineral proceeds by flash volatilisation of gases from the mineral in the reaction feed by means of heat transferred through reactor wall from the counterflow of heating fluid the chamber to the reaction feed, so that temperature of the mineral feed increases to reach a maximum temperature at exhaust of thermally activated mineral from the reactor.
QQ群二维码
意见反馈